Carnegie Mellon

T ———

15-213™
sesaeit disine

4SO A g it

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Code Optimization

18-213/18-613: Computer Systems
9th Lecture, February 10, 2022

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m Lab O (c programming lab)
= Due Tuesday, February 15t, 2022

m Lab 3 (attack lab)
= Due Thursday, February 17t, 2022

m Lab 4 (cache lab)
= Qut Thursday, February 17th, 2022

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

m Rear Admiral Grace Hopper
(1906-1992)

" |nvented first compiler in 1951
(technically it was a linker)

= Coined “compiler” (and “bug”)
= Compiled for Harvard Mark |

= Eventually led to COBOL
(which ran the world for years)

= “l decided data processors ought to
be able to write their programs in
English, and the computers would
translate them into machine code”

1S4y ‘-.’- :_ QZe\w 4'70 ?&“\L(=

'\MD-'.‘.\)'\ n ('\'\QU\ .

i _ A y‘,
Fieet actual case bug bein { 1§
,g/.-,o ncdompnd stads). i o-{ “1 ; ‘ G 1]

200 Lo Jipem |

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

m John Backus (1924-2007)

" Led team at IBM invented the
first commercially available
compiler in 1957

= Compiled FORTRAN code for
the IBM 704 computer

= FORTRAN still in use today for
high performance code

= “Much of my work has come
from being lazy. | didn't like
writing programs, and so,
when | was working on the
IBM 701, | started work on a
programming system to make
it easier to write programs”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

m Fran Allen (1932-2020)
= Pioneer of many optimizing
compilation techniques

= Wrote a paper simply called
“Program Optimization” in 1966

= “This paper introduced the use
of graph-theoretic structures to
encode program content in order
to automatically and efficiently
derive relationships and identify
opportunities for optimization”

" First woman to win the ACM
Turing Award (the “Nobel Prize
of Computer Science”), in 2006

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Today

m Overview
m Generally Useful Optimizations

= Code motion/precomputation
® Strength reduction
® Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
= Procedure calls
" Memory aliasing

m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Performance Realities

m There’s more to performance than asymptotic complexity
m Constant factors matter too!

= Easily see 10:1 performance range depending on how code is written
" Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
= How programs are compiled and executed
" How modern processors + memory systems operate
= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity
and generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Optimizing Compilers

m Provide efficient mapping of program to machine

register allocation

code selection and ordering (scheduling)

dead code elimination
= eliminating minor inefficiencies
m Don’t (usually) improve asymptotic efficiency
" up to programmer to select best overall algorithm
= big-O savings are (often) more important than constant factors
= but constant factors also matter
m Have difficulty overcoming “optimization blockers”

= potential memory aliasing
= potential procedure side-effects

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless

of processor / compiler

m Code Motion
= Reduce frequency with which computation performed

= |f it will always produce same result
= Especially moving code out of loop

void set row(double *a, double *b,
long i, long n)

long j;
int ni = n*i;
j < n; j++)

{
long j;
for (j = 0; j < n; J++)

a[n*i+j] = b[]l;

for (J = 0;
a[ni+j] = b[jl;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Compiler-Generated Code Motion (-01)

void set row(double *a, double *b,

long i, long n)
{
long j;

for (j = 0; j < n;
a[n*i+j] = b[]j];

set_row:

$rcx, %rcx

.L1

$rcx, %rdx

(%rdi, %$rdx,8), %rdx
$0, %eax

(%rsi, %rax,8), %xmmO
$xmm0, (%rdx,%rax,8)
$1, %rax

$rcx, %rax

.L3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

long j;

long ni = n*i;

double *rowp = a+ni;

for (j = 0; j < n; J++)
*rowp++ = b[]];

Test n

If <= 0, goto done
ni = n*i

rowp = A + ni*8
j =20

loop:

t = b[]]
M[A+ni*8 + j*8]
J++

j:n

if '=, goto loop
done:

3= 3 I I

11

Strength Reduction

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
le*x —--> x << 4
= Utility is machine dependent
= Depends on cost of multiply or divide instruction
— Intel Nehalem: integer multiply takes 3 CPU cycles, add is 1 cycle!

= Recognize sequence of products

for (i = 0; i < n; i++) {
int ni = n*i;

for (jJ = 0; j < n; j++)
a[ni + j] = b[]]’

'https://www.agner.org/optimize/instruction_tables.pdf

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Share Common Subexpressions

= Reuse portions of expressions
= GCC will do this with =01

/* Sum neighbors of i,j */ long inj = i*n + j;

up = val[(i-1)*n + j 1 up = val[inj - n];

down = val[(i+l)*n + j 1]; down = wval[inj + n];

left = wval[i*n + j-1]; left = wvall[inj - 1];

right = val[i*n + j+1]; right = val[in]j + 1];

sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: 1*n, (i-1) *n, (i+1) *n 1 multiplication: i*n

leaq 1(%rsi), %$rax # i+l imulq $rcx, %rsi # i*n

leag -1(%rsi), %r8 # i-1 addqg $rdx, $rsi # i*n+j
imulg $%rcx, %rsi # i*n movq $rsi, %Srax # i*n+j
imulg $%rcx, %rax # (i+1)*n subq $rcx, %$rax # i*n+j-n
imulg %rcx, %r8 # (i-1)*n leaq ($rsi,%rcx), %rcx # i*n+j+n
addgq $rdx, %rsi # i*n+j

addg $rdx, %$rax # (i+1) *n+j

addg $rdx, %r8 # (i-1) *n+j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Optimization Example: Bubblesort

m Bubblesort program that sorts an array A that is allocated

in static storage:
= an element of A requires four bytes
= elements of A are numbered 1 through n (n is a variable)
= A[j]isinlocation &A+4* (j-1)

for (i = n-1; i > 1; i--) {
for (J = 1; j <= 1i; Jj++)
if (A[j] > A[j+1]) {
temp = A[]j];

A[3] = A[j+1];
A[j+1l] = temp;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Translated (Pseudo) Code

i :=n-1 t8 := j-1
L5: if i<l goto 11 t9 := 4*t8

j =1 temp := A[t9] // temp:=A[j]
L4: if j3j>i goto L2 t10 := j+1

tl = j-1 tll:= tl10-1

t2 := 4*tl tl2 := 4*tll

t3 := A[t2] // A[]F] tl3 := A[tl2] // A[j+1]

t4 = j+1 t1l4 = j-1

t5 = t4-1 tl5 := 4*tl4

t7 := A[t6] // Al[j+1] tlée := j+1

if t3<=t7 goto L3 t1l7 := tle6-1

t1l8 := 4*tl7

for (i = n-1; i >=1; i--) { A[tl8]:=temp // A[j+1]:=temp
for (j = 1; j <= i; j++) L3: j := j+1

if (A[j] > A[j+1]) | goto L4
temp = A[J]; L2: i := i-1 .
A[j] = A[j+1]; goto L5 Instructions

. — . Ll: .
A[j+1] = temp; 29 in outer loop

} 25 in inner loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Redundancy in Address Calculation

r N
i := n-1 t8 :=3-1
L5: if i<1 goto 11 t9 := 4*t8
j =1 >_emp := A[t91) // temp:=A[7]
L4: if j>i goto L2 tl0 := j+1 B
tl = j-1 tll:= t10-1
t2 := 4*tl (t12 := 4*tl1l
td := j+1 (t14 := §-1
t5 := t4-1 tl5 := 4*tl4
t6 := 4*t5H (A[tl5] := t13) // A[J]:=A[j+1]
t7 := A(t6] // A[j+1] (£16 := j+1)
if t3<=t7 goto L3 tl7 := tle6-1
tl8 := 4*tl7
\A[t1l8] :=temp) // A[j+1] :=temp

L3: j := j+1
goto L4

L2: i = i-1
goto L5

Ll:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Redundancy Removed

i := n-1 t8 :=j-1
L5: if i<l goto L1 t9 := 4*t8

j =1 temp := A[t9] // temp:=A[7j]
L4: if j>i goto L2 (t12 1= 4*j)

tl := j-1 t13 := A[tl1l2] // A[j+1]

£2 := 4*tl (Alt9]:= t13) // A[j]:=A[j+1]

t3 := A[t2] // Alj] (A[t12]:=temp) // A[j+1]:=temp

(t6 o= 4*j) L3: j := j+1

t7 := A[t6] // A[j+1] goto L4

if t3<=t7 goto L3 L2: i :=1-1

goto L5
Ll:

Instructions
20 in outer loop

16 in inner loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

More Redundancy

i := n-1 /;8 :=j-1)
L5: if i<l goto L1 t9 = 4*t8

j =1 temp := A[t9]]|// temp:=A[7]
L4: if j>i goto L2 tl2 := 4%*j

tl := j-1 tl3 := A[tl2]|// A[j+1]

t2 := 4*tl A[t9]:= t13 // Al[j]:=A[j+1]

t3 := A[t2] // Al[7] \é{tlZ]:=temE/ // A[j+1] :=temp

t6 = 4*j L3: j := j+1

t7 := A[t6] // A[j+1] goto L4

if t3<=t7 goto L3 L2: i := 1i-1

goto LS5

Ll1:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Redundancy Removed

i := n-1 [A[t2] = t7] // A[F] :=A[j+1]

L5: if i<l goto L1 A[t6] := t3 // A[j+1]:=old A[j]
j =1
L4: if j>i goto L2 L3: j := j+1
tl := j-1 goto L4
t2 = 4*tl L2: 1 := i-1
t3 := A[t2] // old A[j] goto L5
t6 = 4*j Ll:
t7 := A[t6] // A[j+1]

if t3<=t7 goto L3

Instructions
15 in outer loop

11 in inner loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Redundancy in Loops

i := n-1
L5: if i<l goto L1
(5 =1)
L4:| if j>i goto L2
tl = j-1
\t2 := 4*tl)
t3 = A[t2] // Alj]
t6 = 4%*j
t7 := A[t6] // A[j+1]
if t3<=t7 goto L3
A[t2] := t7
A[t6] := t3
L3:] J := j+1
goto L4
L2: i := i-1
goto L5

Ll:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Redundancy Eliminated

i := n-1 i := n-1
L5: if i<1l goto L1 L5: if i1 goto Ll
(3 = 1 ™ (t2 := 0 A
L4:| if j>i goto L2 té6 := 4
tl := j-1 £19 := 4*i
\t2 := 4*tl) L4:\af t6>t1l9 goto ng
t3 := A[t2] // Al7F] t3 := A[t2]
t6 := 4% t7 := A[t6]
t7 := A[t6] // A[j+1] if t3<=t7 goto L3
if t3<=t7 goto L3 A[t2] := t7
A[t2] := t7 A[t6] := t3
Al[t6] := t3 L3:[t2 := t2+4
L3:(j := j+1 [t6 := t6+4]
goto L4 goto L4
L2: i := 1i-1 L2: i := i-1
goto L5 goto L5

L1: Ll1:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Final Pseudo Code (after strength reduction)

i := n-1

L5: if i<l goto L1 Instructions
t2 := 0 Before Optimizations
t6 := 4 29 in outer loop
tl9 =1 << 2

25 in inner loop

L4: if t6>tl1l9 goto L2
t3 := A[t2]
t7 := A[t6]

_ Instructions
if t3<=t7 goto L3 L. .
A[£2] := t7 After Optimizations
A[t6] := t3 15 in outer loop
L3: 2 := t2+d 9ininner loop
t6 := to6+4
goto L4
L2: i := i-1 * These were Machine-Independent Optimizations.
goto L5 * Will be followed by Machine-Dependent Optimizations,
Ll: including allocating temporaries to registers,

converting to assembly code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Today

m Overview
m Generally Useful Optimizations

= Code motion/precomputation
® Strength reduction
® Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
= Procedure calls
" Memory aliasing

m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Limitations of Optimizing Compilers

m Operate under fundamental constraint
" Must not cause any change in program behavior
= Often prevents optimizations that affect only “edge case” behavior

m Behavior obvious to the programmer is not obvious to compiler
= e.g., Data range may be more limited than types suggest (short vs. int)

m Most analysis is only within a procedure
= Whole-program analysis is usually too expensive
= Sometimes compiler does interprocedural analysis within a file (new GCC)

m Most analysis is based only on static information
= Compiler has difficulty anticipating run-time inputs

m When in doubt, the compiler must be conservative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

void lower (char *s)
{
size t i;
for (i = 0; 1 < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z'")
s[i] -= ('A'" - 'a');

= Extracted from 213 lab submissions, Fall 1998

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Lower Case Conversion Performance

= Time quadruples when double string length

® Quadratic performance

250

200

150

lowerl

100

50
OO—M

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

CPU seconds

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Convert Loop To Goto Form

void lower (char *s)
{
size t i = 0;
if (1 >= strlen(s))
goto done;
loop:
if (s[i] >= 'A' && s[i] <= 'Z'")
s[i] -= ('A' - 'a'");
i++;
if (i < strlen(s))
goto loop;
done:

}

" strlen executed every iteration

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Calling Strlen

/* My version of strlen */
size t strlen(const char *s)
{
size t length = 0;
while (*s '= '\0') {
s++;
length++;
}
return length;
}

m Strlen performance

= Only way to determine length of string is to scan its entire length, looking for
null character.

m Overall performance, string of length N
= N calls to strlen
= Requiretimes N, N-1, N-2, ..., 1
= Qverall O(N?) performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Improving Performance

void lower (char *s)
{
size t i;
size t len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z'")
s[i] -= ('A' - 'a');

" Move call to strlen outside of loop
= |Legal since result does not change from one iteration to another
= Form of code motion

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Lower Case Conversion Performance

" Time doubles when double string length

" Linear performance of lower2

250

200
0
e 150
S lowerl
@
0
> 100
[a
@)

50
lower?2
0 IP—IP-IFF‘F=.;:‘:::::::::::::::::::ﬁlﬂﬁl—ﬁl——IP—IP—IPFIP—IP—IP—IP—IPFIP—IP—I

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of inner loop?
" Procedure may have side effects
= Alters global state each time called
= Function may not return same value for given arguments
= Depends on other parts of global state
» Procedure lower could interact with strlen
m Warning:
= Compiler may treat procedure call as a black box

" Weak optimizations near them size t lencnt = 0;
size t strlen(const char *s)

m Remedies: {
size t length = 0;

Use of inline functions while (*s '= '\0') {

= GCC does this with —01 s++; length++;
— Within single file }
= Do your own code motion lencnt += length;

return length;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Memory Matters

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) ({
long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;
for (j = 0; j < n; j++)
b[i] += a[i*n + j];

sum rowsl inner loop
.L4:

movsd (%rsi,%$rax,8), %$xmm0 # FP load
addsd ($rdi) , %$xmmO # FP add
movsd $xmm0, (%rsi,%rax,8) # FP store
addg $8, %rdi

cmpgq $rcx, %rdi

jne .L4

" Code updatesb[i] on every iteration

= Why couldn’t compiler optimize this away?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Memory Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) ({
long i, j;
for (i = 0;

i < n; i++) {
b[i] = 0;
for (j = 0; j < n; J++)
b[i] += a[i*n + j];

Value of B:

double A[9] = double A[9] = init: [4, 8, 16]
{ 0, 1/ 2/ { O, 1/ 2/
4, 8, 16}, 3 22, 224} .

/ ' . i=0: [3, 8, 16

32, 64, 128}; 32, 64, 128}; : .

double B[3] = A+3; i=1: [3, 22, 16]

sum rowsl (A, B, 3);

= 2: [3, 22, 224]

I

" Code updatesb[i] on every iteration

= Must consider possibility that these updates will affect program behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rows2 (double *a, double *b, long n) ({
long i, j;
for (i = 0; i < n; i++) {
double val = 0;
for (j = 0; jJj < n; j++)
val += a[i*n + j];
b[i] = wval;

sum rows2 inner loop
.L10:

addsd ($rdi) , %$xmmO
addg $8, %rdi

cmpq $rax, %rdi
jne .L10

FP load + add

= No need to store intermediate results

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

34

Optimization Blocker: Memory Aliasing

m Aliasing
= Two different memory references specify single location
= Easy to have happeninC
= Since allowed to do address arithmetic
= Direct access to storage structures
" Get in habit of introducing local variables
= Accumulating within loops
= Your way of telling compiler not to check for aliasing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/17808

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

https://canvas.cmu.edu/courses/17808

Carnegie Mellon

Today

m Overview
m Generally Useful Optimizations

= Code motion/precomputation
® Strength reduction
® Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
= Procedure calls
" Memory aliasing

m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Exploiting Instruction-Level Parallelism

m Need general understanding of modern processor design
= Hardware can execute multiple instructions in parallel

m Performance limited by data dependencies

m Simple transformations can cause big speedups
= Compilers often cannot make these transformations

= Lack of associativity and distributivity in floating-point arithmetic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Benchmark Example: Data Type for Vectors

/* data structure for wvectors */

typedef struct{ len 0o 1 len-1
size t len;

data t *data; data 20000
} vec;
/* retrieve vector element

m Data Types and store at wval */

" Use different declarations int get vec element

fordata_ﬁ. { (*vec v, size t idx, data_t *val)

" int if (idx >= v->len)

" long return O;

= float *val = v->data[idx];

return 1;
" double }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Benchmark Computation

void combinel (vec ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec _length(v); i++) { elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP wval;
}
}
m Data Types m Operations
= Use different declarations = Use different definitions of
fordata t OP and IDENT
" jint = + /0
" long = % /1]
" float

" double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on
vectors or lists

m Length=n
m Inour case: CPE = cycles per OP
m Cycles = CPE*n + Overhead

= CPEis slope of line

2500
2000
psuml
Slope = 9.0
1500
(%3]
(]
I
>
O 1000
// psum2
500 - Slope = 6.0
0 T T T
0 50 100 150 200
Elements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Benchmark Performance

void combinel (vec ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec _length(v); i++) { elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP val;
}
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8

Results in CPE (cycles per element)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Basic Optimizations

void combine4 (vec ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)

t =t OP d[i];
*dest = t;

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Effect of Basic Optimizations

void combine4 (vec ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)

t =t OP d[i];

*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel -01 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01

m Eliminates sources of overhead in loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Modern CPU Design

Instruction Control
Control - .
Instruction

: Retirement

...... Unit

: Register EITEGHEN Instructions
File Decode |}

Cache

Operations

Register Updates Prediction OK?

. re Functional
Units

a a

\ 4 A 4 A 4 A 4 A 4 A 4

Operation Results

Addr. Addr.

Data Data

Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Superscalar Processor

m Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are
usually scheduled dynamically.

m Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have

m Most modern CPUs are superscalar.
m Intel: since Pentium (1993)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

to : : 1 1
Pipelined Functional Units ' ~
Stage 1
long mult eg(long a, long b, long c) { - = \
long pl = a*b; | Stage 2 |
long p2 = a*c; v
long p3 = pl * p2; Stage 3
return p3; \)
} !
Stage 1 a*b are pl*p2
Stage 2 a*b a*c pl*p2
Stage 3 a*b a*c pl*p2

= Divide computation into stages
= Pass partial computations from stage to stage
= Stage i can start on new computation once values passed to i+1

= E.g., complete 3 multiplications in 7 cycles, even though each

requires 3 cycles

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Haswell CPU

= 8 Total Functional Units

m Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation

4 integer
2 FP multiply
1 FP add
1 FP divide

m Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1
Single/Double FP Divide 3-15 3-15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

x86-64 Compilation of Combine4

m Inner Loop (Case: Integer Multiply)

.L519: # Loop:

imull (%rax,%rdx,4), %ecx # t =t * d[i]

addg $1, %rdx # it++

cmpg %rdx, %rbp # Compare length:i

jg .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Combine4 = Serial Computation (OP = *)

m Computation (length=8)

(CCCCC((L * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[3]) * d[e]) * d[7])

1d,

m Sequential dependence

" Performance: determined by latency of OP

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Loop Unrolling (2x1)

void unroll2a combine (vec ptr v, data_t *dest)
{
long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);
data_t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (1 = 0; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+l1l];
}
/* Finish any remaining elements */
for (; 1 < length; i++) {
x = x OP d[1i];
}

*dest = x;

m Perform 2x more useful work per iteration

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

m Helps integer add

= Achieves latency bound

x = (x OP d[i]) OP d[i+l1];

m Others don’t improve. Why?

= Still sequential dependency

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Loop Unrolling with Reassociation (2x1a)

void unroll2aa combine (vec_ptr v, data t *dest)
{
long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);
data_t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (1 = 0; i < limit; i+=2) {
X = x OP (d[i] OP d[i+1]);
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i]; Compare to before

x = (x OP d[i]) OP d[i+1];

}

*dest = x;

}

m Can this change the result of the computation?
m Yes, for FP. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Effect of Reassociation

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 01.50 1.00 /1.00 0{0
4 func. units for int +,/] e \
2 func. units for load 1 func. ur.nt f?r FP+
Why Not .25? 3-stage pipelined FP + 2 func. units for FP *,

2 func. units for load

* *
m Nearly 2x speedup for Int *, FP +, FP 5-stage pipelined FP *

= Reason: Breaks sequential dependency

x = x OP (d[i] OP d[i+1]);

= Why is that? (next slide)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Reassociated Computation

m What changed:

= QOps in the next iteration can be
started early (no dependency)

x = x OP (d[i] OP d[i+1]);

d'0 d'1
- m Overall Performance
d, d,

da

= N elements, D cycles latency/op
= (N/2+1)*D cycles:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Loop Unrolling with Separate Accumulators (2x2)

void unroll2a combine(vec ptr v, data t *dest)

{

long length = vec_length(v);
long limit = length-1;

data_t *d = get _vec_start(v);
data_t x0 = IDENT;

data_t x1 = IDENT;

long 1i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x0 = x0 OP d[i];
x1l = x1 OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x0 = x0 OP d[i];
}
*dest = x0 OP x1;

m Different form of reassociation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Effect of Separate Accumulators

Method Integer Double FP
Operation Add Mult Add Mult
Combine4d 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01

Unroll 2x2 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Int + makes use of two load units

x0 = x0 OP d[i];
x1l = x1 OP d[i+1];

m 2x speedup (over unroll2) for Int *, FP +, FP *

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Separate Accumulators

x0 = x0 OP d[i]; m What changed:
x1l = x1 OP d[i+1]; = Two independent “streams” of
operations
[JTH éb m Overall Performance
d, d, = N elements, D cycles latency/op

’| 3 | d —>[_*H d = Should be (N/2+1)*D cycles:
! 5 CPE = D/2

n icti |
,Gi ds’d__] d, CPE matches prediction!

What Now?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Unrolling & Accumulating

m Ildea
® Canunroll to any degree L
® Can accumulate K results in parallel
" | must be multiple of K

m Limitations
= Diminishing returns
= Cannot go beyond throughput limitations of execution units
= lLarge overhead for short lengths
= Finish off iterations sequentially

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Unrolling & Accumulating: Double *

m Case
" |ntel Haswell
= Double FP Multiplication
® Latency bound: 5.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 5.01 5.01 501 5.01 5.01 5.01 5.01
‘g 2 2.51 2.51 2.51
L
S 3 1.67
—
E 4 1.25 1.26
8 6 0.84 0.88
Q
< 8 0.63
10 0.51
12 0.52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Achievable Performance

Method Integer Double FP

Operation Add Mult Add Mult
Best 0.54 1.01 1.01 0.52
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Limited only by throughput of functional units
m Up to 42X improvement over original, unoptimized code

Can we do even better?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Programming wit AVXZ Carnegie Mellon

YMM Registers

B 16 total, each 32 bytes
B 32 single-byte integers

B 16 16-bit integers

B 8 32-bit integers

B 8 single-precision floats

B 4 double-precision floats

B 1 single-precision float

B 1 double-precision float

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, 1hird EdItion 63

Carnegie Mellon

SIMD Operations

B SIMD Operations: Single Precision
vaddps Symm0O, Symml, Symml

\/@\. \/@\. \/@\. \/@\. \/@\. \/@\. \/@\. \/@\.1

S ymmO

Symml
B SIMD Operations: Double Precision
vaddpd Symm0O, Symml, Symml
% ymmO
hV hV hV N
A AR A
Symml

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Using Vector Instructions

Method Integer Double FP

Operation Add Mult Add Mult
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput Bound 0.06 0.12 0.25 0.12

m Make use of AVX Instructions

= Parallel operations on multiple data elements
= See Web Aside OPT:SIMD on CS:APP web page

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

What About Branches?
m Challenge

® |nstruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663: mov $0x0,%eax :}_ :
404668: cmp %$rdi) ,%rsi ExeCUtlng
I GCRE e < How to continue?

40466d: mov 0x8 (%$rdi) ,%rax

404685: repz retq

=" When encounters conditional branch, cannot reliably determine where to
continue fetching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Modern CPU Design

Instruction Control
Control - .
Instruction

: Retirement

...... Unit

: Register EITEGHEN Instructions
File Decode |}

Cache

Operations

Register Updates Prediction OK?

. re Functional
Units

a a

\ 4 A 4 A 4 A 4 A 4 A 4

Operation Results

Addr. Addr.

Data Data

Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Branch Outcomes

= When encounter conditional branch, cannot determine where to continue
fetching

= Branch Taken: Transfer control to branch target
= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

404663: mov $0x0, $eax
404668: cmp %$rdi) ,%rsi

Sebeiss - Sl e Branch Not-Taken
40466d: mov 0x8 (%$rdi) ,%rax ;;;>’

Branch Taken

404685: repz retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Branch Prediction

m Ildea
= Guess which way branch will go
" Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov $0x0, $eax
404668: cmp (%rdi) ,%rsi
40466b: jge 404685

40466d: mov 0x8(%rdi) ,%rax) Predict Taken

404685: repz retq } Begin
Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Branch Prediction Through Loop

401029: vmulsd (%rdx),%$xmmO,$xmmO Assume
40102d: add $0x8, $rdx vector length = 100
401031: cmp $rax, srdx .
401034: jne 401029 i =98
Predict Taken (OK)
401029: vmulsd (%$rdx) , $xmmO, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax, srdx .
401034: jne 401029 i =99
— 7 Predict Taken

401029: vmulsd (%rdx),%xmm0,%xmm0 (Oops) T
40102d: add $0x8,%rdx T
401031: cmp $rax, srdx Read Executed
401034: jne 401029 i=100 invalid

7 location
401029: vmulsd (%rdx) , $xmmO, $xmmO
40102d: add $0x8,3%rdx Fetched
401031: cmp $rax, $rdx _L
401034: jne 401029 =101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

70

Branch Misprediction Invalidation

401029: vmulsd ($rdx),%xmmO, $xmmO Assume

40102d: add $0x8, $rdx vector length = 100
401031: cmp $rax, srdx .

401034: jne 401029 i =98

Predict Taken (OK)

401029: vmulsd (%$rdx) , $xmmO, $xmmO

40102d: add $0x8, $rdx

401031: cmp $rax, srdx

401034: Jjne 401029 i=99
— 7 Predict Taken

£01029: vmulsd (%rdx) . %xmm0 . Sxmmo (Oops)
\

40102d: add S0x8, $rdx

401031: cmp rax, srdx

401034: Jjne 401029 [=100

7 > Invalidate

401029 ~vymulsd (&rdx) SxmmQO Sxmm0O
—40102d. __add S0x8 Srdx
—401031: __cmp srax Srdx

401034+ 3ne 401029 =101 J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Carnegie Mellon

Branch Misprediction Recovery

401029: vmulsd (%$rdx) , $xmmO, $xmmO

40102d: add $0x8, 3rdx .

401031: cmp %rax,%rdx I=33 Definitely not taken
401034: jne 401029

401036: 3mp 401040 — Reload

401040: vmovsd $xmm0, ($rl2) } Pipeline

m Performance Cost

= Multiple clock cycles on modern processor
= Can be a major performance limiter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Branch Prediction Numbers

m Default behavior:

= Backwards branches are often loops so predict taken
= Forwards branches are often if so predict not taken

m Predictors average better than 95% accuracy

" Most branches are already predictable.

m Annual branch predictor contests at top Computer
Architecture conferences (2010-2016)

= Metrics: Size of branch predictor tables
Mispredictions per kilo-instruction (MPKI)
= 2016 Winners (https://www.jilp.org/cbp2016/)
= Size 8KB: MPKI=4.1

= Size 64KB: MPKI=3.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

https://www.jilp.org/cbp2016/

Carnegie Mellon

Getting High Performance

m Good compiler and flags

m Don’t do anything sub-optimal
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= | ook carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
" Make code cache friendly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

Carnegie Mellon

Today

m Overview

m Generally Useful Optimizations
= Code motion/precomputation
= Strength reduction
= Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
= Procedure calls
= Memory aliasing

m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 76

