Camegie Mellon

T — .

e .

Rl PSR S——

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Camegie Mellon

Synchronization: Basic

18-213/18-613: Introduction to Computer Systems
23" Lecture, April 12,2022

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Announcements

m Homework out today and due a week from Thursday

=" Asusual

m Shell Lab due Thursday

= Proxy Lab goes out.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Camegie Mellon

Today

m Recap: Threads, races, and deadlocks

m Sharing CSAPP 12.4
m Mutual exclusion CSAPP 12.5
m Semaphores CSAPP 12.5
m Producer-Consumer Synchronization CSAPP 12.5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Traditional View of a Process

m Process = process context + code, data, and stack

————— P_rgc_efs_cg 'ltf)ft _______ Code, data, and stack
Program context: Sp —s Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk — Run-time heap

VM structures PC —> Read-only code/data
Descriptor table

brk pointer

|
|
|
|
|
|
|
|
|
|
Kernel context: I Read/write data
|
|
|
|
|
|
|
|
|
|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack ‘
g brk — Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

|
| |
| |
| |
| |
| |
| |
! Data registers ! PC — Read-only code/data
| |
| |
| |
| |
| |
| |

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
" Each thread shares the same code, data, and kernel context
® Each thread has its own stack for local variables
= but not protected from other threads
" Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes .
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Camegie Mellon

Race conditions

m Event A can happen either before or after event B

m The program behaves differently depending on which one
happens first
= Races are not necessarily bugs!
= Only if one of the possible behaviors is incorrect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Camegie Mellon

Race condition example

false
if (fileExists == true) { fileExists = true
file = loadFile()
}
else {
log(*'uh-0h")
}

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 9

Camegie Mellon

Race condition example

g = ? — r‘k > - ‘HT 1
true / true
if (fileExists == true) { fileExists = true if (fileExists == true) { fileExists = true
file = loadFile() file = loadFile() (D
3 3
else { else {
, log("'uh-oh") log(*'uh-oh')
}

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 10

Camegie Mellon

Race condition example

false true 5

if (fileExists == true) { fileExists = true if (fileExists == true) { fileExists = true
file = loadFile) file = loadFile()

1] }

else { else {
log("'uh-oh') log(*'uh-oh')

} }

Lin Clark

https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 1"

Camegie Mellon

More race condition examples

m Fileis deleted, in between when a program checks
whether the file exists, and when it opens the file
(“time-of-check to time-of-use” race)

m Child exits before parent can add it to the job list (tsh)

m Child thread reads variable after parent has changed it
(Tuesday’s lecture)

m Two threads update the same variable simultaneously
(later in this lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Camegie Mellon

Deadlock

m Whenever two or more threads/processes/... are stuck
waiting for each other to do something
m Inreal life:

= Alice cannot put the groceries down until Bob opens the door
= Bob cannot open the door until Alice hands him the keys

= Alice cannot hand Bob the keys because she is holding the
groceries

m In programming:

= Client is waiting for server to send a message before it closes the
connection

= Server is waiting for client to close the connection before it sends
the message (server has a bug)

m Deadlock is always a bug

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Camegie Mellon

Today

Recap: Threads, races, and deadlocks
Sharing

|
|
m Mutual exclusion
m Semaphores

|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Camegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

"= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

m Requires answers to the following questions:
= Whatis the memory model for threads?

= How are instances of variables mapped to memory?
= How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Threads Memory Model: Conceptual

m Multiple threads run within the context of a single process
m Each thread has its own separate thread context

= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

m All threads share the remaining process context
= Code, data, heap, and shared library segments of the process virtual address space

= QOpen files and installed handlers

Thread 1 Thread 2
(private) (private) Shared code and data
stack 1 stack 2
shared libraries
Thread 1 context: Thread 2 context: .
Data registers Data registers rur(:l-tlm'e hsap
Condition codes Condition codes read/write data
SP, SP, read-only code/data
PC, PC,
16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Camegie Mellon

Threads Memory Model: Actual

m Separation of data is not strictly enforced:

= Register values are truly separate and protected, but...
= Anythread can read and write the stack of any other thread

stack 1 K.\ stack 2 . Virtual Address Space
~~ Shared code and data
Thread 1 read 2
(private) (pri shared libraries
Thread 1 context: Thread 2 context: ‘\\ run-time heap
DRV SR Data registers » % read/write data
Condition codes Condition codes
read-only code/data

SP, SP,
PC, PC,

The mismatch between the conceptual and operation model
is a source of confusion and errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Camegie Mellon

Example Program to lllustrate Sharing

char **ptr; /* global var */ void *thread(void *vargp)
{
int main(int argc, char *argv][]) long myid = (long)vargp;
{ static #nt cnt = 0;
long 1i;
pthread t tid; printf ('|[%$1d]: %s (cnt=%d)\n",
char *msgs[2] = { myid, ptr[myid], ++cnt);
"Hello from foo", return NULL;
"Hello from bar" } \\
}; \
Peer threads reference main thread’s stack
ptr = msgs; indirectly through global ptr variable
for (i = 0; 1 < 2; i++)
Pthread create (&tid,
NULL,
thread,
(void *)i) ; €= A common, but inelegant way to
Pthread exit (NULL) ; = pass a single argument to a
} sharing.c thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Camegie Mellon

Mapping Variable Instances to Memory

m Global variables

= Def: Variable declared outside of a function
= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def:Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Camegie Mellon

Mapping Variable Instances to Memory

. Notation:
Globalvar: 1 instance (ptr [data]) ~— instance of
/ Localvars: 1instance (i.m, msgs.m) msgs in main
7

* % . * * 1
char **ptr; /* global var Localvar: 2 instances (

myid.pO [peer thread 0’s stack],
myid.pl [peer thread 1’s stack]

int main(int main,

long 1i;)

pthread t tid;

char *msgs[2] = {
"Hello from foo", void *threéd(void *vargp)
"Hello from bar" {

}, long myid = (long)vargp;

static int cnt = 0;
ptr = msgs;

for (i = 0; 1 < 2; i++) printf\{"[%$1d]: %s (cnt=%d)\n",
Pthread create (&tid, myid, ptr[myid], ++cnt);
NULL, return NNLL;
thread, }
(void *)i) ; \
Pthread exit (NULL) ; Local static var: 1 instance (cnt [data))

} sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Camegie Mellon

Shared Variable Analysis

m Which variables are shared?

Variable Referencedby Referenced by
instance main thread? peer thread 0?
ptr yes yes
cnt no yes
i.m yes no
msgs .m yes yes
myid.p0 no yes
myid.pl no no

char **ptr; /* global var */
int main(int main, char *argv[]) {
long i; pthread t tid;
char *msgs|[2]
"Hello from bar"
ptr = msgs;
for (1 = 0; 1 < 2; i++)
Pthread create (&tid,

Pthread exit (NULL) ;}

= {"Hello from foo",

NULL, thread, (void *)i);

} s

Referenced by
peer thread 1?

yes
yes
no
yes
no
yes

void *thread(void *vargp)

{

long myid = (long)vargp:
static int cnt = 0;

printf("[%$1d]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);
return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

21

Shared Variable Analysis

m Which variables are shared?

Variable Referencedby Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr, cnt, and msgs are shared
m i and myid are not shared

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Camegie Mellon

Synchronizing Threads

m Shared variables are handy...

m ..but introduce the possibility of nasty synchronization
errors.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

badcnt. c: Improper Synchronization

/* Global shared variable */ /* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)
{
int main(int argc, char **argv) long j, niters =
{ *((long *)vargp) ;

long niters;

pthread t tidl, tid2; for (3 = 0; j < niters; j++)

! ! cnt++;
niters = atoi(argv[l1l]);
Pthread create(&tidl, NULL,

thread, &niters); return NULL;

Pthread create(&tid2, NULL, }
thread, &niters);
Pthread join(tidl, NULL) ; linux> ./badcnt 10000
Pthread join(tid2, NULL); OK cnt=20000
linux> ./badcnt 10000
/* Check result */ BOOM! cnt=13051
if (cnt !'= (2 * niters)) linux>
printf ("BOOM! cnt=%1d\n", cnt);
else
printf("OK cnt:%ld\n" , cnt) ; Cnt ShOUId equal 20,000.
exit (0) ;
} badcnt.c

What went wrong?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Camegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (j = 0; jJ < niters; j++)
cnt++;

Asm code for thread i

movq $rdi) , %Srcx

testq 3%rcx,srcx }ff:Head

jle .L2 ’

movl $0, %eax
L3 \

movqg cnt(%rip) ,%rdx L; : Load cnt

addg $1, %$rdx > U; : Update cnt

movg %rdx, cnt(%rip) |/ S;:Storecnt

cm $rcx, %rax
. el ’ } T; : Tail

L2:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Camegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent®
interleaving is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt
Note: One of many

possible interleavings

=
X
[y

c
N
[
NININ|F=|

NININR|= IR IOIO|O

RINININININ|R[R]-
F
N
1

T 1 - OK

*For now. In reality, on x86 even non-sequentially consistent interleavings are possible

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Camegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt

=
X
[y

Thread 1
critical section

Thread 2
critical section

NININR IR RRROIO|IO

RINININININ(R| R (|-
F
N
1

OK

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Camegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %rdx, %rdx, cnt

1 H, - - 0
1 L, 0 - 0
1 U, 1 - 0
2 H, - - 0
2 L, - 0 0
1 S, 1 - 1
1 T, 1 - 1
2 U, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

(badcnt will print “BOOM!”)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Camegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %rdx, %rdx, cnt

=
L

[
o

L, 0

C
N
R

N(=RER(E=NINNNE=
2
N

-
N
=

Oops again!

m We can analyze the behavior using a progress graph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Camegie Mellon

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution
® ° ° ° ° ° state space of concurrent
T, (L S) threads.
17 <2
7 ¢ ¢ ¢ ¢ ¢ Each axis corresponds to
S, the sequential order of
® ° ° ° ° ° instructionsin a thread.
U, :
Each point corresponds to
7 ° ¢ ° o o a possible execution state
L, (Inst,, Inst,).
® ® o o o o

E.g., (L;, S,) denotes state
where thread 1 has
¢ ¢ ¢ ¢ ¢ *— Thread1 completedL, and thread

2 has completed S,.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Camegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
. ® o o o ° state transitions that describes one
T, possible concurrent execution of the
threads.
o o o o [
S, I Example:
7 ° ° ° ° H1, L1, U1, H2, L2, S1, T1, U2, S2, T2
U,
L,
H,
*— Thread 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Camegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
. o o o s state transitions that describes one
T, T possible concurrent execution of the
threads.
o o o o [
S, I Example:
7 ° ° ° ° H1, L1, U1, H2, L2, S1,T1, U2,S2, T2
U,
L,
H,

*— Thread 1

H, L, U, S T

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Camegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
it o o o o o section Wlt.h respect to the
shared variable cnt
T,
9 ° ® ® ® ° Instructions in critical
S, sections (wrt some shared
critical it o o o o o variable) should not be
section U) interleaved
wrt 2 Unsafe region
cnt T ® ® ° ° ° Sets of states where such
L, interleaving occurs form
. 4 o o o R o unsafe regions
H,
¢ ¢ ¢ ¢ ¢ *— Thread 1
H, L, U, Sy Ty
. /
N

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Camegie Mellon

Critical Sections and Unsafe Regions

Thread 2
safe
o o AT
Def: A trajectory is safe iffit does
T, not enter any unsafe region
r o o [
S, | T Claim: A trajectory is correct (wrt
critical . . " cnt) iff itis safe
section)
wrt < U, Unsafe region x
cnt =——l—>e
L, unsafe
\ o o

¢ T *— Thread 1

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Camegie Mellon

badcnt. c: Improper Synchronization

/* Global shared variable */ /* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)
{
int main(int argc, char **argv) long j, niters =
{ *((long *)vargp) ;
long niters;
pthread t tidl, tid2; for (3 = 0; j < niters; j++)
cnt++;
niters = atoi(argv[1l]);
Pthread create(&tidl, NULL,
thread, &niters);; _ return NULL;
thread, &niters);
Pthread join(tidl, NULL); cnt yes* yes yes
Pthread join(tid2, NULL) ;)
— niters.m yes yes yes
/* Check result */ tidl.m yes no no
if (ent '= (2 * niters))
printf ("BOOM! cnt=%1d\n", cnt); J.1 no Yes no
else j.2 no no es
printf ("OK cnt=%1d\n", cnt); J- y
exit (0) ; niters.1 no yes no
} badcnt.c

niters.2 no no yes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Camegie Mellon

Quiz Time!

Check out:

Canvas > Day 23 — Synchronization Basic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Camegie Mellon

Today

Threads review
Sharing

|
|
m Mutual exclusion
m Semaphores

|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.

= j.e., need to guarantee mutually exclusive access for each critical
section.

m Classic solution:
= Mutex (pthreads)
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)

= Condition variables (pthreads)
= Monitors (Java)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Camegie Mellon

MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable
m enum {locked = 0, unlocked = 1}

m lock(m)

= |f the mutex is currently not locked, lock it and return
= Otherwise, wait (spinning, yielding, etc) and retry

m unlock(m)

= Update the mutex state to unlocked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Camegie Mellon

MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable *

m Swap(*a, b)
[t = *a; *a =b; return t;]
// Notation: what’s inside the brackets [] isindivisible (a.k.a. atomic)
// by the magic of hardware / OS

m Lock(m):

while (swap(&m->state, locked) == locked) ;

m Unlock(m):

m->state = unlocked;

*For now. In reality, many other implementations and design choices (c.f., 15-410, 418, etc).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Camegie Mellon

badcnt. c: Improper Synchronization

/* Global shared variable */ /* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)

{

int main(int argc, char **argv)

{

long j, niters =

*((long *)vargp) ;
long niters;

pthread t tidl, tid2; for (3 = 0; j < niters; j++)

++;
niters = atoi(argv[1l]); cnt

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL, }
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

return NULL;

/* Check result */ How can we fix this using

if (ent '= (2 * niters)) . .
printf ("BOOM! cnt=%1d\n", cnt); | Synchronization?
else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;

} badcnt.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

goodmcnt. c: Mutex Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */

pthread mutex t mutex;
pthread mutex init(&mutex, NULL); // No special attributes

m Surround critical section with lock and unlock:

e (oL B U5 & S REEEEng saen) linux> ./goodment 10000
pthread mutex lock (&mutex) ; OK cnt=20000
cnt++; linux> ./goodmcnt 10000
pthread mutex unlock (&mutex) ; OK cnt=20000
}
__Function | _badcnt | _goodment
Time (ms) 12.0 214.0
niters = 10°

Slowdown 1.0 17.8 .

Bryantand O’Hallaron, Compt

Camegie Mellon

Why Mutexes Work

Thread 2
J. Provide mutually exclusive
° . ° . ° ° . access to sharedvariable by
T, surroundingcritical section
' . J with lock and unlock
un(m)l operations
S,
u, Unsafe region
L,
lo(m)
H, 1 0 0
. . . Thread 1

A H lom) L, U, S, un(m)T,
Initially

Brya nrtrz!nd_O%allaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Why Mutexes Work

Thread 2
J. Provide mutually exclusive
° ° ° . ° ° . access to sharedvariable by
T, surroundingcritical section
' with lock and unlock
un(m) operations
S, Mutex invariant creates a
| forbidden region that encloses
U unsafe region and that cannot
21 . .) be entered by any trajectory.
L,
lo(m)
H, 1 0
' . . . Thread 1

1‘ H1 IO(m) I-1 U1 Sl un(m) T1

Initially:m =1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Camegie Mellon

Why Mutexes Work

Thread 2
J. Provide mutually exclusive
° ° ° . ° ° . access to sharedvariable by
T, surroundingcritical section
' with lock and unlock
un(m) operations
S, Mutex invariant creates a
| forbidden region that encloses
U unsafe region and that cannot
21 . .) be entered by any trajectory.
L, 0
lo(m) 0 0 :I
H, 1 0 0
' . . . Thread 1

1‘ H1 IO(m) I-1 U1 Sl un(m) T1

Initially:m =1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Camegie Mellon

Why Mutexes Work

Thread 2
J. 1 , 0 0 0 0 : 1 Provide mutually exc.:luswe
° ° ° . ° ° . access to sharedvariable by
T, surroundingcritical section
p] o’ o0 L0 o ! 0L o ! with lock and unlock
un(m) : Forbidden region . : operations
S, Mutex invariant creates a
)0 LU . . . O L0 forbidden region that encloses
U unsafe region and that cannot
lo o . . . L be entered by any trajectory.
L,
IO [] 0 [] [] [] [J [] 0 [] 0
lo(m) 1 1 0 0 0 0 1 1
H,
]1 A Lo 0 0 0 A ' Thread1
B H, lo(m) L, U, S; un(im) T,
Initially
m=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Camegie Mellon

Today

Threads review
Sharing

|
|
m Mutual exclusion
m Semaphores

|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Camegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

m P(s)
" |f sisnonzero, then decrement s by 1 and return immediately.
= Test and decrement operations occur atomically (indivisibly)

" |f siszero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

= After restarting, the P operation decrements s and returns control to the
caller.

m V(s):
" Increment s by 1.
= Increment operation occurs atomically

= |f there are any threads blocked in a P operation waiting for s to become non-

zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

m Semaphoreinvariant: s2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for “Proberen” (test)
= V(s): [s++;]
= Dutch for “Verhogen” (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly/atomically

= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: s 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Camegie Mellon

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *s, 0, unsigned int wval);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Using Semaphores to Coordinate

Access to Shared Resources

m Basicidea: Thread uses a semaphore operation to notify
another thread that some condition has become true

= Use counting semaphores to keep track of resource state.
= Use binary semaphores to notify other threads.

m The Producer-Consumer Problem

= Mediating interactions between processes that generate
information and that then make use of that information

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Camegie Mellon

Producer-Consumer Problem

,| shared . consumer
buffer thread

producer
thread

m Common synchronization pattern:
= Producer waits for empty slot, inserts item in buffer, and notifies consumer
= Consumer waits for item, removes it from buffer, and notifies producer

m Examples
= Multimedia processing:
= Producer creates video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

= Consumer retrieves events from buffer and paints the display

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Camegie Mellon

Producer-Consumer on 1-element Buffer

m Maintain two semaphores: full + empty

full
0
J| empty .
empty buffer
1
full
1
. full R
empty buffer
0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Camegie Mellon

Producer-Consumer on 1-element Buffer

#include "csapp.h int main(int argc, char** argv) ({

pthread t tid producer;

#define NITERS 5 pthread t tid consumer;

void *producer (void *arg) ;

]] /* Initialize the semaphores */ Initial
void *consumer (void *argqg) ;

Sem init (&shared.empty, O, 17;/ value

Sem init (&shared.full, 0, 0);
struct { _

int buf; /* shared var */
sem t full; /* sems */
sem_t empty;

} shared;

/* Create threads and wait */
Pthread create(&tid producer, NULL,
producer, NULL);
Pthread create(&tid consumer, NULL,
consumer, NULL) ;
Pthread join(tid producer, NULL);
Pthread join(tid consumer, NULL);

return O;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Producer-Consumer on 1-element Buffer

Initially: empty==1, full==

Producer Thread

Consumer Thread

void *producer(void *arg) {
int i, item;

for (i=0; i<NITERS; i++) {
/* Produce item */
item = i;
printf ("produced %d\n",
item) ;

/* Write item to buf */
P (&shared.empty) ;
shared.buf = item;
V(&shared.full) ;

}
return NULL;

}

void *consumer (void *arg) ({
int i, item;

for (i=0; i<NITERS; i++) {
/* Read item from buf */
P (&shared.full) ;
item = shared.buf;
V(&shared.empty) ;

/* Consume item */
printf ("consumed %$d\n“, item);

}
return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Camegie Mellon

55

Camegie Mellon

Why 2 Semaphores for 1-Entry Buffer?

m Consider multiple producers & multiple consumers

o | shared
. buffer

& ~©

m Producers will contend with each to get empty
m Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P(&shared. full) ;
shared.buf = item; item = shared.buf;
V(&shared. full) ; V(&shared.empty) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Camegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements @
- / °
—> o

m Implemented using a shared buffer package called sbuf.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Camegie Mellon

Circular Buffer (n = 10)

m Store elements in array of size n
m items: number of elements in buffer
m Empty buffer:

" front =rear

m Nonempty buffer
= rear: index of most recently inserted element
" front: (index of next element to remove —1) mod n

m Initially:

rear
items 0

o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Camegie Mellon

Circular Buffer Operation (n = 10)

m Insert 7 elements

front 0 O 1 2 3 4 5
rear 7
items 7
m Remove 5 elements
front 5 O 1 2 3 4 5
rear 7
items 2
m Insert 6 elements
front 5 O 1 2 3 4 5
rear 3
items 8
m Remove 8 elements
front 3 O 1 2 3 4 5
rear 3
items 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

59

Camegie Mellon

Sequential Circular Buffer Code

init(int v)

{

items = front = rear = 0;

}

insert (int v)
{
if (items >= n)
error () ;
if (++rear >= n) rear = 0;
buf[rear] = v;
items++;

}

int remove ()
{
if (items == 0)
error () ;
if (++front >= n) front = O;
int v = buf[front];
items--;
return v;

}

Bryant and O’HaTTaTOTT, COMpPUTEr SYSTEMS A PTORTITITEr S PErSPECUVE, TITU TOTIo 60

Camegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements @
- / °
—> o

[J >
000 —

@ NG

m Requires a mutex and two counting semaphores:
" mutex: enforces mutually exclusive access to the buffer and counters

" s]lots:counts the available slots in the buffer
"] tems: counts the available items in the buffer

m Makes use of general semaphores

= Will range in value from O ton

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Camegie Mellon

sbuf Package - Declarations

#include '"csapp.h”

typedef struct {

int *buf; /* Buffer array */
int n; /* Maximum number of slots */
int front; /* buf[front+l (mod n)] is first item */
int rear; /* buf[rear] is last item * /
sem t mutex; /* Protects accesses to buf * /
sem t slots; /* Counts available slots */
sem t items; /* Counts available items * /
} sbuf t;

void sbuf init(sbuf t *sp, int n);

void sbuf deinit(sbuf t *sp);

void sbuf insert(sbuf t *sp, int item);
int sbuf remove(sbuf t *sp);

sbuf.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Camegie Mellon

sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

/* Create an empty, bounded, shared FIFO buffer with n slots */

void sbuf init(sbuf t *sp, int n)

{
sp->buf = Calloc(n, sizeof (int));
sp->n = n; /* Buffer holds max of n items */
sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
Sem init (&sp->mutex, 0, 1); /* Binary semaphore for locking */
Sem init (&sp->slots, 0, n); /* Initially, buf has n empty slots */
Sem init(&sp->items, 0, 0); /* Initially, buf has zero items */

}

/* Clean up buffer sp */
void sbuf deinit(sbuf t *sp)
{

Free (sp->buf) ;

sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Camegie Mellon

sbuf Package - Implementation

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp */
void sbuf insert(sbuf t *sp, int item)

{

P (&sp->slots) ; /* Wait for available slot */

P (&sp->mutex) ; /* Lock the buffer *x /

if (++sp->rear >= sp->n) /* Increment index (mod n) */
sp->rear = 0;

sp->buf [sp->rear] = item; /* Insert the item */

V (&sp->mutex) ; /* Unlock the buffer *x /

V (&sp->items) ; /* Announce available item */

sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Camegie Mellon

sbuf Package - Implementation

Removing an item from a shared buffer:

/* Remove and return the first item from buffer sp */
int sbuf remove (sbuf t *sp)

{

int item;

P (&sp->items) ; /* Wait for available item */

P (&sp->mutex) ; /* Lock the buffer *x /

if (++sp->front >= sp->n) /* Increment index (mod n) */
sp->front = 0;

item = sp->buf[sp->front]; /* Remove the item */

V (&sp->mutex) ; /* Unlock the buffer * /

V (&sp->slots) ; /* Announce available slot */

return item;

} sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Camegie Mellon

Demonstration

m See program produce-consume.c in code directory
m 10-entry shared circular buffer
m 5 producers

= Agentigenerates numbers from 20*ito 20*i — 1.
= Puts them in buffer

m 5 consumers
" Each retrieves 20 elements from buffer
m Main program

= Makes sure each value between 0 and 99 retrieved once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Camegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access

= E.g.,using mutex lock and unlock, semaphore P and V

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion

= And can also support producer-consumer synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

