Component-Based Softwar e Engineering
in Pervasive Computing Environments

David Garlan
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
(412) 268-5056

garlan@cs.cmu.edu

ABSTRACT

Being able to find, adapt, and incorporate disparate compo-
nents to form working, reliable applications is the goa of
component-based software engineering. To date, there has
been a lot of research, among other things, on locating
components, reasoning about component compatibility, and
methods for interoperability. Pervasive computing raises a
number of new challenges for component-based software
engineering that heretofore have been given little attention,
such as mobility, adaptability, and resource awareness. In
this paper we motivate and discuss the need for research in
these areas, and discuss how our work in the Aura group at
Carnegie Mellon University helps to address these issues.

Keywords
Component-based software engineering, software architec-
tures, pervasive computing.

1 MOTIVATION AND REQUIREMENTS

The world of software development and the contexts in
which software is being used are changing in significant
ways. One of the emerging trends that promises to have a
major impact on software development is that of ubiqui-
tous, or pervasive, computing. Pervasive computing com-
prises a computing universe populated by a rich variety of
heterogeneous computing devices: toasters, home heating
systems, entertainment systems, smart cars, etc. This trend
islikely to lead to an explosion in the number of devicesin
our local environments — from dozens of devices to hun-
dreds or thousands of devices. Moreover these devices are
likely to be quite heterogeneous, requiring special consid-
erations in terms of their physical resources and computing
power.

Bradley Schmerl|
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
(412) 268-5889

schmerl@cs.cmu.edu

Developing software for such an environment becomes
quite chalenging. Users will expect to interact with the
environment to support them in every-day tasks, no matter
where they are. Not only will they expect this, but if perva-
sive computing is to succeed and be accepted by the com-
munity at large, the instantiation of these tasks will need to
be achieved with minimal support from a user —if the aver-
age person has difficulty performing a simple programming
task such as recording a television program on their VCR,
then it isunrealistic to expect them to be able to choose and
integrate components for different computing devices, de-
pending on their location and task at hand.

To be successful in a pervasive environment, components
need to exhibit the following characteristics:

Mobility: As a user moves from one environment to an-
other, they will expect their tasks to logically “follow”
them around so that they are available when needed. Such
mobility requires a refocusing of a software system from
large, monolithic applications to collections of components
cooperating to achieve a user's task Furthermore, a user
will expect the computing environment to take advantage
of resources in different environments. For example, in an
office environment, a user may be able to take advantage of
keyboard entry and high resol ution display components; the
task may take advantage of speech recognition and synthe-
sis to continue atask while the user is leaving work; while
driving home, the user may interact through a heads-up
display and speech recognition components. Such mobility
needs to be achieved seamlesdy and transparently, with
little or no intervention from the user.

Adaptability: In a ubiquitous environment, it is highly
likely that the resources available to a user in an environ-
ment will change as resources and users move in and out of
that environment. The tasks and software should adapt to
take advantage of these new resources. For example, con-
sider the scenario in which we have a presentation being
given to a multi-national audience, some of whom have
Portuguese as their native language. The task of listening to
the presentation might involve displaying the slides to each

user’s personal device. If, partway through the presentation,
a user waks in with a wearable computer that contains
English to Portuguese trandation software, the task should
take advantage of this to trandate the slides to Portuguese
and display them to the Portuguese listeners.

Resource awareness: In order to effectively achieve mo-
bility and adaptability, a ubiquitous environment will need
to make optimal use of the available resources to support
user tasks. For this to happen, components will need not
only to publish their interfaces and protocols for interac-
tion, but also make known their resource requirements
(such as required bandwidth, computing power, memory
and battery consumption). For example, if the preferred
input method for performing tasks in a car environment is
speech, the environment used to compose the task will need
to know whether the resources available in the car will pro-
vide optimal performance. The car may have the ability to
execute the requisite component, but it may be too slow to
be optimal. In this case, the environment should be able to
decide to use voice recording and communication using a
cell phone to a server to conduct the recognition, for exam-
ple.

In addition to the environment being able to ascertain com-
ponents’ resource requirements, components should also be
aware of the resources offered them, and adapt their per-
formance accordingly. Components should therefore be
able to offer multi-fidelity services. In the example above,
the speech recognition component may be able to offer its
services within a car environment with sufficient timeli-
ness, but with areduced vocabulary.

2 THE AURA APPROACH

The Aura group at Carnegie Mellon University is investi-
gating new architectures for ubiquitous environments that
support task execution by building the tasks from cooperat-
ing components.

£ Task Manager

£ c

S . l Compl l l Comp2 I
< 8§ Environment

§ ‘8 Manager other Aura Spectra remote
S runtime execution
o support

OS & Network

Figure 1. The Aura Architecture

Figure 1 depicts the Aura architecture for coordinating
components. The Personal Context Observer interprets the
physical context of the user, and is responsible for identify-
ing such things as the user’s location, focus of attention,
anticipated movements, etc. The Task Manager maintains a
representation of tasks, and a mapping between context and
user preferences. Finally, the Environment Manager has

knowledge of the computational environment, and can dis-
cover, match, and assemble components to complete a task.
It is also responsible for recognizing what resources are
available and noticing when there is a resource change in
the user’ s environment.

To illustrate how these parts work together, consider the
following scenario:

Fred isin his office, frantically preparing for a meeting at
which he will give a presentation and a software demon-
stration. Themeeting room is a ten-minute walk across
campus. Itistimeto leave, but Fred is not quite ready. He
grabs his PalmXXI| wireless handheld computer and walks
out of the door. Aura transfers the state of his work from
his desktop to his handheld, and allows him to make his
final edits using voice commands during his walk. Aura
infers where Fred is going from his calendar and the cam-
pus location tracking service. It downloads the presentation
and the demonstration software to the projection computer,
and warms up the projector.

The task that Fred is performing might be called “Prepare
for a meeting.” Inside this task is the task step called “Pre-
pare my presentation."l A set of task primitives is com-
bined to achieve this step. These task primitives might be:
text input, document editing, and document viewing. The
task primitives must be carried out by a set of services, a
choice that Aura makes based on Fred’s preferences and
context. For example, the service that could fulfill the text
input primitive might include keyboard entry or speech
entry. When the Context Observer recognizes that Fred is
in his office, the Task Manager notes that his preferences
dictate keyboard entry. The Aura Environment Manager is
then responsible for discovering a component that provides
the service (such as a particular piece of presentation soft-
ware) to supply this input. However, when Fred starts
walking to the meeting (as noted by the Context Observer),
the service that best fulfills his need for text input changes
to speech entry (as noted by the Task manager). Aura once
again faces a choice: recognize the speech entry on the
palmtop, which has limited computing power and vocabu-
lary, or transmit the audio to aremote server, which is more
powerful, has a larger capacity, but may become unavail-
able when Fred is out of range. The Aura Environment
Manager chooses the latter component, given that the meet-
ing is on campus and the server is unlikely to become un-
available as Fred walks toward it.

The Aura architecture provides the infrastructure that a-
lows components to be coordinated to support a user in a
task, regardless of environment or locality.

 “Prepare my presentation” could itself be decomposed into other task
steps, depending on the granularity required. For the purposes of this
example, we consider it atask step.

3 RESEARCH CHALLENGES

Although conceptually simple, capturing and using user
intent to configure tasks as sets of components will require
a number of significant research advances. In particular,
four fundamental areas must be investigated:

Task inference: Can user intent be inferred, or doesit have
to be explicitly provided? In the latter case, is it statically
specified (from afile, for example), or obtained on demand
through dynamic interactions?

The pervasive computing infrastructure must be able to
strike a balance between user involvement in task specifica-
tion and system inference of user intent. In Aura we plan to
strike this balance by employing a mixed strategy that
combines both observation of a user’'s activities, as well as
explicit user specification. To minimize overhead in speci-
fying tasks, we expect to provide a set of task templates
that can either be filled in automatically by the system, or
directly by the user.

Task representation: How is user intent represented inter-
nally? How rich must this information be for it to be use-
ful? When and how is it updated? How does one character-
ize accuracy of knowledge in this area? Is incomplete or
imprecise knowledge of user intent still useful ?

Current task representation languages, such as those found
in workflow management systems or robotics applications
are inadequate for the purposes of Aura, since their primary
purpose is to constrain the behavior of a user (or system) to
predefined paths. In contrast, a task description in the con-
text of Aurais used to enable the system to compose ap-
propriate components in the environment in an optimal
way, and to anticipate the needs of a person in the future.
This suggests that task descriptions and their execution
models should be stochastic in nature, and should allow the
system to accommodate task steps that are not known a
priori.

Resour ce allocation: How can a system instantiate tasks as
collections of components to achieve optimal use of re-
sources? How and when should that configuration change
to accommodate changing resource pools?

As a user moves from one location to another, tasks must
be recongtituted in ways that satisfy user needs but live
within the resource constraints of an environment. This will
require the development of algorithms for determining the
utility of a given configuration of services taking into ac-
count user preferences, computational needs, and projec-
tions of future use. The problem is even more complex in
the context of multiple users, when there are competing
demands for the same resources and issues of pri-
vacy/security [2]. Our solution will build upon the network
and operating system support discussed in [3]. We aso
expect to build upon [1, 4, 5] to support the dynamic recon-
stitution of components depending on resource availahility,
and the user’ s environment and preferences.

Architecture: What kinds of interactions should be sup-
ported between lower-level system capabilities (such as
service location and discovery, operating system functions,
and communication infrastructure) and the task layer?

System level functions should be able to query task man-
agement infrastructure to determine future computing
needs, for example. At the same time, lower-level facilities
must provide notification capabilities so that tasks can be
readjusted as resource availability changes. Accommodat-
ing these kinds of interactions will require new systems
research to determine appropriate interfaces and protocols
for tying task representations effectively to lower level sys-
tem infrastructure.

We believe these challenges will require substantial re-
thinking of component specification and implementation,
as well as the supporting infrastructure for component loca-
tion, composition, and adaptation.

ACKNOWLEDGEMENTS

DARPA, under Grants N66001-99-2-8918 and F30602-00-
2-0616, supports this work. Views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, ei-
ther expressed or implied, of DARPA. We would like to
thank the members of the Aura and ABLE groups.

REFERENCES

1. Allen, R., Douence, R., and Garlan, D. Specifying and
analyzing dynamic software architectures. In Proceedings
of the 1998 Conference of Fundamental Approaches to
Software Engineering (FASE98), Lisbon, Portugal, March
1998

2. Garlan, D. Pervasive Computing and the Future of
CSCW Systems. In Proceedings of the Workshop on Archi-
tectures for Cooperative Systems, Philadelphia, PA, De-
cember 2000.

3. Satyanarayanan, M. Pervasive Computing: Vision and
Challenges. |EEE Personal Communications, to appear.

4. Schmerl, B., and Marlin, C. Versioning and Consistency
for Dynamically Composed Systems. In Proceedings of the
7" International Workshop on Software Configuration
Management, Boston, MA, May 1997. Published as Lec-
ture Notes in Computer Science, Vol. 1235, pp. 49-65,
Springer, Berlin, 1997.

5. Wang, Z., and Garlan, D. Task-Driven Computing.
Carnegie Mellon University School of Computer Science
Technical Report CMU-CS-00-154, May, 2000.

