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Reaping Child Processes
m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait orwaitpid)
= Parent is given exit status information

= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= Unless ppid == 1! Then need to reboot...
= So, only need explicit reaping in long-running processes
= e.g., shells and servers
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° void fork7() {
Zombie if (fork() == 0) {
/* Child */
rintf ("Terminating Child, PID = %d\n", getpid()):
Example Rl g HI%
} else {
printf ("Running Parent, PID = %d\n", getpid()):
while (1)
; /* Infinite loop */
linux> ./forks 7 & }
[1] 6639 }

Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh .
6639 ttyp9  00:00:03 forks ps shows child process as
6640 ttyp9 00:00:00 forks <defunct></ “defunct” (i.e., a zombie)
6641 ttyp9 00:00:00 ps
linux> kill 6639

[1] Terminated m Killing parent allows child to
linux> ps be reaped by init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh}
6642 ttyp9 00:00:00 ps
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terminating
Child Example

Carnegie Mellon

void fork8()
{
if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid());
while (1)

linux> ./forks 8
Terminating Parent, PID =
Running Child, PID =

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9

} else {

}

printf ("Terminating Parent, PI

exit (0) ;

; /* Infinite loop */

= %d\n",
getpid()) ;

6675
6676 |

TIME CMD
00:00:00 tecsh
00:00:06 fork u

00:00:00
linux> kill 6676

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

TIME CMD
00:00:00 tcsh
00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Child process still active even
though parent has terminated

Must kill child explicitly, or else will
keep running indefinitely
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wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
" Implemented as syscall

Parent Process Kernel code

«

Exception . And, potentially other user

Returns

of parent

syscall

A 4
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wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status !'= NULL, then the integer it points to will be set
to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwait.h

- WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7



Carnegie Mellon

wait: Synchronizing with Children

void fork9() {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0) ;

} else {

printf ("HP: hello from parent\n");
wait (&child status);

}
printf ("Bye\n") ;

printf ("CT: child has terminated\n");

} forks.c

Feasible output(s):

HC HP
HP HC
CT CT

Bye Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HC exit
>®- —»
printf
CT
Bye
HP Y
® e >&- »®
fork printf wait printf

Infeasible output:

HP
CT
Bye
HC



Another wait Example

m |f multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO () {
pid t pid[N];
int i, child status;

for (i = 0; i < N; i++4)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c
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waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void forkll () {
pid t pid[N];
int 1i;
int child status;

for (i = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED(child_status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c
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execve : Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])
m Loads and runs in the current process:
= Executable file filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= ..exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11
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execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp[n-1] ——> "PWD=/usr/droh"
_ envp [0] —> "USER=droh"
environ >
myargv[argc] = NULL

[a

[2] ——> "/usr/include"
myargv[1l] 3 n_Jgm
myargv [0] > "/bin/ls"

(argc == 3) myargv

myargv ———>

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve (myargv|[0], myargv, environ) < 0) {
printf ("%$s: Command not found.\n", myargv[0]) ;
exit (1) ;

}
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Bottom of stack

Null-terminated

Structu re Of environment variable strings e

Null-terminated

the StaCk When .| command-line arg strings
d Néw program

E envp[n] == NULL
Sta rtS ; covp =i | environ
| (global var)
| envp [0] el PRl gy
| argv[argc] = NULL 1 envp
argv[argc-1] (in $rdx)
argv e argv[0]
(in $rsi)
argc Stack frame for
i ; libc start main
(in 3rdi) — — Top of stack

Future stack frame for
main
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The execwve Function Revisited

libc.so

User stack

v
A

.data

text

a.out

Memory mapped region
for shared libraries

1

Runtime heap (via malloc)

Uninitialized data (.bss)

.data

Initialized data (.data)

text

Program text (.text)

} Private, demand-zero u

} Shared, file-backed

} Private, demand-zero

} Private, demand-zero

Private, file-backed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

To load and run a new
program a.out in the
current process using
execve:

Free vin_area struct’s
and page tables for old areas

Create vin_area struct’s
and page tables for new
areas
® Programs and initialized data
backed by object files.

= _Dbss and stack backed by
anonymous files.

Set PC to entry point in
.text

® Linux will fault in code and
data pages as needed.
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Exceptions & Processes - Summary

m Exceptions

= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on any single core

® Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15
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Handled in kernel

(pa rtial) Taxonomy Handled in user process
ECF
Asynchronous Synchronous
Interrupts Traps Faults Aborts
Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16
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Today

m Shells
m Signals

m Nonlocal jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17
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Linux Process Hierarchy
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Shell Programs

m Ashellis an application program that runs programs on behalf
of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh/tecsh BSD Unix C shell
"= bash “Bourne-Again” Shell (default Linux shell)

m Simple shell
= Described in the textbook, starting at p. 753
= |mplementation of a very elementary shell
" Purpose
= Understand what happens when you type commands
= Understand use and operation of process control operations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19
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Simple Shell Example

linux> ./shellex
> /bin/ls -1 csapp.c Mustgive full pathnames for programs
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps
PID TTY TIME CMD
31542 pts/2 00:00:01 tesh
32017 pts/2 00:00:00 shellex
32019 pts/2 00:00:00 ps
> /bin/sleep 10 &  Run program in background
32031 /bin/sleep 10 &
> /bin/ps
PID TTY TIME CMD
31542 pts/2 00:00:01 tcsh
32024 pts/2 00:00:00 emacs
32030 pts/2 00:00:00 shellex
32031 pts/2 00:00:00 sleep Sleep is running
32033 ptS/2 00:00:00 Ps in background
> quit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
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Simple Shell Implementation

m Basic loop

= Read line from command line
=  Execute the requested operation
= Built-in command (only one implemented is quit)

» Load and execute program from file

int main(int argc, char** argv) . .
{ Execution is a

char cmdline [MAXLINE]; /* command line */ sequence of
while (1) { read/evaluate

/* read */ steps
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))

exit (0) ;

/* evaluate */
eval (cmdline) ;

shellex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21



Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)
parseline will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

shellex.c

Bry — , - 22




Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)

if (argv[0] == NULL) .
return; /* Ignore empty lines */ lgnore empty lines.

shellex.c

Bry Y , - 23




Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {

If it is a ‘built in” command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

shellex.c

Bry 24




Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if (!'builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

Create child

shellex.c
Bry , : , : , 25




Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */
if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf ("%s: Command not found.\n", argv[0])
exit (0) ;

Startargv[O].
Remember execve only returns on
error.

shellex.c
Bry




Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv[0])
exit (0) ;

}
/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix error("waitfg: waitpid error");

If running child in
foreground, wait until
it is done. shellex. c

Bry 27




Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, é&status, 0) < 0)

unix_ error("waitfg: waitpid error"); |f running Ch|ld in
}
1 . .
S e B AE et background, print pid
y and continue doing
y T other stuff.

shellex.c |
Bry — , - . , 28




Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv[0])
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0) .
unix error("waitfg: waitpid error"); OOpS There IS d
}

else problem with

printf ("%d %s", pid, cmdline);

} this code.

return;

shellex.c |
Bry 29




Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



ECF to the Rescue!

m Solution: Exceptional control flow

" The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix, the alert mechanism is called a signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3
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Today

m Shells
m Signals
m Nonlocal jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a
process

= Signal type is identified by small integer ID’s (1-30)
® Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV  Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



Signal Concepts: Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)
= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34
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Signal Concepts: Sending a Signal

User level
Process B
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C
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Signal Concepts: Sending a Signal

User level
Process B
Process C
(@2
(40)
]
Q.
»
..6.. kernel
)
Pending for A Blocked for A
X ending for B Blocked for B
Pending for C Blocked for C
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Signal Concepts: Sending a Signal

User level
Process A
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
1| Pending for C Blocked for C
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Signal Concepts: Sending a Signal

User level

Process B

Process A

kernel

Blocked for A
Blocked for B
nding for C Blocked for C
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Signal Concepts: Sending a Signal

User level
Process B
Process A
Process C

kernel

Pending for A Blocked for A

Pending for B Blocked for B

o[ Pending for C Blocked for C
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Signal Concepts: Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)

= Terminate the process (with optional core dump)

= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received
by process |

curr \
next

y

(2) Control passes
to signal handler

(4) Signal handler
returns to
next instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

] (3) Signal
handler runs

40
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Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4
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Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

" blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42
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Signal Concepts: Sending a Signal

User level
Process A
Q
9 Process C
<7
Vs

// kernel

W/ Anding for A Blocked for A

N\ _“ending for B Blocked for B

1| Pending for C Blocked for C
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Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 P ided
pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process (see

text for details)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44
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Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signaltoa 1linux> ./forks 16

Childl: pid=24818 pgrp=24817
Process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

" /bin/kill -9 24818 24788 pts/2 00:00:00 tecsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 34819 pts/2 50-00-02 Forks

24820 pts/2 00:00:00 ps
. /bin/kill -9 —24817 1:_|.nux> /bin/kill -9 -24817
linux> ps
Send SIGKILL to every process PID TTY TIME CMD
in process group 243817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45
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Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

= SIGINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

re= pid=40
pgid=20 pgid=40
Background Background
process group 32 process group 40
pgid=20 pgid=20
Foreground

process group 20

Bryantand O’Hallarc.., cc.iipuect o ceciic v i cprviiniies o« woopootive, Third Edition

46



Carnegie Mellon

Example of ctrl-cand ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
Suspended T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
./forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47
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Sending Signals with kill Function

void forkl2 ()
{

pid t pid[N];
int 1i;
int child status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */

while (1)

}

for (i = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT) ;

for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process q

user code
kernel code } context switch
Time user code

kernel code } context switch

user code
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked

" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else

= Choose least nonzero bit kin pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p

= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p
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Default Actions

m Each signal type has a predefined default action, which is
one of:
" The process terminates
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal
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Quiz Time!

Check out:

Canvas > Day 18 — ECF / Signals
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Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of sighal signum:

" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal
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Signal Handling Example

void sigint handler (int ) /* SIGINT handler */
{

printf ( ) ;
sleep(2) ;

printf ( ),

fflush (stdout) ;

sleep (1) ;

printf ( )

exit(0) ;

int main(int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG_ERR)

unix error ( ) ;

/* Wait for the receipt of a signal */
pause() ;

return 0;

} sigint.c
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Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

m But, this flow exists only until returns to main program

Process A Process A Process B

while (1) handler () {

4

}

Time
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Another View of Signal Handlers as
Concurrent Flows

I
Process A 1 Process B
I
|
. . I .
Signal delivered —> lyrr : user code (main)
I .
to process A kernel code } context switch
|
: user code (main)
I .
1 kernel code } context switch
Signal received —> [
I user code (handler)
by process A l ,
: kernel code
I ¢ I .
next I user code (main)
v I
I
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Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T

(2) Control passes
(1) Program | to handler S
curr

catches signal s (4) Control passes
(3) Program to handler T

(7) Main program lnext catches signal t >
resumes \\l
v (5) Handler T

(6) Handler S
returns to
main
program

returns to
handler S
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Blocking and Unblocking Signals

m Implicit blocking mechanism

= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism

" sigprocmask function

m Supporting functions
" sigemptyset —Create empty set
" sigfillset —Add everysignal number to set
" sigaddset —Add signal number to set
" sigdelset — Delete signal number from set
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Temporarily Blocking Signals

sigset t mask, prev_mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG_SETMASK, &prev_mask, NULL);
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Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures.

= Shared data structures can become corrupted.
m We’'ll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid
trouble.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60



Guidelines for Writing Safe Handlers

m GO: Keep your handlers as simple as possible
= e.g., Set aglobal flag and return

m G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, and exit are not safe!

m G2:Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno

m G3: Protect accesses to shared data structures by temporarily
blocking all signals.
= To prevent possible corruption

m G4: Declare global variables as volatile
= To prevent compiler from storing them in a register

m G5: Declare global flags as volatile sig atomic_t
" flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals
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Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal-safety”
= Popular functions on the list:
= exilt, write, walt, wailtpid, sleep, kill
® Popular functions that are not on the list:
» printf, sprintf, malloc, exit

= Unfortunate fact: write is the only async-signal-safe output function
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Safe Formatted Output: Option #1

m Use the reentrant SIO (Safe 1/0 library) from csapp.cin
your handlers.
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long v) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint handler(int sig) /* Safe SIGINT handler */

{
Sio puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep(2) ;

Sio puts("Well...");
sleep (1) ;

Sio puts("OK. :-)\n");
_exit(0);

} sigintsafe.c
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Safe Formatted Output: Option #2

m Use the new & improved reentrant sio_printf !

= Handles restricted class of printf format strings

o°

= Recognizes: $¢ %$s %d %u %x %

= Size designators ‘1’ and ‘z’

void sigint handler(int sig) /* Safe SIGINT handler */
{
Sio printf("So you think you can stop the bomb"
" (process %d) with ctrl-%c, do you?\n",
(int) getpid(), 'c');
sleep(2) ;
Sio puts("Well...");
sleep (1) ;
Sio puts("OK. :-)\n");
_exit(0);
}

sigintsafe.c
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volatile int ccount = 0;

void child handler (int sig) ({
int olderrno errno;
pid t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl ((long)pid);
Sio _puts (" \n");
sleep (1) ;
errno olderrno;

}

void forkl4d () {
pid t pid[N];
int i;
ccount N; )
Signal (SIGCHLD, child handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {
Sleep (1) ;
exit(0); /* Child exits */

}
}

while (ccount > 0) /* Parent spins */

.
4

This code is incorrect!

Correct Signal Handling

m Pending signals are
not queued

® For each signal type, one
bit indicates whether or
not signal is pending...

= ..thus at most one
pending signal of any
particular type.
m You can’t use signals
to count events, such as
children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. . .(hangs)

forks.c
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Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop to reap all terminated children

void child handler2 (int sig)
{
int olderrno = errno;
pid t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
Sio_puts("Handler reaped child ") ;
Sio_putl((long)pid);
Sio puts (" \n");

}

if (errno '= ECHILD)
Sio _error("wait error");
errno = olderrno; whaleshark> ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>
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Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

= Blocks all signals while running critical code
void handler (int sig)

{

int olderrno = errno;
sigset t mask all, prev_all;
pid t pid;

Sigfillset (&mask all) ;

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
Sigprocmask (SIG BLOCK, &mask all, &prev_all);
deletejob (pid); /* Delete the child from the job list */
Sigprocmask (SIG_SETMASK, &prev_all, NULL);

}

if (errno != ECHILD)
Sio_error("waitpid error");

errno = olderrno;

} procmaskl.c
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Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it
assumes parent runs before child.

int main(int argc, char **argv)

{

int pid;

sigset t mask all, prev_all;

intn=N; /* N=5 */

Sigfillset (&mask all) ;

Signal (SIGCHLD, handler) ;

initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = Fork()) == 0) { /* Child */
Execve ("/bin/date", argv, NULL);
}
Sigprocmask (SIG_BLOCK, &mask all, &prev _all); /* Parent */
addjob (pid); /* Add the child to the job list */
Sigprocmask (SIG_SETMASK, &prev_all, NULL);
}

exit (0) ;
} procmaskl.c
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Corrected Shell Program without Race

int main(int argc, char **argv)
{
int pid;
sigset t mask all, mask one, prev _one;
int n = N; /* N=5 */
Sigfillset (&mask all);
Sigemptyset (&mask one) ;
Sigaddset (&mask one, SIGCHLD) ;
Signal (SIGCHLD, handler) ;
initjobs(); /* Initialize the job list */

while (n--) {
Sigprocmask (SIG_BLOCK, &mask one, &prev _one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve ("/bin/date", argv, NULL);
}
Sigprocmask (SIG BLOCK, &mask all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
}

exit(0) ;
} procmask2.c




Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig atomic_t pid;

void sigchld handler (int s)
{

int olderrno = errno;
pid = Waitpid(-1], NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint handler (int s)
{
}

waitforsignal.c
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Explicitly Waiting for Signals

int main(int argc, char **argv) {
int n = N; /* N =10 */ for a foreground job to
Signal (SIGCHLD, sigchld handler) ; terminate.
Signal (SIGINT, sigint handler) ;
Sigemptyset (&mask) ;

Sigaddset (&mask, SIGCHLD) ;

while (n--) {
Sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;
/* Parent */
pid = 0;
Sigprocmask (SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while ('pid)
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n");

Lt (0) ; i i
exit (0) waitforsignal.c
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Explicitly Waiting for Signals

while (!'pid)

4

m Program is correct, but very wasteful

® Program in busy-wait loop

while ('pid) /* Race! */
pause() ;

m Possible race condition

= Between checking pid and starting pause, might receive signal

while ('pid) /* Too slow! */
sleep (1) ;

m Safe, but slow

= Will take up to one second to respond
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Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG_SETMASK, &mask, &prev);
pause() ;

sigprocmask (SIG_SETMASK, &prev, NULL);
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Waiting for Signals with sigsuspend

int main(int argc, char **argv) {

sigset t mask, prev;

int n = N; /* N =10 */

Signal (SIGCHLD, sigchld handler) ;

Signal (SIGINT, sigint handler) ;

Sigemptyset (&mask) ;

Sigaddset (&mask, SIGCHLD) ;

while (n--) {
Sigprocmask (SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit (0) ;

/* Wait for SIGCHLD to be received */
pid = 0;
while ('pid)
Sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
Sigprocmask (SIG_SETMASK, &prev, NULL) ;
/* Do some work after receiving SIGCHLD */
printf£(".");

}

printf ("\n");

exit (0) ;

sigsuspend.c
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Today

m Shells
m Signals
m Portable signal handling

= Consult textbook

m Nonlocal jumps

" Consult your textbook and additional slides
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Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler
= Be very careful when writing signal handlers

m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline
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Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 77



Carnegie Mellon

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

® ReturnO
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setjmp/longjmp (cont)

m void longjmp (jmp buf j, int i)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp

® (Called once, but never returns

® longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

= Set $eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j
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setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo (void)

{
if (errorl)
longjmp (buf, 1);
bar () ;
}

void bar (void)

{
if (error2)
longjmp (buf, 2);
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|
setjmp/longjmp
Example (cont)

jmp buf buf;

int errorl = 0;
int error2 = 1;

void foo(void), bar(void) ;

int main ()
{
switch (setjmp (buf)) {
case O:
foo() ;
break;
case 1:
printf ("Detected an errorl condition in foo\n");
break;
case 2:
printf ("Detected an error2 condition in foo\n");
break;
default:
printf ("Unknown error condition in foo\n");

}
exit (0) ;
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Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Before longjmp  After longjmp

jmp buf env; env
......... > Pl Pl
P1 ()
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . .P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1) ;
}
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Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

jmp buf env; =
ex() » P2
{ env

P2(); P3(); At setjmp
}
P2 () Pl
{

if (setjmp(env)) { env

/* Long Jump to here */ s .2

}
} P2 returns Pl
P3() env
{ ..-.X..-) P3

longjmp (env, 1) ;
} At longjmp
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Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include '"csapp.h"

sigjmp buf buf;
greatwhite> ./restart

void handler (int sig) starting
{ processing. ..
siglongjmp (buf, 1); processing. ..
} processing. ..
int main () reStart%ng < Ctrl-c
{ processing.?
if (!'sigsetjmp (buf, 1)) { processing. ..
Signal (SIGINT, handler); restarting
Sio puts("starting\n"); processing. Ctrl-c
} processing. ..
else _ _ processing. ..
Sio_puts("restarting\n");
while (1) {
Sleep (1) ;

Sio puts("processing...\n");

}

exit(0); /* Control never reaches here */

} restart.c
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