
Architectural Mismatch
or

Why it’s hard to build systems out of existing parts�

David Garlan Robert Allen

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

John Ockerbloom

Abstract

Many would argue that future breakthroughs in software productiv-
ity will dependon our ability to combine existing pieces of software
to produce new applications. An important step towards this goal
is the development of new techniques to detect and cope with mis-
matches in the assembledparts. Some problems of composition are
due to low-level issues of interoperability, such as mismatches in
programming languages or database schemas. However, in this pa-
per we highlight a different, and in many waysmore pervasive, class
of problem:architectural mismatch. Specifically, we use our expe-
rience in building a family of software design environments from
existing parts to illustrate a variety of types of mismatch that center
around the assumptions a reusable part makes about the structure of
the application in which is to appear. Based on this experience we
show how an architectural view of the mismatch problem exposes
some fundamental, thorny problems for software composition and
suggests possible research avenues needed to solve them.

1 Introduction

Many would argue that future breakthroughs in software productiv-
ity will dependon our ability to combine existing pieces of software
to produce new applications [BS92]. By constructing new systems
out of reusable building blocks it should be possible to create large,
high-quality software applications much more rapidly than we now
do with the build-from-scratch techniques that dominate most soft-
ware production.

Over the past decade the broad-based interest in supporting com-
positional approaches to software has led to considerable investment
in research and development in reuse [BP89, Kru92], industry stan-
dards for component interaction (e.g., [Cor91]), domain-specificar-
chitectures (e.g., [MG92]), toolkits (e.g., [SG86]), and many other
related areas.

�This research was sponsored by the National Science Foundation under Grant
Number CCR-9357792, by the Wright Laboratory, Aeronautical Systems Center, Air
Force Materiel Command,USAF, and the AdvancedResearchProjects Agency (ARPA)
under grant number F33615-93-1-1330, and by Siemens Corporate Research. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of
Wright Laboratory, the U.S. Government, or Siemens Corporation. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

To appear inProceedings of the Seventeenth International Con-
ference on Software Engineering, Seattle WA, April 1995.

However, despite all of this effort systematic construction of
large-scale software applications from existing parts remains an
elusive goal. Why is this? Clearly some blame can be attributed
to the lack of existing pieces to build on, or our inability to locate
the desired pieces when theydo exist. Over time, we may expect
progress in this area through the creation of more and better com-
ponent libraries as well as improved mechanisms to access their
contents.

But even when the components are in hand, there remain other
fundamental problems that arise because the chosen parts do not
fit together well. In many cases mismatches may be caused by
low-level problems of interoperability, such as incompatibilities in
programming languages,operating platforms, or databaseschemas.
These are hard problems to overcome, but recent research has been
making good progress in addressing many of them.

In this experience report we highlight a different, and in many
ways more pervasive, class of problem:architectural mismatch.
Specifically, we use our experience in building a family of software
design environments from existing parts to illustrate a variety of
types of mismatch that center around the assumptions a reusable
part makes about the structure of the application in which it is to
appear. Based on this experience we show how an architectural
view of the mismatch problem exposes some fundamental, thorny
problems for software composition and suggests possible research
avenues needed to solve them.

In the next section we begin with a brief, motivating description
of the system that we developed. We then continue in section 2.2
by describing the approach that we took in attempting to reuse
existing tools and components in theconstruction process. Section 3
describesthe problems that we encountered. In section4 we analyse
the underlying causesof those difficulties. In section 5 we conclude
by looking ahead to potential solutions.

2 Wishful Thinking; Harsh Reality

In this section we briefly describe the Aesop system and our de-
velopment approach. A complete description of Aesop is beyond
the scope of this paper. Here we describe just enough to mo-
tivate the problems of system composition that we encountered.
See [GAO94] for more details on Aesop itself.

2.1 Aesop

For the past five years, the ABLE Project at Carnegie Mellon Uni-
versity has been carrying out research aimed at developing a sound
engineering discipline of software architecture. One component of
this research is the construction of tools and environments to sup-
port architectural design and analysis. The primary thrust of that

Aesop
Style

Description
Fable

Environment

Shared
Infrastructure

Figure 1: Generating Fables with Aesop

Tool 1
(GUI)

Tool 2 Tool n...

RPC + Events

Architectural
Design Manager

Figure 2: The Structure of an Aesop Environment

development effort has been finding effective mechanisms to ex-
ploit architectural style[AAG93, PW92]. An architectural style is
a recurring pattern of system organization that provides an abstract
framework for somefamily of applications. Architectural styles can
be exploited, for example, by simplified analysis of critical system
properties [JC94], by concise, understandable system design nota-
tions [MG92], and by tools to aid in the design and implementation
of complete systems [GAO94].

The AesopSystem [GAO94] is our implementation platform for
experimenting with style-oriented architectural development envi-
ronments. Aesop is, in fact, a kind of environment generator: given
a description of an architectural style, Aesop produces an environ-
ment tailored to that style. As illustrated in Figure 1, Aesop com-
bines a style definition with some shared infrastructure to produce
the target environment. Thestyle definition consistsof a description
of (a) the architectural design vocabulary (as a set of object types),
(b) visualizations of design elements suitable for manipulation by
a graphical editor, and (c) a set of architectural analysis tools to be
integrated into the environment.

Each Aesop environment—the output of the environment con-
struction process—is organized in a similar fashion. As sketched in
Figure 2, an Aesop environment is structured as an open collection
of tools that access a central object-oriented database. (These tools
may also access databases outside of Aesop, but we won’t discuss
this aspect of the system here.) The database stores architectural
designs and provides a high-level, object-oriented interface to the
tools. Thedatabaseis responsiblefor providing transactionalaccess
to shared data, and for enforcing the architectural design constraints
specified by a particular style.

The tools run as separate processes and access the database
through an RPC mechanism that allows them to make method calls
to the database. Additionally, the system includes a tool integration
mechanism based on event broadcast [Rei90]. This allows tools to
register for changes to database objects and to announce significant
events to other tools. Typical tools include a graphical editor for
creating and browsing architectural designs, and other style-specific
tools for carrying out architectural analyses, such as architectural
consistency checkers [AG94], code generators, architectural com-

ponent repositories,etc.
The first prototype of the Aesop system was completed in Au-

gust 1993. A second prototype has recently been constructed.
While we are still in the experimental stages of learning how to
exploit architectural style, Aesop has been used to construct a num-
ber of distinct style-oriented environments, including environments
for several styles of pipe-filter system, one for real-time systems
definition, and one for generic architectural construction.

2.2 Building Aesop from Existing Components

Two important challenges in building Aesop were (a) the design of
notations and mechanisms to support style definition, and (b) the
creation of the environment support infrastructure that would be
reused to create each of the target environments. Here we focus on
the latter.

Viewed abstractly, the infrastructure required byAesopenviron-
ments is hardly novel. Indeed, it is now commonplace to construct
environments in this fashion, as open, loosely-integrated collections
of tools accessingshareddata [T+88, Bam90]. Moreover, graphical
editors are common components of drawing packages, case tools
and other user interfaces.

We were optimistic, therefore, that it would bepossible to obtain
most of the infrastructure needed for Aesop by building on existing
software. Specifically we wanted to reuse four standard pieces of
software infrastructure:

� an object-oriented database

� a toolkit for constructing graphical user interfaces

� an event-based tool integration mechanism

� a RPC mechanism

There were numerous candidates for each of these classes of
software. In making our selections we picked systems thata priori
seemed to have promise for working well together and within our
development environment. These were:

� an object-oriented database: OBST, a public domain OODB.

� a toolkit for constructing graphical user interfaces: Inter-
Views, a UI toolkit, together with Unidraw, a reusable frame-
work for creating drawing editors [LVC89, VL90].

� an event-based tool integration mechanism: Softbench, a
commercial event-broadcast mechanism [Ger89].

� a RPC mechanism: Mach RPC Interface Generator (MIG),
an RPC stub generator that was well targeted to our host
operating system [Dra87].

All we had to do was put the subsystems together, a task consider-
ably simplified by the fact they were all written in either C++ or C,
had all been used in many projects, and we had source code for all
of the parts.

A piece of cake? Unfortunately, no. Two years later, after
considerable effort (approximately 5 person-years), we managed to
get the pieces working together in our first Aesop prototype. But
even then, the size of the system was huge (although we contributed
a relatively small proportion of our own code), the performance was
sluggish, and many parts of the system were difficult to maintain
without detailed, low-level understanding of the implementations.

What went wrong? One might argue that we were simply
poor systems builders, but we suspect that this experience is not
unfamiliar to anyone who has tried to compose similar kinds of
software. In the remainder of this paper we examine these problems

2

in more detail and then consider some of the root causes for them.
Our basic conclusion is that many of the hardest problems are best
understood as architectural mismatch problems. Each component
makes assumptions about the structure of the environment in which
it is to operate. Most if not all of these assumptions are implicit,
and many of them are in conflict with each other.

3 Problems Encountered

Focusing on the most salient problems, we encountered six main
difficulties with integrating the four existing software subsystems
into a new coherent system: excessivecode size, poor performance,
the need to significantly modify the reused subsystems just to get
them to work together, the need to re-invent existing functionality
in order to match our intended use, unnecessary complexity of
applications built on top of the reused systems, and a complex,
error-prone system construction process.

Excessive code size: Our user interface code image alone was over
3 MB, after stripping. Our database server’s code image was 2.3
MB after stripping. Even small tools (of, say, 20 lines of code)
interacting with our system were over 600K after stripping. In
an operating system without shared libraries, running the central
components plus the supporting tools (such as external structure
editors, specification checkers, and compilers) overwhelmed the
resources of a moderate-sized workstation.

Poor performance: The system operated much more slowly than
we wished. Some of the problems occurred through tool-database
communication overhead. For example, to save the state of a sim-
ple architectural diagram (containing, say, 20 design objects) took
several minutes when we first tried it out. Even with performance
tuning, it still took many seconds to perform such an operation.

Furthermore, the excessive code size also contributed to the
performance problem. Under AFS, files are cached at the local
workstationin total when they are opened. When tools are large,
the start-up overhead is also large. For example, start-up time of
an Aesop environment containing a minimal configuration of tools
took approximately three minutes.

Need to modify external packages: Despite the fact that the reused
packages seemed to run “out of the box” in our initial tests, we
discovered that once we combined them in a complete system they
required significant modifications to make them work together at
all. For example, we ended up having to significantly modify the
Softbench client event loop (a critical piece of the functionality)
for it to work with the InterViews event mechanism. We also had
to reverse engineer the memory allocation routines for the OBST
database in order to communicate object handles to external tools.

Need to re-invent existing functions: In some cases, modify-
ing the packages was not enough: in addition we had to augment
the packages with different versions of the functions that they al-
ready supplied. For example, (as detailed later) we were forced
to bypass InterViews’ support for hierarchical data structures be-
cause it did not allow direct, external accessto hierarchically nested
sub-visualizations. Similarly, we ended up rebuilding a separate
transaction mechanism on top of a serverized version of the OBST
databasesoftware, even thought the original supported transactions.
This was because it did not allow us to share transactions across
multiple address spaces.

Unnecessarily complicated tools: Many of the architectural tools
that we wished to develop on top of the infrastructure were logically
simple sequential programs. However, in many casesit wasdifficult
to build them as such. This was because the standard interface to
their environment required them to handle multiple, independent

threads of computation simultaneously.

Error-prone construction process: As construction of the system
progressed, it became increasingly costly to modify the system,both
because of the time it took to recompile it, and because seemingly
simple modifications (such as the introduction of a new procedure
call) would break the automated build routines. The recompilation
time was in part due to the code size. But more significantly, it
was also because of interlocking code dependencies that required
minor changesto propagate (in the form of required recompilations)
throughout a majority of the system.

4 Understanding the Causes of the Problems

The creatorsof the reusedsubsystemsthat we imported were neither
lazy, stupid, nor malicious. Nor were we using the pieces in ways
inappropriate to their advertised scope of applicability. Therefore
the root causes must lie at a deeper systemic level. Each of the
packages that we used to construct our system made assumptions
about the structure of the system and, in particular, the nature of
the environment in which they were to operate. Virtually all of
our serious problems can be traced back to places where these
assumptions were in conflict.

To expose the nature of these mismatched assumptions, it is
helpful to view the problem from an architectural perspective.
Through that lens a system is viewed abstractly as a configura-
tion of components and connectors [GS93, PW92]. Thecompo-
nentsare the primary computational and storage entities of the
system: tools, databases, filters, servers, etc. Theconnectorsde-
termine the interactions between the components: client-server
protocols, pipes, RPC links,etc. These abstractions are typi-
cally expressed informally as box and line drawings, although re-
cently formal notations for architectural description have begun to
emerge [LAK+95, SDK+95, AG94, IW95].

Figure 2 can be seen as an abstract, architectural rendering of an
Aesop-generatedenvironment. At this level of abstraction the main
components are a collection of tools and the architectural design
manager (which consists primarily of a persistent object base). The
main connectorsare the RPC and event-broadcast mechanism com-
munication links. The parts that we attempted to import provided
an implementation basis for two components — the database (via
OBST) and a graphical user interface tool (via InterViews) — and
two kinds of connectors — RPC (via MIG) and event-broadcast
(via Softbench).

Turning now to the problem of system integration, we can iden-
tify at least four main categories ofarchitectural mismatchthat
provide a taxonomic framework for understanding how conflicting
assumptions arise.

1. Assumptions about the nature of the components: Within
this category there are three main areas: (1)infrastructure—
assumptions about the substrate on which the component is
built; (2) control model—assumptions about which compo-
nent(s) (if any) control overall the sequencing of computa-
tions; (3)data model—assumptions about the way the envi-
ronment will manipulate data managed by a component.

2. Assumptions about the nature of the connectors: Within
this category we have two areas: (1)protocols—assumptions
about the patterns of interaction characterizedby a connector;
(2) data model—assumptions about the kind of data that is
communicated.

3. Assumptions about the global architectural structure:
These include assumptions about the topology of the sys-

3

tem communications and about the presence or absence of
particular components and connectors.

4. Assumptions about the construction process: In many
cases the components and connectors are produced by in-
stantiating a generic building block. For example, a database
is instantiated, in part, byproviding a schema;an event broad-
cast mechanism is instantiated, in part, by providing a set of
events and registrations. In such cases the building blocks
frequently make assumptions about the order in which pieces
are instantiated and combined in an overall system.

In the remainder of this section we show how our system exhib-
ited examples of mismatch in each of these categories.

4.1 Assumptions about the Nature of Components

Infrastructure
One kind of assumption that the packages made about compo-

nents was the nature of the underlying support that they needed
to perform their operations. This support takes the form of addi-
tional infrastructurethat is either provided by the packages or that
is assumed to exist and therefore used by the packages.

Each of the packages that we used assumed that they were re-
sponsible for providing considerable infrastructure. Since we did
not need much of this infrastructure, this contributed to our exces-
sive code size. For example, OBST provided an extensive library of
standard object classes to make general purpose programming eas-
ier. However, we only neededa small number of theseclasses, since
we have a constrained, special-purpose, data model. (See [GAO94]
for a detailed description of that model.)

Additionally, some of the packages made assumptions about
the kind of components that would be exist in the final system,
and therefore used infrastructure that did not match our needs. For
example, the Softbench Broadcast Message Server expected all of
the components to have a graphical user interface and therefore used
the X Server to provide communication primitives. This meant that
even those tools that did not have their own user interface (such as
compilers or automatic design manipulation utilities) were required
to include the entire X library in their executables.

Control Model
One of the most serious problems that we encountered is the

result of the assumptions made by the packages about what part of
the software held the main thread of control. Three of the packages,
Softbench, InterViews, and the Mach Interface Generator, used an
event loop to deal with communication events. The event loop
encapsulates the details of the communication substrate and allows
the developer to modularize the components’ structure as callbacks.

Unfortunately, in each of the three packages they used a different
event loop. Softbench based its main thread of control on the
X Intrinsics package. InterViews provided its own, object-based
abstraction of an event loop implemented directly in terms of Xlib
routines. MIG had a handcrafted loop for the server to wait for
Mach messages. In each case the control loop was provided as part
of the package,and in each case the control loop was not compatible
with the others.1

This meant that we had to reverse engineer the InterViews event
loop and modify it to poll for Softbench events before we were able
to have the user interface respond to events. In the time that we
had available for the project, we were unable to modify the MIG
control loop so that the server could receive events, although we

1Note that since the event loops were operating in the same process, it was not
possible to use simple event gateways to bridge different event-control regimes.

had originally seen this as an important way of providing modular
control over the design data.

Data Model
Another assumption made by the packages about components

was the nature of the data that they would be manipulating. For ex-
ample, Unidraw provided a hierarchical model for its visualization
objects. One object could be part of another object, and any manip-
ulation of the parent (such as changing its position on the screen)
would result in a corresponding change in the child. The critical
assumption made by Unidraw, however, was thatall manipulations
would be of top-level objects. Thus, it was not possible to change
a child object except by having the parent manipulate it. While the
data that we wanted to present and manipulate was strongly hier-
archical, it was important that the user have direct control over the
child objects as well as the root objects. Thus we were faced with
two alternatives: either to modify Unidraw to support the direct ma-
nipulation of children, or to create a flat Unidraw data structure and
to build our own, parallel, hierarchy to support the correspondences
that we wanted. For our purposes, it turned out to be less costly to
re-implement the hierarchy from scratch.

4.2 Assumptions about the Nature of the Connec-
tors

Protocols
When we began the project, we expected to have two kinds

of interactions between tools. The first interaction, a pure event
broadcast, involved one tool informing others about the state of the
world. For example, the database would announce notifications
that a particular data object had changed. The second interaction, a
request/reply pair, would provide a simple means for multiple tools
to be combined to perform a complex manipulation. This connector
follows the model of a procedure call in that the requesting tool
cannotgenerally continueusefully until the recipient of the message
has completed its task.

The Softbench Broadcast Message Server provides both these
kinds of interaction by having different kinds of messages. The
first kind of interaction is handled by a “Notify” message, which
is announced and then forgotten (by the announcing tool). The
second interaction is handled by a pair of event kinds, “Request”
and “Reply” messages.

The problem that we encountered arises because the BMS at-
tempts to handle both of the interaction kinds uniformly. In order to
receive any message, a tool registers a “callback”procedure for that
message. When the message arrives, the Softbench client library
invokes the callback procedure. This callback technique is used
for all three kinds of message. This means that when a tool makes
a request, it does not simply make the request, wait for the reply,
and then continue—as one would expect. Instead, the tool must
divide its manipulation into two callback routines, one to be done
before the call and one to be done after the reply is received. This
breaks up the natural structure of the tool and makes it difficult to
understand.

More importantly, if any other messages (such as change noti-
fications) are received by the BMS before the reply message, then
those will be delivered to the tool and their callbacks invoked be-
fore the reply is processed. This means, in effect, that if a tool
wishes to delegate any part of its processing, then it must be able
to deal with multiple threads of control simultaneously, one for
each different notification message that might be delivered before a
reply is received. Thus, Softbench’s handling of the request/reply
protocol forces tools to handle concurrency even if they would be
much simpler to construct and understand as sequential programs.
This led us to use Mach RPC instead of Softbench for the database

4

interaction since it is the most critical and heavily used request path
in our system.

Data Model
Just as the packages made assumptions about the kind of data

that would be manipulated by the components, so did they make
assumptions about the data that would be communicated over the
connectors. In particular, the two communication mechanisms that
we used, Mach RPC and Softbench, made different assumptions
about the data. Mach RPC is intended to support integration be-
tween arbitrary C programs, and so it provides a C-based model:
data passed through procedurecalls is basedon C structs and arrays.
Softbench, on the other hand, assumes that most communication
would be about files and the data contained in them, and so all data
to be communicated by Softbench is represented as ASCII strings.
Since the main kind of data manipulated by our tools was database
and C++ object pointers, we were required to develop a translation
routines and intermediate interfaces between the different models.
This also caused the most significant performancebottlenecks in the
system due to translation overheads on every call to the database.
The problem occurred despite the fact that we were working in C
and C++ exclusively, and that we had compatible data models in all
of the components that we developed.

4.3 Assumptions About Global Architectural Struc-
ture

It turned out that OBST assumes that the communications in the
system formed a star with the database at the center. Specifically,
it assumed that all of the tools would be completely independent of
each other. This assumption meant that there would be no direct
interactions between tools, and so any concurrency among tools
represented conflict rather than cooperation. Based on this assump-
tion, OBST selected a per tool, blocking transaction mechanism.
Since, as we mentioned earlier, the tools in our environment could
coordinate their efforts by delegating part of their computation to
other tools, this model was unacceptable; either cooperating tools
would deadlock by holding conflicting locks, or conflicting tools
could create inconsistencies when a tool attempted to release the
database to a cooperating tool.

4.4 Assumptions about the Construction Process

Several of the packages assumed that there were three categories
of code being combined in the system: first, existing infrastructure
(such as the X libraries and the package’s own runtime libraries)
that would not change; second, application code developed in a
generic programming language that would use the infrastructure
but otherwise be self-contained; third, code developed using the
notations developed specifically for the package that would control
and integrate the rest of the application.

These assumptions (shown graphically in figure 3) led to a
particular process for building the system: First the generic parts
of the application are built and possibly specified for the package’s
build tool, and then the package specific sections are preprocessed,
compiled, and then linked. Generally, a change to the interface of
the generic section required both a respecification and rebuild of the
package specific section. This makes sense in isolation, because
we think of the packages as providing “glue” code to integrate the
parts of the generic application. For example, the Mach Interface
Generator assumed that the rest of the code was a flat collection of
C procedures, and that its specification described the signature of
all of these procedures.

In our case, however, we had multiple packages that made these
kinds of assumptions. This meant that there were in fact four

Tool Specific
Description

Generic Application Specific Code
 (written in C)

Infrastructure
(Supplied by Package)

(depends on)

(depends on)

Figure 3: The Assumed Dependency Structure

Softbench MIG OBST

Figure 4: The Actual Dependency Structure

categories of code: the three previous categories plus the code
generatedbyother tools. It was the integration of the codegenerated
by different tools that presented us the most difficulty in the build
process. This was because we had to take the generated code and
make it look like whatever “generic” structure the other tools were
expecting. (These dependencies are shown in figure 4.) So, for
example, we had to take the output of the OBST pre-processor and
specify the resulting procedure calls in the notation of the Mach
Interface Generator, run MIG to generate a serverized version of
the database, and then rebuild all of the tools (including rebuilding
and linking the Softbench wrapper code) to recognize the new client
interface. It was these conflicting assumptions about the steps in
the construction process that resulted in lengthy and complicated
builds.

5 The Way Forward?

We believe that the kind of experienceswe encounteredare common
whenever large-scale componentsare assembled into a new system.
And we are convinced that the really hard problems do not go away
once you solve low-level issues such as language interoperability,
platform independence,and heterogeneousdata manipulation. Fur-
ther, we have suggested that the root causes can best be understood
in terms of architectural mismatches.

What can be done about this? There seem to be two comple-
mentary approaches that can improve the situation. The first is to
improve the way we build components that are intended to be com-
posed into larger systems. The second is to provide new notations,
mechanisms, and tools that will enable designers to do a better job
of this. In particular, we would single out four necessary aspects of

5

a long-term solution:

1. Make architectural assumptions explicit.One of the most
significant problems is that architectural assumptions made
by a reusable component are never documented. Part of the
problem is attributable to a culture in which documentation is
generally lacking. But it is also the case that we have lacked
the proper vocabulary and structuring techniques for express-
ing theseassumptions. For example, while it may be common
for good documentation of an abstract datatype to explicitly
list preconditions for calling the interface routines,we have no
comparable conventions or theory for documenting many of
the architectural assumptions listed in Section 4. While docu-
menting assumptionswill not make mismatches disappear, at
least it will be possible to detect problemsearly on. Some ini-
tial steps towards this goal canbeseen in recent work onarchi-
tecture description languages [AG94, LAK+95, SDK+95].

2. Construct large pieces of software using orthogonal sub-
components.While most large reusable subsystemsare them-
selves constructed out of smaller sub-components, it is rare
that one can separate the pieces or change the way in which
those sub-components are combined. As Parnas has long
argued [Par72], each module should hide certain design as-
sumptions. Unfortunately, the architectural design assump-
tions of most systems are spread throughout the constituent
modules. Ideally one would like to be able to tinker with the
architectural assumptions of a reused system by substituting
different modules for the ones already there. An example of
such orthogonalization can be found in recent work aimed at
adopting a building-block approach to systems construction,
such as [BO92, BSST93].

3. Provide techniques for bridgingmismatches.Even with good
documentation and orthogonal modularization, mismatches
will inevitably occur. Currently such mismatches must be
dealt with by brute force: hacking low-level communication
code, interposing special purpose data translators, etc. We
would like to see a much more scientifically based approach
to this. At the very least it would be desirable to have a
cookbook of standard techniques. Better still would be tools
to aid with wrapping, data translation, etc. Recent research
addressing this issue includes attempts to automate the use of
mediating protocols and wrapper construction [YS94].

4. Develop sources of architectural design guidance.Develop-
ing good intuitions about what kinds of architectural com-
ponents work well together is not easy. Currently it is done
by trial and error, and it takes skilled designers many years
to acquire expertise at putting systems together from parts.
Even then this expertise is typically confined to a specific
application domain (such as management information sys-
tems, or signal processing). We need to find ways codify and
disseminate principles and rules for composition of software.
Progress towards this goal can be seen in the development
of handbooks for reuse of design patterns [GHJV94], archi-
tectural design environments [GAO94], and design tools for
certain application domains [Lan90].

Acknowledgements

Aesop embodies many ideas from collaborative work with fellow
researchers. In particular, our work has been strongly influencedby
Daniel Jackson, Mary Shaw, and Jeannette Wing, whom we grate-
fully acknowledge. We would also like to thank the students and
staff who have contributed to the Aesop implementation described

in this paper: Mike Baumann, Steven Fink, Doron Gan, Huifen
Jiang, Curtis Scott, Brian Solganick, and Peter Su. Finally, we
thank Ralph Johnson and John Vlissides for their comments on an
earlier draft of this paper.

References

[AAG93] Gregory Abowd, Robert Allen, and David Garlan. Us-
ing style to understand descriptions of software archi-
tecture. InProceedings of SIGSOFT’93: Foundations
of Software Engineering, Software Engineering Notes
18(5), pages 9–20. ACM Press, December 1993.

[AG94] Robert Allen and David Garlan. Formalizing architec-
tural connection. InProceedingsof the Sixteenth Inter-
national Conference on Software Engineering, pages
71–80, Sorrento, Italy, May 1994.

[Bam90] J. Bamberger. STARS/users workshop: Final re-
port - issues for discussion groups. Technical Report
CMU/SEI-90-TR-32 ADA235776,Software Engineer-
ing Institute (Carnegie Mellon University), 1990.

[BO92] Don Batory and Sean O’Malley. The design and im-
plementation of hierarchical software systems with
reusable components.ACM Transactions on Software
Engineering and Methodology, 1(4):355–398, October
1992.

[BP89] Ted J. Biggerstaff and Alan J. Perlis.Software Reusabil-
ity. ACM Press, 1989.

[BS92] Barry Boehm and William Scherlis. Megaprogram-
ming. InProceedings of Software Technology Confer-
ence, DARPA. ARPA, 1992.

[BSST93] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff
Thomas. Scalable software libraries. InProceedings
of SIGSOFT’93, pages 191–199, December 1993.

[Cor91] The Common Object Request Broker: Architecture
and specification. OMG Document Number 91.12.1,
December 1991. Revision 1.1 (Draft 10).

[Dra87] R. R. Draves. MIG - the MACH interface genera-
tor, August 1987. Comment 1 by schlenk, Sat Jul 2
15:08:47 1988 MIG seem very similiar to the SUN
rpcgen facility. Parameters are described in a formal
language and compiled into stubs.

[GAO94] David Garlan, Robert Allen, and John Ockerbloom.Ex-
ploiting style in architectural design environments. In
Proceedingsof SIGSOFT’94: Foundations of Software
Engineering. ACM Press, December 1994.

[Ger89] Colin Gerety. HP Softbench: A new generation of
software development tools. Technical Report SESD-
89-25, Hewlett-Packard Software Engineering Systems
Division, Fort Collins, Colorado, November 1989.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson,and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Design. Addison-Wesley, 1994.

[GS93] David Garlan and Mary Shaw. An introduction to soft-
ware architecture. In V. Ambriola and G. Tortora, edi-
tors,Advances in SoftwareEngineering and Knowledge

6

Engineering, pages 1–39, Singapore, 1993. World Sci-
entific Publishing Company. Also appears as SCS and
SEI technical reports: CMU-CS-94-166, CMU/SEI-
94-TR-21, ESC-TR-94-021.

[IW95] Paola Inverardi and Alex Wolf. Formal specification
and analysis of software architectures using the chem-
ical, abstract machine model.IEEE Transactions on
Software Engineering, 1995. To appear.

[JC94] G.R. Ribeiro Justo and P.R. Freire Cunha. Deadlock-
free configuration programming. InProceedings of
the Second International Workshop on Configurable
Distributed Systems, March 1994.

[Kru92] Charles W. Krueger. Software reuse.Computing Sur-
veys, 24(2):131–183, June 1992.

[LAK +95] David C Luckham, Lary M. Augustin, John J. Kenney,
James Veera,Doug Bryan,and Walter Mann. Specifica-
tion and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering, 1995. To
appear.

[Lan90] Thomas G. Lane. A design space and design rules for
user interface software architecture. Technical Report
CMU/SEI-90-TR-22 ESD-90-TR-223, Carnegie Mel-
lon University, Software Engineering Institute, Novem-
ber 1990.

[LVC89] Mark A. Linton, John M. Vlissides, and Paul R. Calder.
Compusinguser interfaceswith interviews.IEEE Com-
puter, 22(2), February 1989.

[MG92] Erik Mettala and Marc H. Graham. The domain-
specific software architecture program. Technical Re-
port CMU/SEI-92-SR-9, Carnegie Mellon Software
Engineering Institute, June 1992.

[Par72] D. L. Parnas. On the criteria to be used in decomposing
systems into modules.Communications of the ACM,
15(12):1053–1058, December 1972.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Founda-
tions for the study of software architecture.ACM SIG-
SOFT Software Engineering Notes, 17(4):40–52, Oc-
tober 1992.

[Rei90] Steven P. Reiss. Connecting tools using message pass-
ing in the field program development environment.
IEEE Software, July 1990.

[SDK+95] Mary Shaw, Robert DeLine, Daniel V. Klein,
Theodore L. Ross, David M. Young, and Gregory Ze-
lesnik. Abstractions for software architecture and tools
to support them.IEEE Transactions on Software Engi-
neering, 1995. To appear.

[SG86] Robert W. Scheifler and Jim Gettys. The X window
system.ACM Transactions on Graphics, 5(2):79–109,
April 1986.

[T+88] Richard N. Taylor et al. Foundations for the Arca-
dia environment architecture. InProceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environ-
ments, Boston, MA, November 1988. Published as
SIGPLAN NOTICES, 24(2).

[VL90] John M. Vlissides and Mark A. Linton. Unidraw:
A framework for building domain-specific graphical
editors. ACM Transactions on Information Systems,
8(3):237–268, July 1990.

[YS94] Daniel M. Yellin and Robert E. Strom. Interfaces, pro-
tocols, and the semi-automatic constructionof software
adaptors.Proceedings of OOPSLA’94, October 1994.

7

