
Reasoning about implicit invocation�

J. Dingel D. Garlan S. Jha

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

fjurgendjgarlanjsjhag@cs.cmu.edu

D. Notkin

Dept. of Computer Science and Engineering

University of Washington

Seattle, WA 98195

notkin@cs.washington.edu

Abstract

Implicit invocation [SN92, GN91] has become an important
architectural style for large-scale system design and evolu-
tion. This paper addresses the lack of speci�cation and ver-
i�cation formalisms for such systems. Based on standard
notions from process algebra and trace semantics, we de�ne
a formal computational model for implicit invocation. A
veri�cation methodology is presented that supports linear
time temporal logic and compositional reasoning. First, the
entire system is partioned into groups of components (meth-
ods) that behave independently. Then, local properties are
proved for each of the groups. A precise description of the
cause and the e�ect of an event supports this step. Using
local correctness, independence of groups, and properties of
the delivery of events, we infer the desired property of the
overall system. Two detailed examples illustrate the use of
our framework.

1 Introduction

A critical issue for large-scale systems design and evolution
is the choice of an architectural style that permits the inte-
gration of separately-developed components into larger sys-
tems. Familiar styles include those based on remote pro-
cedure call [BN84], shared variables, asynchronous message
passing, etc.

One key factor determining the e�ectiveness of an ar-
chitectural style is the ability to reason e�ectively about
properties of a system from properties of its components.
As a result, considerable e�ort has gone into techniques for
composition based on procedure invocation [Dij76, Hoa69],

�E�ort sponsored by the Defense Advanced Research Projects
Agency and Rome Laboratory, Air Force Materiel Command, USAF,
under agreement numbers F30602-96-1-0299 and F30602-96-1-0301,
and the National Science Foundation under Grant No. CCR-9633532
and No. CCR-9633462. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the o�cial policies or
endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency, Rome Laboratory or the U.S. Government.

To appear in Proceedings of the Sixth International
Symposium on the Foundations of Software Engineering
(FSE-6), Lake Buena Vista, Florida, November 3-5, 1998.

shared data [CM88, OG76], and message passing [Hoa85,
Mil80, ISO87]. Even though practitioners rarely carry out
formal reasoning throughout the full design and implemen-
tation process, they can both use the techniques as needed
and also apply intuition that has been built up during de-
velopment of the supporting techniques.

One increasingly important architectural style for system
composition is implicit invocation (II) [SN92, GN91].1 At its
heart, II is based on the idea that a component A can invoke
another component B without A being required to know B's
name. Components such as B \register" interest in particu-
lar \events" that components such as A \announce." When
A announces such an event, the II mechanism is responsible
for invoking component B, even though A doesn't know that
B or any other components are registered.2

One of the simplest examples of II is when an operat-
ing system allows user code to register a callback procedure.
For example, user code might register a procedure that is in-
voked when a particular signal is raised by the kernel. This
allows the user code added control without compromising
the kernel. A somewhat more complicated example arises in
broadcast message-based programming environments (such
as those derived from Reiss' Field [Rei90] system). A col-
lection of tools, such as a compiler, a debugger, an editor,
a program visualization tool, etc., execute together. Rather
than calling one another directly, at appropriate times they
each announce potentially interesting activities. For exam-
ple, the editor might announce, \procedure f was saved",
while the debugger might announce, \the breakpoint in �le
x.c at line 173 was reached." Other tools might decide to lis-
ten for particular kinds of announcements. For example, the
editor might listen for \breakpoint" announcements, so that
it can move the cursor to the appropriate �le and line. A
centralized message server is used to deliver announcements
to the tools that have registered interest.

There are a number of bene�ts of using the II architec-
tural style, and it has been used in diverse settings such
as programming environments and operating systems and
others. Mechanisms to support II are found in commer-
cial toolkits (e.g., Softbench [Ger89], ToolTalk [Sun93], Dec-
Fuse), communication standards (e.g., Corba [Cor91]), in-
tegration frameworks (e.g., OLE, JavaBeans [Jub98]), and
programming environments like Smalltalk [Gol84].

However, there is currently no established methodology
for reasoning about II systems. In particular it is di�cult to

1In other contexts \implicit invocation" is referred to by other
names, such as \publish-subscribe" and \event multicast".

2In this paper, a \component" is just a procedure or method.

1

answer questions like: What will be the e�ect of announcing
a given event? Have enough event bindings been declared
to achieve the desired system behaviour? Does a given com-
ponent announce su�cient events to permit e�ective inte-
gration? If a new component is added to an existing sys-
tem, will it break the existing system? Are there the right
components to produce desired overall system behaviour?
Moreover, to fully support the intent of II, the reasoning
should be compositional. More precisely, the veri�cation of
a given component should as much as possible be decoupled
from the veri�cation of the system in which its events are
bound to other components. This is because changing any
binding requires reanalysis of the components that announce
the events in the changed bindings.

This paper presents a formal model for systems designed
using the II architectural style. The model combines stan-
dard notions from process algebra and trace semantics [Mil80,
Hoa85] and allows the development of a compositional ver-
i�cation methodology for II systems. Informally, an II sys-
tem S consists of a set of methods mi and a distinguished
dispatcher method disp which explicitly models the deliv-
ery and storage of events E. An event-method binding B
determines which methods are triggered by which events.
Each event e 2 E has a semantics associated with it that
gives precise meaning to the generation and consumption of
events. The cause of an event captures the state change that
caused the generation of the event. The e�ect of an event
captures the state change that the event will give rise to.

Suppose system S with methods

M � fm1; : : : ; mn; dispg

is to be veri�ed with respect to some speci�cation '. Our
methodology consists of the following three phases.

� Phase 1 (Decomposition)
The set of methods M is partitioned into groups

fG1; � � � ;Gkg

with 1 � k � n. For each group Gi we �nd a local
property 'i. Groups are independent in the follow-
ing sense: if Gi satis�es 'i, then the entire system
also satis�es 'i. We also prove a local property 'disp
about the dispatcher method disp. The property 'disp
captures the minimal requirements on the binding and
the dispatch policy of events. For instance, in all non-
trivial cases the binding needs to be non-empty and
the dispatcher is required not to lose certain or even
all events.

� Phase 2 (Local reasoning)
Each group Gi is veri�ed with respect to the local
property 'i. Moreover, the dispatcher is veri�ed with
respect to 'disp. Typically, this step uses both the
event-method binding B and the semantics of the events
used by group Gi.

� Phase 3 (Global reasoning)
We show that the local correctness of each of the groups
and the dispatcher implies the correctness of S with
respect to '. Independence ensures soundness of this
phase.

In general, the tractability of this methodology depends on
the number of independent groups that the system can be
split into. We believe that the loosely-coupled nature of II
systems naturally supports the formation of a large number
of independent groups; that is, we expect the number of
groups k to be linear in the number of methods n rather
than a small constant.

1.1 Related Work

There are two general areas of related work. The �rst is
research on implicit invocation systems. Most of the work
on such systems has centered around developing practical
mechanisms for exploiting the paradigm in real systems,
such as programming environments like Field and Softbench
[Rei90, Ger89]. Our work is inspired by the practical success
of this work, and hopes to make engineering e�orts based
on it more e�ective by providing a more principled basis for
reasoning about II systems.

Within the general area of II research several researchers
have attempted to provide precise characterizations of im-
plicit invocation systems. An early survey of applications
of the technique appeared in [GKN92] in which the authors
illustrated how and why the ideas of II systems are perva-
sive in software systems. Sullivan and Notkin showed how a
particular style of use of II, which they call mediators, sim-
pli�es some speci�c classes of system change [SN92]. More
recently, [BCTW96] produced a taxonomic survey of event-
based mechanisms, together with a generic object model for
comparison of them. By providing a general framework for
all systems that use events as a communication mechanism
(including, for example, remote procedure call) their work
is concerned with a much broader class of systems than is
our research. By focusing on the more specialized domain
of implicit invocation systems, our models need not include
all of the taxonomic entities that they propose, but are tai-
lored to provide a more substantial analytic basis for formal
reasoning about the behavior of such systems.

Closer to our line of research, some e�orts have attempted
to provide a formal characterization of certain aspects of II
systems. An early characterization of II in Z captured struc-
tural and basic behavioural aspects, but no fundamentals of
semantics [GN91]. More recently, researchers in software
architecture have looked at some of the formal properties
of II architectural styles [AAG95], but this research has fo-
cussed on taxonomic issues, and does not provide an explicit
computational model that permits compositional reasoning
about the behaviour of such systems.

In an earlier paper [DGJN98], we investigated the use
of Jones' rely-guarantee framework [Jon83]. Here, composi-
tionality is achieved by restricting the behaviour of the en-
vironment with a single logical formula, called environment
assumption or invariant. To discharge this assumption the
environment then has to be shown to satisfy this invariant.
Since the invariant has to be preserved by every transition,
this is a very strong requirement that typically can only be
met after weakening the invariant with location predicates
that describe the value of the program counter. A weakened
invariant thus typically expresses that either the invariant
already holds or certain statements are about to be executed
which reestablish it. Consequently, the reasoning becomes
unnecessarily detailed. We are forced to explicitly keep track
and expose the number and identity of intermediate states
even if this information is completely irrelevant to the cor-
rectness of the system. In the present paper we strive to
overcome this de�ciency with the help of temporal logic.

Other researchers have investigated at formal aspects
of event-multicast and process groups as a mechanism for
achieving fault tolerance through replication [BJ89]. This
work di�ers from that on implicit invocation in that multiple
recipients of an event typically perform the same computa-
tions. This leads to very di�erent requirements for underly-
ing theory, since the main issue is how to add and remove
replicated servers correctly to a running system.

As we will see, this paper uses the UNITY program-

2

ming language [CM88] augmented with a few communica-
tion primitives to provide a semantic base for implicit in-
vocation. One possible alternative would have been to use
Linda's tuple space [GZ97] as the underlying model. How-
ever, the match between tuple spaces and implicit invocation
did not appear to be a natural one: II systems are sensitive
to the relative order in which events are communicated, and
a tuple space's inherent non-determinism would thus have
to be restricted.

In the remainder of this paper we describe a formaliza-
tion of implicit invocation systems. The next section intro-
duces a formal model for II systems. Section 3 describes the
speci�cation formalism. Section 4 presents the veri�cation
methodology. Section 5 concludes and outlines further work.

2 Modeling implicit invocation systems

An implicit invocation system will be modeled as a col-
lection of methods that anonymously exchange messages
(events) by means of a dispatcher and an event-method bind-
ing. A method is a UNITY program augmented with com-
munication primitives for sending and receiving messages.
We employ a notion of communication similar to Milner's
CCS [Mil80]. There are three types of actions a. a is either

� the silent action � ,

� an input action hm;zi? or hm;ei?, or

� an output action hm;ei!,

wherem is some method, e is some event in E, and z is some
variable ranging over events. An input action a1 � hm1; zi?
or a1 � hm1; ei? and an output action a2 � hm2; ei! are said
to match, if m1 = m2. Synchronization is achieved through
matching actions. Intuitively, if a method m1 announces
an event e meant for a method m2, it performs the out-
put action hm2; ei!. Method m2 consumes the event e by
synchronizing with the above action by performing one of
the input actions hm2; zi? or hm2; ei?. The synchronization
then gives rise to the silent action � and also assigns e to z
in case hm2; ei! is matched with hm2; zi?.

To allow for a \selective receipt" of events, input actions
could be augmented with a predicate p, such that hm;z;pi?
matches hm;ei! only if e satis�es p. As in Field [Rei90],
di�erent methods could thus \listen" for di�erent sets of
actions.

De�nition 2.1 A method m is a 4-tuple

m � (V; E;P; S)

where

� V is the set of variables thatm accesses. Each variable
x has a domain Domx associated with it,

� E is a set of events that m announces,

� P is a boolean expression over V describing the set of
initial states,

� S is a set of statements of the form

g
a
�!x := exp

where

{ g is a boolean expression over V called guard,

{ a is an action,

{ x := exp is an assignment where x 2 V and exp
is an expression over V . �

The semantics of a method is similar to that of a UNITY
program [CM88]. The method executes the statements in an
in�nite loop using the following strategy. First, a statement

g
a
�!x := exp 2 S

is chosen non-deterministically. If g holds in the current
state, the action a is carried out. If a = hm;zi?, then
we input the next event addressed to method m and as-
sign it to z. Next, the assignment x := exp is executed
by evaluating the expression exp in the current state and
then updating variable x. If the environment of m does not
o�er a matching output action, we get a stuttering step,
that is, the assignment is not carried out and the execution
of the statement terminates in the same state. The case
a = hm;ei?, is similar except that no variable update takes
place. The communication thus only has a synchronizing
e�ect. If a = hm;ei!, we output the event e to method m
and then evaluate the assignment. Again, if the environ-
ment does not o�er a matching input action, the statement
terminates with a stuttering step. Finally, if a = � , we im-
mediately evaluate the assignment. Note that execution of
an assignment is assumed to be atomic. If the guard is not
true in the current state, the execution of the statement ter-
minates immediately in the same state. Just like in UNITY,
we adopt the fairness constraint that every statement will
be executed in�nitely often.

The recipients of an event are determined by the binding.

De�nition 2.2 Let E be a set of events and M a set of
methods. A (possibly empty) set B � E �M is called a
binding over E and M . �

A binding associates each event e with zero or more methods
that are to be triggered when that event is announced. Note
that an event need not be bound to any methods and that
several methods can be bound to the same event.

Given a binding B, the delivery of events is modeled ex-
plicitly through a distinguished dispatcher method dispB ,
frequently also denoted by disp if the binding is understood
or irrelevant. A method announces an event e by sending it
to the dispatcher. In practice, the number of events that a
dispatcher can handle at a given time is bounded by some
number max. If the dispatcher is not �lled to its capac-
ity max, it consumes the event, looks up which methods e
is bound to and then stores all resulting pairs (e;m) in a
pending events datastructure D that keeps the events that
are yet to be delivered. Concurrently, the dispatcher can
retrieve a pending event from D and send it to a method it
is bound to. The dispatcher is given in Figure 1. For no-
tational convenience and without loss of generality, we will
always represent the list of statements S in terms of a sim-
ple, imperative, shared-variable concurrent language aug-
mented with two communication primitives for sending and
receiving messages. The translation from this representation
to the one in De�nition 2.1 is straightforward [CM88]. To
model sequential execution, for instance, a program counter
pc is introduced for each method m that always points to
the next statement in m to be executed. Moreover, we use
the following abbreviations. hm;zi? and hm;ei? stand for

true
hm;zi?
�! skip

3

dispB : fD; z;mg V
; E

empty(D) P
[if size(D) < max then S

consume(z);
for (z;m) 2 B do
D := store(z;m;D) k

if :empty(D) then
(z;m) := next(D);
hm;zi!;
D := remove(z;m;D)]

Figure 1: The dispatcher method dispB

and

true
hm;ei?
�! skip

respectively. hm;ei! abbreviates

true
hm;ei!
�! skip:

An occurrence of consume(z) in method m abbreviates
hm;zi? and announce(e) abbreviates hdispB ; ei!. The state-
ment store(e;m;D) stores the pair (m;e) in D and returns
the updated D; if D is not empty, next(D) returns the next
element stored in D; if (e;m) is in D, remove(e;m;D) re-
moves it from D and returns the updated D. size(D) yields
the number of elements stored in D and empty(D) returns
true if and only if D is empty. For the sake of generality, we
intentionally make as few assumptions about an implicit in-
vocation system as possible. For example, the storage policy
of pending events in D is left unspeci�ed. An example for
a policy would be a �rst-in-�rst-out discipline that does not
remove duplicate occurrences of pairs. In other words, the
model is supposed to abstract from speci�c event storage
policies so that any possible policy can be plugged in easily.

For the dispatcher to ful�ll its purpose, all communica-
tion needs to be forced through it. In other words, whereas
the dispatcher must be able to communicate with every
method (except itself), all other methods must be prevented
from communicating with each other directly. We thus im-
pose the following topology constraint: All methods except
the dispatcher must use announce(e) and consume(z) to
send and receive messages. In other words, every output
action and every input action in a method m except the
dispatcher must be of the form hdisp; ei! and hm;zi? respec-
tively.

A set of methods mi that satisfy the topology constraint
together with a binding B and a dispatcher dispB form a
system. Given a method

mi � (Vi; Ei; Pi; Si);

let E(mi) and P (mi) denote Ei and Pi respectively.

De�nition 2.3 An implicit invocation system S, or system
for short, is a 4-tuple

S � (M;P;E; B)

where

� M is a set of methods mi together with a distinguished
dispatcher method dispB , that is,

M � fm1; : : : ;mn; dispBg

with n � 1, where m1 through mn satisfy the topology
constraint,

� P describes the initial states of the system. It must be
consistent with the initial states of each of the methods,
that is, P)

V
m2M P (m),

� E �
S

m2M
E(m), is the set of all events,

� B is a binding over E and fm1; : : : ;mng.

The actions of a system are collected in

InOut � fhm;ei?; hm;ei! j m 2M;e 2 Eg

Act � InOut [f�g:

�

Note that the same variable can be accessed by more
than one method. Methods thus can also communicate
through shared variables.

From an implementation point of view, we can think of
a system as a network of processes (methods) that are con-
nected through input ports as shown in Figure 2. pm de-

m1 mn

�� ��

��

H
H
H
H
H
H
HHj

H
H
H
H

H
H
HHY

�
�
�

�
�
�
���

�
�
�
�
�
�
��*

: : :

p1 pn

dispB

pdispB

Figure 2: Implicit invocation system as network

notes the input port of process (method) m. Note how the
dispatcher controls the
ow of events.

2.1 Modeling the environment

Typically, a system is triggered directly by some \top-level"
(or \external") events that are provided by the user. The
environment model represents all allowed sequences of input
and output actions that may be presented to some set of
methods.

De�nition 2.4 Given a system with input and output ac-
tions InOut, an environment model Env is a (possibly empty)
set of �nite sequences of input and output actions, that is,
Env � InOut�. �

Although the above de�nition is a lot more general, we will
only employ two kinds of environment models in this paper.

� To de�ne the semantics of an event we will need en-
vironments that can only execute a single action a 2
InOut. The corresponding model thus is of the form
fag.

� Moreover, to model an arbitrary but �nite stream of
\top-level" actions supplied by a user, we will use envi-
ronment models of the form fa1; : : : ; ang

� where ai 2
InOut for all 1 � i � n.

4

The behaviour of an environment model Env will be imple-
mented by the method mEnv. The method corresponding to
Env � fa1; : : : ; ang

� is given in Figure 3 where the execution
of

n := choose(N)

assigns a random natural number to n and

choose(a1; : : : ; am)

non-deterministically chooses an action ai with 1 � i �m.

mEnv : ; V
fa1; : : : ; amg E

true P
n := choose(N); S
for i = 1 to n do
choose(a1; : : : ; am)

Figure 3: The method mEnv corresponding to Env �
fa1; : : : ; amg

�

2.2 Example: Sets and counters

We show how the above model of an implicit invocation sys-
tem can be instantiated by a speci�c example. Consider a
system SC which maintains a set S of elements over some do-
main Domx and a counter C. Initially, S = ; and C = 0. Be-
sides the dispatcher the system contains two methods which
are given in Figure 4. An element x can be inserted into or

set : fx; z1; Sg
fins; delg [finsert(v);delete(v)jv 2 Domxg

S = ;
consume(z1);
if z1 = insert(x) then

if x 62 S then
S := S [fxg;
announce(ins)

elsif z1 = delete(x) then
if x 2 S then
S := Snfxg;
announce(del)

cnt : fC; z2g
fins; delg
C = 0

consume(z2);
if z2 = ins then

C := C + 1
elsif z2 = del then

C := C � 1

Figure 4: Methods set and cnt

deleted from the set S using the method set. Analogously,
the counter C can be incremented or decremented using cnt.
The binding is

B � f(ins; cnt); (del; cnt)g:

Thus,
M � fset; cnt; dispBg

and

E � fins;delg [finsert(v);delete(v) j v 2 Domxg:

Execution is triggered by a �nite sequence of insert or delete
actions addressed to the set method. We de�ne

Env �
�
hset; insert(v)i!; hset;delete(v)i! j v 2 Domx

	�
:

Given one of the actions

hset; insert(v)i!

or
hset;delete(v)i!;

the method set is invoked. If necessary, the set S is updated
by inserting or deleting the element v and the corresponding
event is announced. This in turn triggers cnt. B provides
the necessary bindings for events that announce the update
of the set, so that the counter can also be updated corre-
spondingly.

Note that we do not assume that, for instance, the inser-
tion and the increment occur simultaneously. Consequently,
it is not the case that the size of the set is always equal to
the counter. However, if every announced event has been
consumed and \serviced" with the corresponding counter
update, then we should have jSj = C. As we will see, this
paper develops the theory necessary to formally express and
prove this kind of property.

2.3 Trace-theoretic model

Before we can present the trace semantics of an II system,
we need to show how a method and a system can be modeled
as automata (labeled transition systems). We �rst describe
how a single method is mapped to an automaton.

De�nition 2.5 Given a method m � (V; E;P; S) we de�ne
a method automaton as

Am � (V;�; I; P; �)

where

� � : V !
S
x2V Domx is the set of states of m, that is,

mappings assigning values to the variables in m,

� I � � is the set of initial states of the automaton Am,
that is, states in which the program counter ofm points
to the �rst statement of m, that is, pc = 1. Note that
not every state in I has to satisfy P ,

� � � ��Act�� is the transition relation and is de�ned
as the smallest relation satisfying

{ f(s; a; s); (s; �; [sjx = v])g � � if there exists a
statement

g
a
�!x := exp

in S such that g is true in s and exp evaluates to
v in s,

{ (s; �; s) 2 � if g is not true in s. �

Given a state s over variables V1 and a set of variables
V2 � V1, let s�V2 be the projection of s to V2.

5

De�nition 2.6 Given method automata

Ai � (Vi;�i; Ii; Pi; �i)

for 1 � i � n their parallel composition is given by

A1k : : : kAn � (V;�; I; P; �)

where

� V =
Sn

i=1 Vi,

� � : V !
S

x2V
Domx is the set of states over V ,

� s 2 I i� s�Vi 2 Ii for all 1 � i � n,

� P =
Vn

i=1
Pi, and

� � � �� Act� � is the smallest relation satisfying

1. (s; �; s0) 2 � if there exists 1 � i � n such that
(s�Vi; �; s

0�Vi) 2 �i and all variables in V but not
in Vi remain unchanged, that is, s�(V � Vi) =
s0�(V � Vi), and

2. (s; �; s) 2 � if there exist 1 � i; j � n such that
i 6= j and

(s�Vi; hm;ei?; s�Vi) 2 �i

and
(s�Vj ; hm;ei!; s�Vj) 2 �j;

and

3. (s; �; [sjz = e]) 2 � if there exist 1 � i; j � n such
that i 6= j and

(s�Vi; hm;zi?; s�Vi) 2 �i

and
(s�Vj ; hm;ei!; s�Vj) 2 �j;

and

4. (s; �; s) 2 � if there exist 1 � i � n, m and z such
that

(s�Vi; hm;zi?; s�Vi) 2 �i

and
(s�Vj; hm;ei!; s�Vj) 62 �j

for all e and 1 � j � n with j 6= i, and

5. (s; �; s) 2 � if there exist 1 � i � n, m and e such
that

(s�Vi; hm;ei?; s�Vi) 2 �i

and
(s�Vj; hm;ei!; s�Vj) 62 �j

for all 1 � j � n with j 6= i, and

6. (s; �; s) 2 � if there exists 1 � i � n such that

(s�Vi; hm;ei!; s�Vi) 2 �i

and
(s�Vj ; hm;zi?; s�Vj) 62 �j

and
(s�Vj ; hm;ei?; s�Vj) 62 �j

for all z and 1 � j � n with j 6= i. �

The intuition behind the de�nition of � is as follows. The
�rst clause covers the case where one of the components
moves independently by executing an assignment for in-
stance. The next two clauses model synchronous commu-
nication. While the second clause captures synchronization
without a data exchange, the third clause de�nes commu-
nication with update of some variable z. The �nal three
clauses allow a component to stutter if the environment does
not o�er a matching action. Note that only the communi-
cation case requires synchronization. In all other cases a
component can move independently.

We are now ready to de�ne the trace semantics.

De�nition 2.7 Let

A � (V;�; I; P; �)

be an automaton corresponding to some system S. A trace
� of A is an in�nite sequence of the form

s0
�
�!s1

�
�!s2

�
�! : : :

where

� s0 2 I,

� s0 j= P , and

� (si; �; si+1) 2 � for all i � 0, and

� every statement of S gets executed in�nitely often along
�.

The set of all traces of A is denoted by T [[A]]. �

The traces of a set of methods are never considered in iso-
lation, but always in the context of an environment.

De�nition 2.8 Let S be a system and let

G � fm1; : : : ; mng

be a set of methods (including possibly the dispatcher) of S.
Given an environment model Env, the automaton AG;Env

modeling the behaviour of G in the environment Env, is
given by the parallel composition of all method automatons
Ami

and the environment automaton AmEnv
, that is,

AG;Env � Am1
k : : : kAmn

kAmEnv
:

The traces of G in Env are the traces of AG;Env, that is,
T [[G;Env]] = T [[AG;Env]]. �

3 Specifying implicit invocation systems

To specify the ongoing behaviour of an II system, we use
�rst-order linear time temporal logic without the next time
operator X, denoted by LTL�X .3

De�nition 3.1 Given some set AP of atomic propositions
and assuming p 2 AP , the set of LTL�X formulas is induc-
tively de�ned as:

� ::= p j :� j '1 ^ '2 j 8x:' j '1 U '2

Other formulas can be introduced as abbreviations in the
usual way: '1 _ '2 abbreviates :(:'1 ^ :'2), '1)'2 ab-
breviates :'1 _'2, true abbreviates p_:p, false abbreviates

3Our model allows for arbitrary, but �nite stuttering to be added
between two transitions which renders the next time operator useless.

6

:true and 9x:' abbreviates :8x::'. The temporal operator
F� abbreviates true U � and G� abbreviates :F:�. Given

� � s0
a0�!s1 : : :

ai�1
�!si : : : ;

let �[i] denote the state si. Let �[i::] denote the in�nite suf-

�x si
ai�!si+1 : : :. The satisfaction relation j= of a LTL�X

formula with respect to a trace � is inductively de�ned over
the structure of the formula.

� j= p if �[0] j= p
� j= :' if not � j= '
� j= '1 ^ '2 if � j= '1 and � j= '2
� j= 8x:' if � j= '[v=x] for all v 2 Domx

� j= '1U'2 if 90 � i:�[i::] j= '2 and
�[j::] j= '1 for all 0 � j < i.

�

Initial, terminated and quiescent states

Typically, events are used to maintain some kind of system
invariant. However, just like loop invariants in sequential
programming, they usually will not be preserved along ev-
ery transition of the system. The following scenario seems
typical for II systems: The execution of a statement in
some method m1 results in the violation of the invariant.
m1 will then announce an event which will trigger some
other method m2. The execution of m2 will then eventu-
ally reestablish the invariant. Note that the invariant might
be violated until m2 has completed. The next de�nition
presents three predicates init, term, and quiescent that al-
low us to single out certain states along a trace in which the
invariant should hold.

De�nition 3.2 Let � be a trace of a set of methods G in
some environment Env and let s be a state along �.

1. The proposition init holds in s i� it is an initial state
of the automaton AG;Env , that is, the program counter
of all methods in G point to the �rst statement.

2. The proposition term holds in s i� s is a �xed point,
that is, � does not exhibit any state changes after s.

3. If G contains the dispatcher, that is, disp 2 G, then
proposition quiescent holds in s i� it is an initial state
of AG;Env and the pending events datastructure D is
empty. �

In Example 2.2, for instance, the system invariant is
jSj = C, the size of the set S is equal to the value of the
counter C. This invariant is not maintained along every
transition. For instance, while an ins event is pending in
the dispatcher, the counter will lag behind. Let � be a
trace of method set in some environment Env and let s be a
state along �. Then, if init holds in s, that is, the program
counter of set points to the �rst statement of set, then the
size of S in s is the number of hdisp; insi! actions issued so
far minus the number of hdisp; deli! actions issued so far.
Also, we expect the counter to have caught up whenever all
events have been delivered and the system is back in one of
its initial states, that is, if s is quiescent. Note that every
terminated state also is quiescent.

Properties of the behaviour of a set of methods G in
some environment Env can be described using the following
notion of speci�cation.

De�nition 3.3 Given a set of methods G and an environ-
ment model Env, a speci�cation is a 4-tuple

fpg (G;Env) f'g

where p is the pre-condition given as a boolean expression,
and ' is a LTL�X formula. The speci�cation

fpg (G;Env) f'g

is satis�ed, if

8� 2 T [[G;Env]]:if �[0] j= p then � j= ':

�

3.1 Event semantics

The key feature of II systems is that the notion of events al-
lows for a temporal and spatial separation of the cause and
the e�ect of certain designated state changes. For instance,
consider a set of source and executable �les. Suppose we
want our II system to automatically maintain consistency of
the executables with respect to the source �les. The modi�-
cation of one of the source �les causes the editor to announce
a modi�ed event. Assuming that this event is bound to the
compiler, the e�ect of this event will be the invocation of
the compiler at some later point in time and in some possi-
bly remote location. This kind of separation between cause
and e�ect seems essential to the easy integration of loosely-
coupled software components. However, it also makes formal
reasoning about II systems very di�cult.

We will now de�ne causes and e�ects more formally. We
say that an event e is announced by methodm whenever it is
passed to the dispatcher, that is, m executes announce(e).
Remember that in this case m performs a transition la-
beled with hdisp; ei!. The cause of an event, cause(e) for
short, characterizes the state change that gave rise to the
announcement of e.

De�nition 3.4 cause(e;m) is the strongest LTL�X formula
' that validates the speci�cation

ftrueg
�
fmg; fhdisp; ei?g

�
f'g:

cause(e) is

cause(e) �
_

m2G

cause(e;m)

where G is the set of all methods that announce e. �

In the above de�nition m is run in an environment that
can accept event e if it is addressed to the dispatcher, that
is, it o�ers the action hdisp; ei?. Let � be a trace of m
in that environment. Due to the restricted shape of the
environment, the only communication that m can engage in
along � is sending e to the dispatcher. Moreover, it can do
so at most once. Due to the fairness assumption that every
statement is executed in�nitely often, m will thus announce
e exactly once along �. Note that m can still perform an
in�nite number of internal � -actions.

The e�ect of e, e�ect(e), describes the state change with
which the rest of the system will react. An event invokes the
methods it is bound to. Suppose e is bound to m, that is,
(e;m) 2 B. We say that an event e is consumed by m when-
ever m receives e from the dispatcher, that is, m executes
consume(z) after which z is bound to e for some variable z.
Remember that in this case m performs a transition labeled
with hm;zi?. Note that in contrast to the cause, e�ect(e)
depends on the methods that e is bound to and thus on the
binding. An unbound event will not have any e�ect.

7

De�nition 3.5 e�ect(e;m) describes the state change by
m that the consumption of e will give rise to. Formally,
e�ect(e;m) is the strongest LTL�X formula ' such that

ftrueg
�
fmg; fhm;ei!g

�
f'g:

The e�ect of the event is then given by

e�ect(e) �
^

(e;m)2B

e�ect(e;m):

Cause and e�ect of an event are referred to as its semantics.
�

The intuition behind the de�nition of the e�ect is analogous
to that of the cause. m is run in an environment that can
send the event e to m once, that is, it o�ers the action
hm;ei!. Let � be a trace ofm in that environment. The only
communication that m can engage in along � is receiving
e. Moreover, it can do so at most once. Due to the fairness
assumption that every statement is executed in�nitely often,
m will thus consume e exactly once along �.

For instance, consider the set-counter example of Sec-
tion 2.2. Whenever an element x is added to the set S with
x 62 S, then the action hdisp; insi! announces the event ins
by communicating it to the dispatcher. The consumption
of ins subsequently causes the counter C to be incremented.
Similarly for the event del. For speci�cation purposes we
need logical variables. A logical variable is never mentioned
in a program and its value can thus be assumed to remain
unchanged across program transitions.4 Let T and w be log-
ical variables. Also, let follows(';) abbreviate U (G').
Informally, follows(';) holds for � if there exists a state si
along � up to which holds and from which ' holds forever.
The reason for announcing ins is that there is some value
x 2 Domx such that x 62 S and the value of S changes from
T to T [fxg for some T . Note that only the method set
announces ins.

cause(ins)
= cause(ins; set)
) 8T 2 DomS:S = T)9x 2 Domx:x 62 T^

follows(S = T [fxg; S = T)

The e�ect of ins is an increment of C. Remember that ins
is bound to cnt.

e�ect(ins)
= e�ect(ins; cnt)
) 8w 2 DomC:C = w)follows(C = w + 1; C = w):

Similarly, for the del event we get

cause(del)
= cause(del; set)
) 8T 2 DomS:S = T)9x 2 Domx:x 2 T^

follows(S = T � fxg; S = T)

and

e�ect(del)
= e�ect(del; cnt)
) 8w 2 DomC :C = w)follows(C = w � 1; C = w):

Note that in the above formalization the event semantics
can only express state changes. More precisely, given an
event e, neither the announcement nor the consumption of
some other event can be part of the semantics of e. In other
words, an event cannot cause the announcement of some
other event, for instance.

4Sometimes also called rigid variables.

4 Verifying implicit invocation systems

Before we can introduce our veri�cation methodology, we
need to de�ne the notion of independence.

De�nition 4.1 Let S be a system with methodsM and en-
vironment model Env. Let G be a set of methods of S with
environment model EnvG. We say that (G;EnvG) is inde-
pendent with respect to p and ', if

fpg (G;EnvG) f'g

implies
fpg (M;Env) f'g:

�

Independence thus allows us to \lift" a speci�cation from
a subset of methods to the entire system. It attempts to
reconcile concurrency and compositionality, which is a cen-
tral problem in concurrency theory: Under what circum-
stances can a property of a composite system be obtained
from properties of its components despite the presence of
concurrency [dR85]? Unfortunately, our methodology cru-
cially depends on our ability to prove independence. To ease
this task, we will now isolate a few syntactic conditions that
guarantee independence.

Let G be the environment (complement) of G, that is,
the set of methods inM but not in G. First of all, we need to
prevent the environment from interfering with the compu-
tation of G via shared variables. More precisely, we assume
that G and G do not share any variables. Moreover, we
need to prevent the environment from changing the truth
value of either p or ', that is, we require G to not men-
tion any of the variables in p or '. However, the absence
of variable con
icts implied by the above two conditions is
not su�cient. The reason is that an enlarged environment
Env may o�er communication actions that EnvG did not of-
fer. These additional actions may allow G in Env to exhibit
traces that were impossible for G in EnvG. We say that
an environment model EnvG complements a set of methods
G, if every action mentioned in G has a matching action in
EnvG. Consequently, a complementing environment will al-
low G to engage in all communications it could be interested
in.

We thus arrive at the following lemma.

Lemma 4.1 Let G � M be a non-empty set of methods
and let G be the methods in M but not in G. (G;EnvG) is
independent with respect to p and ', if

� all methods in G do not mention any of the variables
used in G, and

� all methods in G do not mention any of the variables
used in p or ', and

� EnvG complements G. �

Let M � fm1; : : : ;mn; dispg be the set of methods of
some system S with environment model Env. Suppose we
want to show that

fpg (M;Env) f'g:

Our veri�cation methodology consists of the following three
phases.

8

Decomposition Partition M into groups G1; : : : ;Gk with
1 � k � n. Typically, the dispatcher is analyzed in
isolation and forms a singleton group. For each group
Gi �nd an environment model Envi and subspeci�ca-
tions pi and 'i such that (Gi;Envi) is independent
with respect to pi and 'i.

Local reasoning Prove subspeci�cations

fpig (Gi;Envi) f'ig

for each 1 � i � n. Typically, this step uses both the
event-method binding and the semantics of the events.

Global reasoning Lift the subspeci�cations to the entire
system using independence, and prove

fpg (M;Env) f'g:

4.1 Example: Sets and counters

As indicated at the end of Section 2.2, we would like to
show that after an arbitrary but �nite number of insert and
delete events have been passed to the system, the size of the
set is equal to the value of counter in every quiescent state.
Formally,

fS = ; ^C = 0g
(M;Env)
fG(quiescent)jSj = C)g

where

Env � fhset; insert(v)i!; hset;delete(v)i! j v 2 Domxg
�:

4.1.1 Decomposition

Each method in SC forms a group. Independence will be
shown later.

4.1.2 Local reasoning

Let #hm;ei? stand for the number of times that event e
was received by m so far along the current trace. Also, let
#hm;ei! stand for the number of times that event e was sent
to m so far along the current trace. Formally, this operator
can be implemented using auxiliary variables.

Due to our synchronous notion of communication, a com-
munication action cannot occur without a matching action.
We thus get the following lemma.

Lemma 4.2 Along every trace � of some system S, the
number of matching input and output actions must be equal,
that is, we must have #hm;ei? = #hm;ei!. �

Set method set

Given the cause(ins) and cause(del), we can see that when-
ever an element is added to the set, an ins event is announced
and that whenever an element is removed from the set, a del
event is announced. Thus, in initial states, the size of S is
the number of ins events sent to the dispatcher so far minus
the number of del events sent to the dispatcher so far. The
validity of this correspondence is limited to initial states,
because it does not hold when control is between updating
the set and posting the appropriate event. Formally,

fS = ;g
(set;Envset)
fG(init)jSj = #hdisp; insi!�#hdisp; deli!)g

where

Envset � fhset; insert(v)i!; hset;delete(v)i! j v 2 Domxg
�:

Counter method cnt

The local speci�cation of the counter is analogous. Given
the e�ect(ins) and e�ect(del), we can see that whenever an
ins event is consumed, the counter is incremented and that
whenever an del event is consumed, the counter is decre-
mented. Thus, in initial states, the value of C is the number
of ins actions received from the dispatcher so far minus the
number of del actions received from the dispatcher so far.
Formally,

fC = 0g
(cnt;Envcnt)
fG(init)C = #hcnt; insi?�#hcnt;deli?)g

where Envcnt � fhcnt; insi!; hcnt; deli!g�.

Dispatcher method disp

Note that no assumptions about the binding B or the stor-
age policy of the dispatcher have been made yet. For in-
stance, we have not yet required B to be non-empty or the
dispatcher not to lose every message. However, it is clear
that for the veri�cation to go through, certain minimal re-
quirements have to be imposed. The following speci�cation
captures these requirements.

Every ins event input by the dispatcher is �rst stored
in D and then passed on to the counter. Similarly for del
events. In other words, the dispatcher must eventually pass
on every ins and del event received. More precisely, in every
initial state, the number of hdisp; insi? actions performed
by the dispatcher is the sum of the number of hcnt; insi!
actions performed by cnt plus the number of ins events still
pending in D. A similar correspondence holds for the del
event. Formally,

ftrueg
(disp;Envdisp)
fG(init)

(#hdisp; insi? = #hcnt; insi! + #(cnt; ins;D)^
#hdisp; deli? = #hcnt; deli! + #(cnt; del;D)))g

where

Envdisp � fhdisp; insi!; hdisp; deli!; hcnt; insi?; hcnt;deli?g�

and #(m;e;D) denotes the number of occurrences of the
pair (m;e) in D. Note that the above speci�cation would
fail, if, for instance, the binding was empty, or the dispatcher
simply discarded some of the incoming events.

4.1.3 Global reasoning

Note that set, cnt and disp do not share any variables and
that Envset;Envcnt and Envdisp complement set, cnt and
disp respectively. Due to Lemma 4.1, the three group and
environment pairs above are independent with respect to
their respective speci�cations. Thus,

fS = ;g
(M;Env)
fG(init)jSj = #hdisp; insi!�#hdisp; deli!)g

and

fC = 0g
(M;Env)
fG(init)C = #hcnt; insi?�#hcnt;deli?)g

9

and

ftrueg
(M;Env)
fG(init)

#hdisp; insi? = #hcnt; insi! + #(ins; cnt;D)^
#hdisp; deli? = #hcnt; deli! + #(del; cnt;D))g:

Let � be a trace of (M;Env) that starts in a state satisfying
S = ; ^ C = 0 and let si be a quiescent state along �. si
satis�es the implication

init) jSj = #hdisp; insi!�#hdisp; deli!^
C = #hcnt; insi?�#hcnt; deli?^
#hdisp; insi? = #hcnt; insi! + #(ins; cnt;D)^
#hdisp; deli? = #hcnt; deli! + #(del; cnt;D):

Moreover, quiescence implies init and empty(D) which im-
plies that the number of (cnt; ins) and (cnt; del) pairs in D
is zero, that is,

#(ins; cnt;D) = #(del; cnt;D) = 0:

Thus, si satis�es

jSj = #hdisp; insi!�#hdisp; deli!^
C = #hcnt; insi?�#hcnt; deli?^
#hdisp; insi? = #hcnt; insi!^
#hdisp; deli? = #hcnt; deli!:

Using Lemma 4.2 we get

#hdisp; insi? = #hdisp; insi!

and
#hdisp; deli? = #hdisp; deli!:

Consequently, si j= jSj = C which allows us to conclude

fS = ; ^C = 0g (M;Env) fG(quiescent)jSj = C)g:

4.2 Example: File system

We now consider an example inspired by the common ap-
plication of implicit invocation to software development en-
vironments, such as Field [Rei90]. Previously, a state was
a mapping from variables to values. We now consider a
slightly di�erent scenario, in which the state is given by the
contents and the attributes of a �le system FS. Suppose Src
is a set of source �les. We assume that the �les in Src cor-
respond to an executable �le exe and that make(Src; exe)
creates a new executable with respect to the current con-
tents of Src. In the following, the variable f will range over
�les in FS, that is, Domf = fv j v is a �le in FSg. The
system FS contains the events

E � fmodi�edg [fed(v) j v 2 Domfg;

and the methods

M � fedit; cmpl; dispBg

where
B � f(modi�ed; cmpl)g:

Let fresh denote the fact that the last modi�cation date of
exe is more recent than that of all �les in Src, that is, for all
f 2 Src,

date last modi�ed(exe) � date last modi�ed(f):

The modi�ed event gets announced, whenever the �le sys-
tem is not fresh. Moreover, whenever the modi�ed event
is consumed the �le system will eventually be fresh. The
semantics of the modi�ed event thus is

cause(modi�ed)) FG:fresh

e�ect(modi�ed)) FGfresh:

The methods are given in Figure 5. An ed(v) event trig-

edit : Domf [ffg V
fmodi�edg [fed(v)jv 2 Domfg E

fresh P
local buf = ; in S

consume(ed(f));
read(f; buf);
editLoop(buf);
save(buf; f);
if f 2 Src then
announce(modi�ed)

cmpl : Src [fexeg V
fmodi�edg E

fresh P
consume(modi�ed); S
make(Src; exe)

Figure 5: The methods edit and cmpl

gers the edit method. Method edit copies the contents of v
into a local bu�er buf and at the end of the edit session, v
is updated with buf. If v also is a source �le relevant to exe,
the modi�ed event is announced. The modi�ed event trig-
gers the compile method cmpl which updates the executable.
We would like to show that after a �nite but arbitrary se-
quence of ed(v) events the �le system will always be fresh
upon termination. Formally,

ffreshg (M;Env) fG(term)fresh)g

where Env � fhedit;ed(v)i! j v 2 Domfg
�.

4.2.1 Decomposition

Like in the set-counter example, each method forms a group.
An independence argument is given later.

4.2.2 Local reasoning

We abuse notation slightly and use an input or output action
a also as an atomic proposition. A state s along some trace
� satis�es hm;ei? if e has just been received by m. Also, s
satis�es hm;ei! if e has just been sent to m.

Edit method edit

The fact that one of the source �les in Src is to be edited, is
abbreviated by update(Src), that is,

update(Src) � 9f 2 Src:hedit; ed(f)i?:

We will also need a weak until operator 'Uw which ex-
presses that either ' holds forever or at least until holds,
that is,

'Uw � G' _ (' U):

10

Whenever the executable is fresh, it will either remain so
forever or until a source �le is edited, that is, update(Src)
holds.

ffreshg

(edit;Envedit) (1)

fG(fresh)(fresh Uw update(Src)))g

where Envedit � fhedit; ed(v)i! j v 2 Domfg
�. Also, ev-

ery update eventually leads to the modi�ed event being an-
nounced.

ftrueg

(edit;Envedit) (2)

fG(update(Src))Fhdisp;modi�edi!)g

This step uses cause(modi�ed).

Compiler method cmpl

The receipt of a modi�ed event triggers recompilation and
thus eventually creates a fresh executable. The semantics
modi�ed allows us to conclude that the �le system eventually
stays fresh forever.

ftrueg

(cmpl;Envcmpl) (3)

fG(hcmpl;modi�edi?)FGfresh)g

where Envcmpl � fhcmpl;modi�edi!g�. This step uses the
e�ect of modi�ed. The above speci�cation is too strong for
our purposes, because it cannot be lifted to the entire sys-
tem. We thus employ the following weaker speci�cation.

ftrueg

(cmpl;Envcmpl) (4)

fG(hcmpl;modi�edi?)Ffresh)g

Dispatcher method disp

The requirements for the binding and storage policy are as
follows. An arriving modi�ed event eventually leads to a
pending event (cmpl;modi�ed) being stored in D.

ftrueg

(disp;Envdisp)

fG(hdisp;modi�edi?)F(cmpl;modi�ed) 2 D)g

where Envdisp � fhdisp;modi�edi!; hcmpl;modi�edi?g�. An
event pending in D eventually is delivered.

ftrueg

(disp;Envdisp)

fG((cmpl;modi�ed) 2 D)Fhcmpl;modi�edi!)g:

This implies

ftrueg

(disp;Envdisp) (5)

fG(hdisp;modi�edi?)Fhcmpl;modi�edi!)g:

Note that in contrast to the set-counter example, the dis-
patcher now is allowed to lose some (but not all) incoming
events. More precisely, suppose a non-empty sequence of
hdisp;modi�edi! actions are passed to the dispatcher. Then,
only at least one hcmpl;modi�edi! action needs to be passed
to the compiler.

4.2.3 Global reasoning

In contrast to the set-counter example, the FS system con-
tains two methods (edit and cmpl) that share variables (�les).
Obviously, this complicates the veri�cation since Lemma 4.1
cannot be applied as readily. However, since the dispatcher
does not share any variables with edit or cmpl, Lemma 4.1
can still be used to lift (5), the local speci�cation of the dis-
patcher. Moreover, the sharing is limited enough such that
the remaining speci�cations can still be lifted. (edit;Envedit)
is independent with respect to the speci�cation (1) because
the environment (the compiler and the dispatcher) can never
change the value of fresh from true to false (only from false
to true) nor can it change the value of update(Src). Also,
(edit;Envedit) is independent with respect to the speci�ca-
tion (2) because the environment (the compiler and the dis-
patcher) cannot prevent edit from eventually announcing
modi�ed. Moreover, (cmpl;Envcmpl) is independent with
respect to (4), because the environment (the editor and
the dispatcher) cannot prevent the compiler from creating a
fresh executable once it has received a modi�ed event. Note,
however, that the environment can prevent an executable
from staying fresh forever and thus the original speci�ca-
tion (3) cannot be lifted.

Using the lifted versions of (2), (5), and (4) we get

ffreshg (M;Env) fG(update(Src))Ffresh)g: (6)

Let � be a trace of (M;Env) that starts in a state satisfying
fresh. There are two cases.

Case 1: No state along � satis�es update(Src). Then, the
executable is always fresh and thus

� j=G(term)fresh):

Case 2: There is at least one state along � that satis�es
update(Src). Since the environment Env issues only a
�nite number of ed(f) events, there must be a state si
that is the last such state, that is,

8j:i < j::update(Src):

By (6), there exists k � i such that �[k] j= fresh. Since
there are no more updates after si, we also have with
(1),

�[k::] j=Gfresh:

Thus, every terminated state along � must also be
fresh.

Thus,
ffreshg (M;Env) fG(term)fresh)g:

5 Conclusion and future work

We have presented a formal framework for reasoning about
implicit invocation systems. The framework rests on a for-
mal semantics that combines standard notions from process
algebra and trace semantics. It formally captures the cause
and the e�ect of an event and thus o�ers a useful abstrac-
tion mechanism and reasoning tool. A three-phase veri�-
cation methodology supporting linear time temporal logic
properties is presented. In the decomposition phase the en-
tire system is partitioned into groups of components and for
each group a suitable subspeci�cation is found. In the local
reasoning phase, each group is veri�ed with respect to its
respective subspeci�cation. The global reasoning phase lifts
the local properties to the entire system and uses them to
show the overall speci�cation. The notion of independence
ensures soundness of this step.

11

Future work

The weakness of this work clearly lies in decomposition phase.
Little support is o�ered for partitioning the system into suit-
able groups, �nding subspeci�cations for them and proving
independence. Future work will attempt to identify more
heuristics and su�cient conditions to aid this phase. Com-
positionality is achieved through independence. In the pres-
ence of concurrency, however, compositionality has proven
to be a di�cult goal which most of concurrency theory has
been concerned with for a long time [dR85]. Hopefully, we
will be able to make use of the existing work here.

While the present paper is aimed at a rather general
modeling of II systems, an approach to �nd support for
veri�cation is to analyze existing II systems and to distill
constraints which can safely be imposed on the construc-
tion of II systems without overly compromising expressive-
ness [BG99]. For instance, the examples used in this paper
seem to be representative of two important classes of oper-
ations.

� The �rst class is probably best described as reset or up-
date operations. An operation falls into this class if it
establishes its postcondition from any initial state and
in any environment. An example is the make opera-
tion of the �le system example. Another example is the
update operation on multiple (possibly distributed)
views in the model-view-controller paradigm [KP88,
GHJV95].

� The second class is characterized as follows. Suppose
two operations f and g act on disjoint sets of variables
Vf and Vg respectively. Suppose the invariant I ex-
presses some kind of relationship between the values
of Vf and Vg that behaves as follows. A single appli-
cation of either f or g leaves I violated. However, the
application of the second, corresponding operation (g
or f) reestablishes I. Consider the set-counter exam-
ple, for instance. The two operations are the insert
operation S := S [fxg and the increment operation
C := C + 1.

As we have seen, both, the independence of operations from
initial states and environment interference on the one hand,
and the disjointness of variables on the other, can greatly
aid the veri�cation process. More work needs to be done to
identify more classes of operations and investigate how the
inherent constraints can support the veri�cation. Ideally,
this would lead to lemmas and proof rules that would make
the global reasoning phase more mechanic.

Moreover, the size and complexity of the independent
groups that arise during the decomposition phase determine
the tractability of the methodology for large-scale systems.
In general, there seems to be a tradeo� between the size
of a group and the ease of proving its independence. Large
groups are more likely to be independent, but also tend to be
more complex. However, we believe that the loosely-coupled
nature of II systems naturally supports the formation of
small independent groups. More experience on large-scale
examples is needed before we can support this claim more
formally.

We also intend to investigate the hierarchical (or recur-
sive) use of our methodology. This would allow us to view
an entire system as a component of yet another system and
would thus allow for the development of a stepwise re�ne-
ment strategy. Previous work on re�nement for UNITY
(e.g., [CM88, San90, Din97]) may be helpful here.

References

[AAG95] G. Abowd, R. Allen, and D. Garlan. Formaliz-
ing style to understand descriptions of software
architecture. ACM Transactions on Software
Engineering and Methodology, October 1995.

[BCTW96] D.J. Barrett, L.A. Clarke, P.L. Tarr, and A.E.
Wise. A framework for event-based software in-
tegration. ACM Transactions on Software En-
gineering and Methodology, 5(4):378{421, Octo-
ber 1996.

[BG99] A. Berry and D. Garlan. Making architectural
analysis reasonable. In Proceedings of First
Working IFIP Conference on Software Archite-
ture (WICSA1), February 1999. To appear.

[BJ89] K. Birman and Th. Joseph. Exploiting replica-
tion in distributed systems. In Mullender and
Sape, editors, Distributed Systems, pages 319 {
365. Addison Wesley, 1989.

[BN84] A. Birrel and B. Nelson. Implementing remote
procedure calls. ACM Transactions on Com-
puter Systems, 2(1):356{372, February 1984.

[CM88] K.M. Chandy and J. Misra. Parallel program
design: a foundation. Addison Wesley, 1988.

[Cor91] The Common Object Request Broker: Architec-
ture and speci�cation. OMG Document Num-
ber 91.12.1, December 1991. Revision 1.1 (Draft
10).

[DGJN98] J. Dingel, D. Garlan, S. Jha, and D. Notkin. To-
wards a formal treatment of implicit invocation
using rely/guarantee reasoning. Formal Aspects
of Computing, 1998. To appear.

[Dij76] E.W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cli�s, NJ, 1976.

[Din97] J. Dingel. Approximating UNITY. In Second
International Conference on Coordination Mod-
els and Languages, LNCS 1282, pages 320{337.
Springer Verlag, September 1997.

[dR85] W.P. de Roever. The quest for composition-
ality | a survey of assertion-based proof sys-
tems for concurrent programs. Part I: Concur-
rency based on shared variables. In E.J. Neuhold
and G. Chroust, editors, Formal Methods in
Programming. IFIP, Elsevier Science Publishers,
1985.

[Ger89] C. Gerety. HP Softbench: A new genera-
tion of software development tools. Technical
Report SESD-89-25, Hewlett-Packard Software
Engineering Systems Division, Fort Collins, Col-
orado, November 1989.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Design. Addison-Wesley, 1995.

[GKN92] D. Garlan, G.E. Kaiser, and D. Notkin. Us-
ing tool abstraction to compose systems. IEEE
Computer, 25(6), June 1992.

12

[GN91] D. Garlan and D. Notkin. Formalizing design
spaces: Implicit invocation mechanisms. In
VDM'91: Formal Software Development Meth-
ods, pages 31{44, Noordwijkerhout, The Nether-
lands, October 1991. Springer-Verlag, LNCS
551.

[Gol84] A. Goldberg. Smalltalk-80 | The Interactive
Programming Environment. Addison-Wesley,
Reading, MA, 1984.

[GZ97] D. Gelernter and L. Zuck. On what linda is: For-
mal description of Linda as a reactive system. In
Second International Conference on Coordina-
tion Models and Languages, LNCS 1282, pages
187{204. Springer Verlag, September 1997.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10), October 1969.

[Hoa85] C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

[ISO87] ISO. Information processing systems { open sys-
tems interconnection { LOTOS { a formal de-
scription technique based on the temporal or-
dering of observational behaviour. Technical
Report ISO/TC 97/SC 21, International Stan-
dards Organization, 1987.

[Jon83] C.B. Jones. Tentative steps toward a develop-
ment method for interfering programs. Transac-
tions on Programming Languages and Systems,
5(4):569{619, October 1983.

[Jub98] H. Jubin. Javabeans by example. Upper Saddle
River: Prentice Hall, 1998.

[KP88] G.E. Krasner and S.T. Pope. A cookbook
for using the model-view-controller user inter-
face paradigm in Smalltalk-80. Journal of
Object Oriented Programming, 1(3):26{49, Au-
gust/September 1988.

[Mil80] R. Milner. A Calculus of Communicating Sys-
tems, volume 92 of Lecture Notes in Computer
Science. Springer Verlag, 1980.

[OG76] S. Owicki and D. Gries. Verifying properties
of parallel programs: an axiomatic approach.
Communications of the ACM, 19(5):279{284,
May 1976.

[Rei90] S.P. Reiss. Connecting tools using message pass-
ing in the FIELD program development environ-
ment. IEEE Software, July 1990.

[San90] B.A. Sanders. Stepwise re�nement of mixed
speci�cations of concurrent programs. In
M. Broy and C.B. Jones, editors, Proceedings
of IFIP Working Conference on Programming
and Methods, pages 1{25. Elsevier Science Pub-
lishers (North Holland), May 1990.

[SN92] K. Sullivan and D. Notkin. Reconciling envi-
ronment integration and component indepen-
dence. ACM Transactions on Software Engi-
neering and Methodology, 1(3), July 1992.

[Sun93] SunSoft. Tooltalk 1.1.1 Users's Guide, Novem-
ber 1993.

13

