
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Basic

18-213/18-613: Introduction to Computer Systems
23rd Lecture, April 12, 2022

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements
 Homework out today and due a week from Thursday

▪ As usual

 Shell Lab due Thursday
▪ Proxy Lab goes out.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Recap: Threads, races, and deadlocks

 Sharing CSAPP 12.4

 Mutual exclusion CSAPP 12.5

 Semaphores CSAPP 12.5

 Producer-Consumer Synchronization CSAPP 12.5

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

 Process = process context + code, data, and stack

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Process context

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

 Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:

Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own logical control flow
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

Data registers
Condition codes
SP1

PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

VM structures
Descriptor table
brk pointer

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race conditions

 Event A can happen either before or after event B

 The program behaves differently depending on which one
happens first

▪ Races are not necessarily bugs!

▪ Only if one of the possible behaviors is incorrect

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race condition example

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race condition example

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Race condition example

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More race condition examples

 File is deleted, in between when a program checks
whether the file exists, and when it opens the file
(“time-of-check to time-of-use” race)

 Child exits before parent can add it to the job list (tsh)

 Child thread reads variable after parent has changed it
(Tuesday’s lecture)

 Two threads update the same variable simultaneously
(later in this lecture)

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock

 Whenever two or more threads/processes/… are stuck
waiting for each other to do something

 In real life:

▪ Alice cannot put the groceries down until Bob opens the door

▪ Bob cannot open the door until Alice hands him the keys

▪ Alice cannot hand Bob the keys because she is holding the
groceries

 In programming:

▪ Client is waiting for server to send a message before it closes the
connection

▪ Server is waiting for client to close the connection before it sends
the message (server has a bug)

 Deadlock is always a bug

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Recap: Threads, races, and deadlocks

 Sharing

 Mutual exclusion

 Semaphores

 Producer-Consumer Synchronization

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs

 Question: Which variables in a threaded C program are
shared?
▪ The answer is not as simple as “global variables are shared” and

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads
reference some instance of x.

 Requires answers to the following questions:
▪ What is the memory model for threads?

▪ How are instances of variables mapped to memory?

▪ How many threads might reference each of these instances?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model: Conceptual

 Multiple threads run within the context of a single process

 Each thread has its own separate thread context
▪ Thread ID, stack, stack pointer, PC, condition codes, and GP registers

 All threads share the remaining process context
▪ Code, data, heap, and shared library segments of the process virtual address space

▪ Open files and installed handlers

Thread 1 context:

Data registers
Condition codes
SP1

PC1

stack 1

Thread 1
(private) Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2
(private)

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model: Actual

 Separation of data is not strictly enforced:
▪ Register values are truly separate and protected, but…

▪ Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Thread 1 context:

Data registers
Condition codes
SP1

PC1

stack 1

Thread 1
(private)

Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2
(private)

Virtual Address Space

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Program to Illustrate Sharing

char **ptr; /* global var */

int main(int argc, char *argv[])

{

long i;

pthread_t tid;

char *msgs[2] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

long myid = (long)vargp;

static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NULL;

}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

A common, but inelegant way to
pass a single argument to a
thread routine

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory

 Global variables
▪ Def: Variable declared outside of a function

▪ Virtual memory contains exactly one instance of any global variable

 Local variables
▪ Def: Variable declared inside function without static attribute

▪ Each thread stack contains one instance of each local variable

 Local static variables
▪ Def: Variable declared inside function with the static attribute

▪ Virtual memory contains exactly one instance of any local static
variable.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main(int main, char *argv[])

{

long i;

pthread_t tid;

char *msgs[2] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

long myid = (long)vargp;

static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NULL;

}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
myid.p0 [peer thread 0’s stack],
myid.p1 [peer thread 1’s stack]

)

sharing.c

Notation:
instance of

msgs in main

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

◼ ptr, cnt, and msgs are shared

◼ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

char **ptr; /* global var */

int main(int main, char *argv[]) {

long i; pthread_t tid;

char *msgs[2] = {"Hello from foo",

"Hello from bar" };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL, thread,(void *)i);

Pthread_exit(NULL);}

void *thread(void *vargp)

{

long myid = (long)vargp;

static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NULL;

}

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis

 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

◼ ptr, cnt, and msgs are shared

◼ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads

 Shared variables are handy...

 …but introduce the possibility of nasty synchronization
errors.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

long niters;

pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

long j, niters =

*((long *)vargp);

for (j = 0; j < niters; j++)

cnt++;

return NULL;

}

linux> ./badcnt 10000

OK cnt=20000

linux> ./badcnt 10000

BOOM! cnt=13051

linux>

cnt should equal 20,000.

What went wrong?
badcnt.c

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (j = 0; j < niters; j++)

cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx

testq %rcx,%rcx

jle .L2

movl $0, %eax

.L3:

movq cnt(%rip),%rdx

addq $1, %rdx

movq %rdx, cnt(%rip)

addq $1, %rax

cmpq %rcx, %rax

jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: In general, any sequentially consistent*

interleaving is possible, but some give an unexpected result!
▪ Ii denotes that thread i executes instruction I

▪ %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

*For now. In reality, on x86 even non-sequentially consistent interleavings are possible

Note: One of many
possible interleavings

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: In general, any sequentially consistent interleaving

is possible, but some give an unexpected result!
▪ Ii denotes that thread i executes instruction I

▪ %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!
(badcnt will print “BOOM!”)

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 How about this ordering?

 We can analyze the behavior using a progress graph

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0

1
1 1

1
1 1

1 Oops again!
1

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

long niters;

pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

long j, niters =

*((long *)vargp);

for (j = 0; j < niters; j++)

cnt++;

return NULL;

}

badcnt.c

Variable main thread1 thread2

cnt yes* yes yes

niters.m yes yes yes

tid1.m yes no no

j.1 no yes no

j.2 no no yes

niters.1 no yes no

niters.2 no no yes

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

Canvas > Day 23 – Synchronization Basic

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing

 Mutual exclusion

 Semaphores

 Producer-Consumer Synchronization

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion

 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
▪ i.e., need to guarantee mutually exclusive access for each critical

section.

 Classic solution:
▪ Mutex (pthreads)

▪ Semaphores (Edsger Dijkstra)

 Other approaches (out of our scope)
▪ Condition variables (pthreads)

▪ Monitors (Java)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable

 enum {locked = 0, unlocked = 1}

 lock(m)

▪ If the mutex is currently not locked, lock it and return

▪ Otherwise, wait (spinning, yielding, etc) and retry

 unlock(m)

▪ Update the mutex state to unlocked

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable *

 Swap(*a, b)
[t = *a; *a = b; return t;]

// Notation: what’s inside the brackets [] is indivisible (a.k.a. atomic)

// by the magic of hardware / OS

 Lock(m):

while (swap(&m->state, locked) == locked) ;

 Unlock(m):

m->state = unlocked;

*For now. In reality, many other implementations and design choices (c.f., 15-410, 418, etc).

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

long niters;

pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

long j, niters =

*((long *)vargp);

for (j = 0; j < niters; j++)

cnt++;

return NULL;

}

How can we fix this using
synchronization?

badcnt.c

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodmcnt.c:Mutex Synchronization

 Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */

pthread_mutex_t mutex;

pthread_mutex_init(&mutex, NULL); // No special attributes

 Surround critical section with lock and unlock:

for (i = 0; i < niters; i++) {

pthread_mutex_lock(&mutex);

cnt++;

pthread_mutex_unlock(&mutex);

}

linux> ./goodmcnt 10000

OK cnt=20000

linux> ./goodmcnt 10000

OK cnt=20000

linux>
goodcnt.cFunction badcnt goodmcnt

Time (ms)
niters = 106

12.0 214.0

Slowdown 1.0 17.8

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially: m = 1

1 0 0 0

0

Unsafe region

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

1 0 0 0

0

Unsafe region

0 1

0

Initially: m = 1

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsafe region

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
m = 1

Forbidden region

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing

 Mutual exclusion

 Semaphores

 Producer-Consumer Synchronization

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: non-negative global integer synchronization variable.

Manipulated by P and V operations.
 P(s)

▪ If s is nonzero, then decrement s by 1 and return immediately.

▪ Test and decrement operations occur atomically (indivisibly)

▪ If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

▪ After restarting, the P operation decrements s and returns control to the
caller.

 V(s):
▪ Increment s by 1.

▪ Increment operation occurs atomically

▪ If there are any threads blocked in a P operation waiting for s to become non-
zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

 Semaphore invariant: s ≥ 0

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: non-negative global integer synchronization

variable

 Manipulated by P and V operations:
▪ P(s): [while (s == 0) wait(); s--;]

▪ Dutch for “Proberen” (test)

▪ V(s): [s++;]

▪ Dutch for “Verhogen” (increment)

 OS kernel guarantees that operations between brackets [] are
executed indivisibly/atomically

▪ Only one P or V operation at a time can modify s.

▪ When while loop in P terminates, only that P can decrement s

 Semaphore invariant: s ≥ 0

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */

int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */

void V(sem_t *s); /* Wrapper function for sem_post */

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores to Coordinate
Access to Shared Resources

 Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
▪ Use counting semaphores to keep track of resource state.

▪ Use binary semaphores to notify other threads.

 The Producer-Consumer Problem
▪ Mediating interactions between processes that generate

information and that then make use of that information

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer Problem

 Common synchronization pattern:
▪ Producer waits for empty slot, inserts item in buffer, and notifies consumer

▪ Consumer waits for item, removes it from buffer, and notifies producer

 Examples
▪ Multimedia processing:

▪ Producer creates video frames, consumer renders them

▪ Event-driven graphical user interfaces

▪ Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

▪ Consumer retrieves events from buffer and paints the display

producer
thread

shared
buffer

consumer
thread

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on 1-element Buffer

 Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on 1-element Buffer

#include "csapp.h"

#define NITERS 5

void *producer(void *arg);

void *consumer(void *arg);

struct {

int buf; /* shared var */

sem_t full; /* sems */

sem_t empty;

} shared;

int main(int argc, char** argv) {

pthread_t tid_producer;

pthread_t tid_consumer;

/* Initialize the semaphores */

Sem_init(&shared.empty, 0, 1);

Sem_init(&shared.full, 0, 0);

/* Create threads and wait */

Pthread_create(&tid_producer, NULL,

producer, NULL);

Pthread_create(&tid_consumer, NULL,

consumer, NULL);

Pthread_join(tid_producer, NULL);

Pthread_join(tid_consumer, NULL);

return 0;

}

Initial
value

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on 1-element Buffer

void *producer(void *arg) {

int i, item;

for (i=0; i<NITERS; i++) {

/* Produce item */

item = i;

printf("produced %d\n",

item);

/* Write item to buf */

P(&shared.empty);

shared.buf = item;

V(&shared.full);

}

return NULL;

}

void *consumer(void *arg) {

int i, item;

for (i=0; i<NITERS; i++) {

/* Read item from buf */

P(&shared.full);

item = shared.buf;

V(&shared.empty);

/* Consume item */

printf("consumed %d\n“, item);

}

return NULL;

}

Initially: empty==1, full==0

Producer Thread Consumer Thread

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why 2 Semaphores for 1-Entry Buffer?

 Consider multiple producers & multiple consumers

 Producers will contend with each to get empty

 Consumers will contend with each other to get full

shared
buffer

P1

Pn







C1

Cm







P(&shared.full);

item = shared.buf;

V(&shared.empty);

Consumers

P(&shared.empty);

shared.buf = item;

V(&shared.full);

Producers
fullempty

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on an n-element Buffer

 Implemented using a shared buffer package called sbuf.

P1

Pn







C1

Cm








Between 0 and n elements

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular Buffer (n = 10)

 Store elements in array of size n

 items: number of elements in buffer

 Empty buffer:
▪ front = rear

 Nonempty buffer
▪ rear: index of most recently inserted element

▪ front: (index of next element to remove – 1) mod n

 Initially:

items 0

rear 0

front 0 8765432 910

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular Buffer Operation (n = 10)
 Insert 7 elements

 Remove 5 elements

 Insert 6 elements

 Remove 8 elements

items 7

rear 7

front 0 8765432 910

items 2

rear 7

front 5 8765432 910

items 8

rear 3

front 5 8765432 910

items 0

rear 3

front 3 8765432 910

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Circular Buffer Code

insert(int v)

{

if (items >= n)

error();

if (++rear >= n) rear = 0;

buf[rear] = v;

items++;

}

int remove()

{

if (items == 0)

error();

if (++front >= n) front = 0;

int v = buf[front];

items--;

return v;

}

init(int v)

{

items = front = rear = 0;

}

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on an n-element Buffer

 Requires a mutex and two counting semaphores:
▪ mutex: enforces mutually exclusive access to the buffer and counters

▪ slots: counts the available slots in the buffer

▪ items: counts the available items in the buffer

 Makes use of general semaphores
▪ Will range in value from 0 to n

P1

Pn







C1

Cm








Between 0 and n elements

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Declarations

#include "csapp.h”

typedef struct {

int *buf; /* Buffer array */

int n; /* Maximum number of slots */

int front; /* buf[front+1 (mod n)] is first item */

int rear; /* buf[rear] is last item */

sem_t mutex; /* Protects accesses to buf */

sem_t slots; /* Counts available slots */

sem_t items; /* Counts available items */

} sbuf_t;

void sbuf_init(sbuf_t *sp, int n);

void sbuf_deinit(sbuf_t *sp);

void sbuf_insert(sbuf_t *sp, int item);

int sbuf_remove(sbuf_t *sp);

sbuf.h

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Create an empty, bounded, shared FIFO buffer with n slots */

void sbuf_init(sbuf_t *sp, int n)

{

sp->buf = Calloc(n, sizeof(int));

sp->n = n; /* Buffer holds max of n items */

sp->front = sp->rear = 0; /* Empty buffer iff front == rear */

Sem_init(&sp->mutex, 0, 1); /* Binary semaphore for locking */

Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */

Sem_init(&sp->items, 0, 0); /* Initially, buf has zero items */

}

/* Clean up buffer sp */

void sbuf_deinit(sbuf_t *sp)

{

Free(sp->buf);

}

sbuf.c

Initializing and deinitializing a shared buffer:

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Insert item onto the rear of shared buffer sp */

void sbuf_insert(sbuf_t *sp, int item)

{

P(&sp->slots); /* Wait for available slot */

P(&sp->mutex); /* Lock the buffer */

if (++sp->rear >= sp->n) /* Increment index (mod n) */

sp->rear = 0;

sp->buf[sp->rear] = item; /* Insert the item */

V(&sp->mutex); /* Unlock the buffer */

V(&sp->items); /* Announce available item */

}

sbuf.c

Inserting an item into a shared buffer:

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Remove and return the first item from buffer sp */

int sbuf_remove(sbuf_t *sp)

{

int item;

P(&sp->items); /* Wait for available item */

P(&sp->mutex); /* Lock the buffer */

if (++sp->front >= sp->n) /* Increment index (mod n) */

sp->front = 0;

item = sp->buf[sp->front]; /* Remove the item */

V(&sp->mutex); /* Unlock the buffer */

V(&sp->slots); /* Announce available slot */

return item;

} sbuf.c

Removing an item from a shared buffer:

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Demonstration

 See program produce-consume.c in code directory

 10-entry shared circular buffer

 5 producers
▪ Agent i generates numbers from 20*i to 20*i – 1.

▪ Puts them in buffer

 5 consumers
▪ Each retrieves 20 elements from buffer

 Main program
▪ Makes sure each value between 0 and 99 retrieved once

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programmers need a clear model of how variables are
shared by threads.

 Variables shared by multiple threads must be protected
to ensure mutually exclusive access
▪ E.g., using mutex lock and unlock, semaphore P and V

 Semaphores are a fundamental mechanism for enforcing
mutual exclusion
▪ And can also support producer-consumer synchronization

