Carnegie Mellon

T ———

15-213™
sesaeit disine

4SO A g it

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Exceptional Control Flow:
Signals and Nonlocal Jumps

18-213/18-613: Introduction to Computer Systems
18t Lecture, March 22, 2022

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reaping Child Processes
m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait orwaitpid)
= Parent is given exit status information

= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= Unless ppid == 1! Then need to reboot...
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

° void fork7() {
Zombie if (fork() == 0) {
/* Child */
rintf ("Terminating Child, PID = %d\n", getpid()):
Example Rl g HI%
} else {
printf ("Running Parent, PID = %d\n", getpid()):
while (1)
; /* Infinite loop */
linux> ./forks 7 & }
[1] 6639 }

Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh .
6639 ttyp9 00:00:03 forks ps shows child process as
6640 ttyp9 00:00:00 forks <defunct></ “defunct” (i.e., a zombie)
6641 ttyp9 00:00:00 ps
linux> kill 6639

[1] Terminated m Killing parent allows child to
linux> ps be reaped by init
PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh}
6642 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Non-
terminating
Child Example

Carnegie Mellon

void fork8()
{
if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid());
while (1)

linux> ./forks 8
Terminating Parent, PID =
Running Child, PID =

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9

} else {

}

printf ("Terminating Parent, PI

exit (0) ;

; /* Infinite loop */

= %d\n",
getpid()) ;

6675
6676 |

TIME CMD
00:00:00 tecsh
00:00:06 fork u

00:00:00
linux> kill 6676

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

TIME CMD
00:00:00 tcsh
00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Child process still active even
though parent has terminated

Must kill child explicitly, or else will
keep running indefinitely

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
" Implemented as syscall

Parent Process Kernel code

«

Exception . And, potentially other user

Returns

of parent

syscall

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status !'= NULL, then the integer it points to will be set
to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwait.h

- WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

wait: Synchronizing with Children

void fork9() {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0) ;

} else {

printf ("HP: hello from parent\n");
wait (&child status);

}
printf ("Bye\n") ;

printf ("CT: child has terminated\n");

} forks.c

Feasible output(s):

HC HP
HP HC
CT CT

Bye Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HC exit
>®- —»
printf
CT
Bye
HP Y
® e >&- »®
fork printf wait printf

Infeasible output:

HP
CT
Bye
HC

Another wait Example

m |f multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO () {
pid t pid[N];
int i, child status;

for (i = 0; i < N; i++4)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void forkll () {
pid t pid[N];
int 1i;
int child status;

for (i = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED(child_status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant dina U AAirdror, COMpUuteET SYSIEITST A PTOBIAITIMEr S PETSPECUVE, TIITA ETTUOMN 10

Carnegie Mellon

execve : Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])
m Loads and runs in the current process:
= Executable file filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= ..exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

execve Example

m Execute "/bin/ls -1t /usr/include" in child process
using current environment:

envp[n] = NULL
envp[n-1] ——> "PWD=/usr/droh"
_ envp [0] —> "USER=droh"
environ >
myargv[argc] = NULL

[a

[2] ——> "/usr/include"
myargv[1l] 3 n_Jgm
myargv [0] > "/bin/ls"

(argc == 3) myargv

myargv ———>

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve (myargv|[0], myargv, environ) < 0) {
printf ("%$s: Command not found.\n", myargv[0]) ;
exit (1) ;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Bottom of stack

Null-terminated

Structu re Of environment variable strings e

Null-terminated

the StaCk When .| command-line arg strings
d Néw program

E envp[n] == NULL
Sta rtS ; covp =i | environ
| (global var)
| envp [0] el PRl gy
| argv[argc] = NULL 1 envp
argv[argc-1] (in $rdx)
argv e argv[0]
(in $rsi)
argc Stack frame for
i ; libc start main
(in 3rdi) — — Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

The execwve Function Revisited

libc.so

User stack

v
A

.data

text

a.out

Memory mapped region
for shared libraries

1

Runtime heap (via malloc)

Uninitialized data (.bss)

.data

Initialized data (.data)

text

Program text (.text)

} Private, demand-zero u

} Shared, file-backed

} Private, demand-zero

} Private, demand-zero

Private, file-backed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

To load and run a new
program a.out in the
current process using
execve:

Free vin_area struct’s
and page tables for old areas

Create vin_area struct’s
and page tables for new
areas
® Programs and initialized data
backed by object files.

= _Dbss and stack backed by
anonymous files.

Set PC to entry point in
.text

® Linux will fault in code and
data pages as needed.

14

Carnegie Mellon

Exceptions & Processes - Summary

m Exceptions

= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on any single core

® Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Handled in kernel

(pa rtial) Taxonomy Handled in user process
ECF
Asynchronous Synchronous
Interrupts Traps Faults Aborts
Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Today

m Shells
m Signals

m Nonlocal jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Linux Process Hierarchy

.....................
. e
. e
. .
* *

‘e
e
...
......

.
.e*
st
T T T L

]
a
-

s
an®
oot
.
.
.
*

ed.httpd .- :' Login shell

‘e
-
.
-
e
wy .
LN s

Login shell
Child

w w Note: you can view the
hierarchy using the Linux

pstree command

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Shell Programs

m Ashellis an application program that runs programs on behalf
of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh/tecsh BSD Unix C shell
"= bash “Bourne-Again” Shell (default Linux shell)

m Simple shell
= Described in the textbook, starting at p. 753
= |mplementation of a very elementary shell
" Purpose
= Understand what happens when you type commands
= Understand use and operation of process control operations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Simple Shell Example

linux> ./shellex
> /bin/ls -1 csapp.c Mustgive full pathnames for programs
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps
PID TTY TIME CMD
31542 pts/2 00:00:01 tesh
32017 pts/2 00:00:00 shellex
32019 pts/2 00:00:00 ps
> /bin/sleep 10 & Run program in background
32031 /bin/sleep 10 &
> /bin/ps
PID TTY TIME CMD
31542 pts/2 00:00:01 tcsh
32024 pts/2 00:00:00 emacs
32030 pts/2 00:00:00 shellex
32031 pts/2 00:00:00 sleep Sleep is running
32033 ptS/2 00:00:00 Ps in background
> quit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Simple Shell Implementation

m Basic loop

= Read line from command line
= Execute the requested operation
= Built-in command (only one implemented is quit)

» Load and execute program from file

int main(int argc, char** argv) . .
{ Execution is a

char cmdline [MAXLINE]; /* command line */ sequence of
while (1) { read/evaluate

/* read */ steps
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))

exit (0) ;

/* evaluate */
eval (cmdline) ;

shellex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)
parseline will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

shellex.c

Bry — , - 22

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)

if (argv[0] == NULL) .
return; /* Ignore empty lines */ lgnore empty lines.

shellex.c

Bry Y , - 23

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {

If it is a ‘built in” command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

shellex.c

Bry 24

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if (!'builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

Create child

shellex.c
Bry , : , : , 25

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */
if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf ("%s: Command not found.\n", argv[0])
exit (0) ;

Startargv[O].
Remember execve only returns on
error.

shellex.c
Bry

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv[0])
exit (0) ;

}
/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix error("waitfg: waitpid error");

If running child in
foreground, wait until
it is done. shellex. c

Bry 27

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, é&status, 0) < 0)

unix_ error("waitfg: waitpid error"); |f running Ch|ld in
}
1 . .
S e B AE et background, print pid
y and continue doing
y T other stuff.

shellex.c |
Bry — , - . , 28

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv[0])
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0) .
unix error("waitfg: waitpid error"); OOpS There IS d
}

else problem with

printf ("%d %s", pid, cmdline);

} this code.

return;

shellex.c |
Bry 29

Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

ECF to the Rescue!

m Solution: Exceptional control flow

" The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix, the alert mechanism is called a signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Today

m Shells
m Signals
m Nonlocal jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a
process

= Signal type is identified by small integer ID’s (1-30)
® Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Signal Concepts: Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)
= Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C
(@2
(40)
]
Q.
»
..6.. kernel
)
Pending for A Blocked for A
X ending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process A
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
1| Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level

Process B

Process A

kernel

Blocked for A
Blocked for B
nding for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process A
Process C

kernel

Pending for A Blocked for A

Pending for B Blocked for B

o[Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)

= Terminate the process (with optional core dump)

= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received
by process |

curr \
next

y

(2) Control passes
to signal handler

(4) Signal handler
returns to
next instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

] (3) Signal
handler runs

40

Carnegie Mellon

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

" blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process A
Q
9 Process C
<7
Vs

// kernel

W/ Anding for A Blocked for A

N\ _“ending for B Blocked for B

1| Pending for C Blocked for C

Carnegie Mellon

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 P ided
pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process (see

text for details)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signaltoa 1linux> ./forks 16

Childl: pid=24818 pgrp=24817
Process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

" /bin/kill -9 24818 24788 pts/2 00:00:00 tecsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 34819 pts/2 50-00-02 Forks

24820 pts/2 00:00:00 ps
. /bin/kill -9 —24817 1:_|.nux> /bin/kill -9 -24817
linux> ps
Send SIGKILL to every process PID TTY TIME CMD
in process group 243817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

= SIGINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

re= pid=40
pgid=20 pgid=40
Background Background
process group 32 process group 40
pgid=20 pgid=20
Foreground

process group 20

Bryantand O’Hallarc.., cc.iipuect o ceciic v i cprviiniies o« woopootive, Third Edition

46

Carnegie Mellon

Example of ctrl-cand ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
Suspended T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 ./forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
./forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Sending Signals with kill Function

void forkl2 ()
{

pid t pid[N];
int 1i;
int child status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */

while (1)

}

for (i = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT) ;

for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process q

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked

" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else

= Choose least nonzero bit kin pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p

= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Default Actions

m Each signal type has a predefined default action, which is
one of:
" The process terminates
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Quiz Time!

Check out:

Canvas > Day 18 — ECF / Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of sighal signum:

" handler t *signal(int signum, handler t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Signal Handling Example

void sigint handler (int) /* SIGINT handler */
{

printf () ;
sleep(2) ;

printf (),

fflush (stdout) ;

sleep (1) ;

printf ()

exit(0) ;

int main(int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG_ERR)

unix error () ;

/* Wait for the receipt of a signal */
pause() ;

return 0;

} sigint.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

m But, this flow exists only until returns to main program

Process A Process A Process B

while (1) handler () {

4

}

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

I
Process A 1 Process B
I
|
. . I .
Signal delivered —> lyrr : user code (main)
I .
to process A kernel code } context switch
|
: user code (main)
I .
1 kernel code } context switch
Signal received —> [
I user code (handler)
by process A l ,
: kernel code
I ¢ I .
next I user code (main)
v I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T

(2) Control passes
(1) Program | to handler S
curr

catches signal s (4) Control passes
(3) Program to handler T

(7) Main program lnext catches signal t >
resumes \\l
v (5) Handler T

(6) Handler S
returns to
main
program

returns to
handler S

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Blocking and Unblocking Signals

m Implicit blocking mechanism

= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism

" sigprocmask function

m Supporting functions
" sigemptyset —Create empty set
" sigfillset —Add everysignal number to set
" sigaddset —Add signal number to set
" sigdelset — Delete signal number from set

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Temporarily Blocking Signals

sigset t mask, prev_mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG_SETMASK, &prev_mask, NULL);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures.

= Shared data structures can become corrupted.
m We’'ll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid
trouble.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Guidelines for Writing Safe Handlers

m GO: Keep your handlers as simple as possible
= e.g., Set aglobal flag and return

m G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, and exit are not safe!

m G2:Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno

m G3: Protect accesses to shared data structures by temporarily
blocking all signals.
= To prevent possible corruption

m G4: Declare global variables as volatile
= To prevent compiler from storing them in a register

m G5: Declare global flags as volatile sig atomic_t
" flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal-safety”
= Popular functions on the list:
= exilt, write, walt, wailtpid, sleep, kill
® Popular functions that are not on the list:
» printf, sprintf, malloc, exit

= Unfortunate fact: write is the only async-signal-safe output function

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Safe Formatted Output: Option #1

m Use the reentrant SIO (Safe 1/0 library) from csapp.cin
your handlers.
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long v) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint handler(int sig) /* Safe SIGINT handler */

{
Sio puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep(2) ;

Sio puts("Well...");
sleep (1) ;

Sio puts("OK. :-)\n");
_exit(0);

} sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Safe Formatted Output: Option #2

m Use the new & improved reentrant sio_printf !

= Handles restricted class of printf format strings

o°

= Recognizes: $¢ %$s %d %u %x %

= Size designators ‘1’ and ‘z’

void sigint handler(int sig) /* Safe SIGINT handler */
{
Sio printf("So you think you can stop the bomb"
" (process %d) with ctrl-%c, do you?\n",
(int) getpid(), 'c');
sleep(2) ;
Sio puts("Well...");
sleep (1) ;
Sio puts("OK. :-)\n");
_exit(0);
}

sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

volatile int ccount = 0;

void child handler (int sig) ({
int olderrno errno;
pid t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl ((long)pid);
Sio _puts (" \n");
sleep (1) ;
errno olderrno;

}

void forkl4d () {
pid t pid[N];
int i;
ccount N;)
Signal (SIGCHLD, child handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {
Sleep (1) ;
exit(0); /* Child exits */

}
}

while (ccount > 0) /* Parent spins */

.
4

This code is incorrect!

Correct Signal Handling

m Pending signals are
not queued

® For each signal type, one
bit indicates whether or
not signal is pending...

= ..thus at most one
pending signal of any
particular type.
m You can’t use signals
to count events, such as
children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. . .(hangs)

forks.c
65

Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop to reap all terminated children

void child handler2 (int sig)
{
int olderrno = errno;
pid t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
Sio_puts("Handler reaped child ") ;
Sio_putl((long)pid);
Sio puts (" \n");

}

if (errno '= ECHILD)
Sio _error("wait error");
errno = olderrno; whaleshark> ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

= Blocks all signals while running critical code
void handler (int sig)

{

int olderrno = errno;
sigset t mask all, prev_all;
pid t pid;

Sigfillset (&mask all) ;

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
Sigprocmask (SIG BLOCK, &mask all, &prev_all);
deletejob (pid); /* Delete the child from the job list */
Sigprocmask (SIG_SETMASK, &prev_all, NULL);

}

if (errno != ECHILD)
Sio_error("waitpid error");

errno = olderrno;

} procmaskl.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it
assumes parent runs before child.

int main(int argc, char **argv)

{

int pid;

sigset t mask all, prev_all;

intn=N; /* N=5 */

Sigfillset (&mask all) ;

Signal (SIGCHLD, handler) ;

initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = Fork()) == 0) { /* Child */
Execve ("/bin/date", argv, NULL);
}
Sigprocmask (SIG_BLOCK, &mask all, &prev _all); /* Parent */
addjob (pid); /* Add the child to the job list */
Sigprocmask (SIG_SETMASK, &prev_all, NULL);
}

exit (0) ;
} procmaskl.c

Brr 7 ™ 7 <) L

68

Carnegie Mellon

Corrected Shell Program without Race

int main(int argc, char **argv)
{
int pid;
sigset t mask all, mask one, prev _one;
int n = N; /* N=5 */
Sigfillset (&mask all);
Sigemptyset (&mask one) ;
Sigaddset (&mask one, SIGCHLD) ;
Signal (SIGCHLD, handler) ;
initjobs(); /* Initialize the job list */

while (n--) {
Sigprocmask (SIG_BLOCK, &mask one, &prev _one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve ("/bin/date", argv, NULL);
}
Sigprocmask (SIG BLOCK, &mask all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
}

exit(0) ;
} procmask2.c

Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig atomic_t pid;

void sigchld handler (int s)
{

int olderrno = errno;
pid = Waitpid(-1], NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint handler (int s)
{
}

waitforsignal.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Explicitly Waiting for Signals

int main(int argc, char **argv) {
int n = N; /* N =10 */ for a foreground job to
Signal (SIGCHLD, sigchld handler) ; terminate.
Signal (SIGINT, sigint handler) ;
Sigemptyset (&mask) ;

Sigaddset (&mask, SIGCHLD) ;

while (n--) {
Sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;
/* Parent */
pid = 0;
Sigprocmask (SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while ('pid)
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n");

Lt (0) ; i i
exit (0) waitforsignal.c

Bryant ¢

Carnegie Mellon

Explicitly Waiting for Signals

while (!'pid)

4

m Program is correct, but very wasteful

® Program in busy-wait loop

while ('pid) /* Race! */
pause() ;

m Possible race condition

= Between checking pid and starting pause, might receive signal

while ('pid) /* Too slow! */
sleep (1) ;

m Safe, but slow

= Will take up to one second to respond

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG_SETMASK, &mask, &prev);
pause() ;

sigprocmask (SIG_SETMASK, &prev, NULL);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Waiting for Signals with sigsuspend

int main(int argc, char **argv) {

sigset t mask, prev;

int n = N; /* N =10 */

Signal (SIGCHLD, sigchld handler) ;

Signal (SIGINT, sigint handler) ;

Sigemptyset (&mask) ;

Sigaddset (&mask, SIGCHLD) ;

while (n--) {
Sigprocmask (SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit (0) ;

/* Wait for SIGCHLD to be received */
pid = 0;
while ('pid)
Sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
Sigprocmask (SIG_SETMASK, &prev, NULL) ;
/* Do some work after receiving SIGCHLD */
printf£(".");

}

printf ("\n");

exit (0) ;

sigsuspend.c
Bry . - ’

Carnegie Mellon

Today

m Shells
m Signals
m Portable signal handling

= Consult textbook

m Nonlocal jumps

" Consult your textbook and additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

Carnegie Mellon

Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler
= Be very careful when writing signal handlers

m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 76

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 77

Carnegie Mellon

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

® ReturnO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 78

setjmp/longjmp (cont)

m void longjmp (jmp buf j, int i)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp

® (Called once, but never returns

® longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

= Set $eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 79

setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo (void)

{
if (errorl)
longjmp (buf, 1);
bar () ;
}

void bar (void)

{
if (error2)
longjmp (buf, 2);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 80

Carnegie Mellon

|
setjmp/longjmp
Example (cont)

jmp buf buf;

int errorl = 0;
int error2 = 1;

void foo(void), bar(void) ;

int main ()
{
switch (setjmp (buf)) {
case O:
foo() ;
break;
case 1:
printf ("Detected an errorl condition in foo\n");
break;
case 2:
printf ("Detected an error2 condition in foo\n");
break;
default:
printf ("Unknown error condition in foo\n");

}
exit (0) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 81

Carnegie Mellon

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Before longjmp After longjmp

jmp buf env; env
......... > Pl Pl
P1 ()
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . .P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1) ;
}

Bryant and O’Hararomn, Computer Systermns: A PTOETAMITEr S PETSPECUIVE, TTITU EUTON 82

Carnegie Mellon

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

jmp buf env; =
ex() » P2
{ env

P2(); P3(); At setjmp
}
P2 () Pl
{

if (setjmp(env)) { env

/* Long Jump to here */ s .2

}
} P2 returns Pl
P3() env
{ ..-.X..-) P3

longjmp (env, 1) ;
} At longjmp

Bryant and O’Ha , - , 5 - , 83

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include '"csapp.h"

sigjmp buf buf;
greatwhite> ./restart

void handler (int sig) starting
{ processing. ..
siglongjmp (buf, 1); processing. ..
} processing. ..
int main () reStart%ng < Ctrl-c
{ processing.?
if (!'sigsetjmp (buf, 1)) { processing. ..
Signal (SIGINT, handler); restarting
Sio puts("starting\n"); processing. Ctrl-c
} processing. ..
else _ _ processing. ..
Sio_puts("restarting\n");
while (1) {
Sleep (1) ;

Sio puts("processing...\n");

}

exit(0); /* Control never reaches here */

} restart.c
Bryant , - , S ,] 84

