
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Systems

18-213/18-613: Introduction to Computer Systems
13th Lecture, June 10, 2025

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Virtual Memory & Physical Memory

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

 A page table contains page table entries (PTEs) that map
virtual pages to physical pages.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Translating with a k-level Page Table

Page table base register
(part of the process’ context)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

 Having multiple levels greatly reduces total page table size

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Translation Lookaside Buffer (TLB)

MMU
Cache/
Memory

CPU
VA

1

PA

4

Data

5

Typically, a TLB hit eliminates the k memory accesses required
to do a page table lookup.

TLB

2

VPN

PTE

3

 A small cache of page table entries with fast access by MMU

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Set Associative Cache

B = 2b bytes per cache block (the data)

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit

t bits s bits b bits

Address of word:

CT
tag

CI
index

CO
offset

data begins at this offset

Steps for a READ:
• Locate set
• Check if any line in set

has matching tag
•Yes + line valid: hit
• Locate data starting

at offset

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review of Symbols
 Basic Parameters

▪ N = 2n : Number of addresses in
virtual address space

▪ M = 2m : Number of addresses in
physical address space

▪ P = 2p : Page size (bytes)

 Components of the virtual address (VA)
▪ TLBI: TLB index

▪ TLBT: TLB tag

▪ VPO: Virtual page offset

▪ VPN: Virtual page number

 Components of the physical address (PA)
▪ PPO: Physical page offset (same as VPO)

▪ PPN: Physical page number

▪ CO: Byte offset within cache line

▪ CI: Cache index

▪ CT: Cache tag

(bits per field for our simple example)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Simple memory system example CSAPP 9.6.4

 Case study: Core i7/Linux memory system CSAPP 9.7

 Memory mapping CSAPP 9.8

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Example

 Addressing
▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Why is the
VPO 6 bits?

Why is the
VPN 8 bits?

Why is the
VPN 8 bits?

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System TLB

 16 entries

 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Translation Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Page Table

Only showing the first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

0x0D → 0x2D

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 16 lines, 4-byte cache line size

 Physically addressed

 Direct mapped

V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

Simple Memory System Cache

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

1 0 1 0 0 1

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address
11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

0001010 11010

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

0D03 1

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache

Address Translation Example
Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

0001010 11010

0 0x5 0x0D Y 0x36

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation Example: TLB/Cache Miss

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

Page table

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache

Address Translation Example: TLB/Cache Miss

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

0000000 00111

0 0x8 0x28 N Mem

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation
CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 d-TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12 Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

 Observation
▪ Bits that determine CI identical in virtual and physical address

▪ Can index into cache while address translation taking place

▪ Generally we hit in TLB, so PPN bits (CT bits) available quickly

▪ “Virtually indexed, physically tagged”

▪ Cache carefully sized to make this possible

Physical

address

(PA)

CT CO

40 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1 Cache

CT Tag Check

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
 structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x00400000

Different for
each process

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

 pgd:
▪ Page global directory address

▪ Points to L1 page table

 vm_prot:
▪ Read/write permissions for

this area

 vm_flags
▪ Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

Each process has own task_struct, etc

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Page Fault Handling

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mapping

 VM areas initialized by associating them with disk objects.
▪ Called memory mapping

 Area can be backed by (i.e., get its initial values from) :
▪ Regular file on disk (e.g., an executable object file)

▪ Initial page bytes come from a section of a file

▪ Anonymous file (e.g., nothing)

▪ First fault will allocate a physical page full of 0's (demand-zero page)

▪ Once the page is written to (dirtied), it is like any other page

 Dirty pages are copied back and forth between memory and a
special swap file.

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Memory Management & Protection

 Code and data can be isolated or shared among processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

 Process 1 maps
the shared
object (on disk).

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited: Shared Objects

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Process 2 maps
the same shared
object.

 Notice how the
virtual addresses
can be different.

 But, difference
must be multiple
of page size.

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited:

Private Copy-on-write (COW) Objects

 Two processes
mapping a private
copy-on-write
(COW) object

 Area flagged as
private copy-on-
write

 PTEs in private
areas are flagged
as read-only

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Private
copy-on-write
area

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing Revisited:

Private Copy-on-write (COW) Objects

 Instruction writing
to private page
triggers
protection fault.

 Handler creates
new R/W page.

 Instruction
restarts upon
handler return.

 Copying deferred
as long as
possible!

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding Shareable Pages

 Kernel Same-Page Merging
▪ OS scans through all of physical memory, looking for duplicate pages

▪ When found, merge into single copy, marked as copy-on-write

▪ Implemented in Linux kernel in 2009

▪ Limited to pages marked as likely candidates

▪ Especially useful when processor running many virtual machines

▪ A virtual machine is an abstraction for an entire computer,
including its OS & I/O devices (beyond the scope of this course)

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping

void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start

▪ start: may be 0 for “pick an address”

▪ prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...

▪ flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User-Level Memory Mapping
void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

len bytes

start

(or address
chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset

(bytes)

0 0

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Uses of mmap

 Reading big files
▪ Uses paging mechanism to bring files into memory

 Shared data structures
▪ When call with MAP_SHARED flag

▪ Multiple processes have access to same region of memory

▪ Risky!

 File-based data structures
▪ E.g., database

▪ Give prot argument PROT_READ | PROT_WRITE

▪ When unmap region, file will be updated via write-back

▪ Can implement load from file / update / write back to file

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Using mmap to Support Attack Lab

 Problem

 Want students to be able to perform code injection attacks

 Shark machine stacks are not executable

 Solution

 Suggested by Sam King (now at UC Davis)

 Use mmap to allocate region of memory marked executable

 Divert stack to new region

 Execute student attack code

 Restore back to original stack

 Use munmap to remove mapped region

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x55586000

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Region created by mmap
0x55586000

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0x55586000

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Region created by mmap
0x55586000

Frame for launch

Frame for test

Frame for getbuf

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using mmap to Support Attack Lab

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Restore original %rsp
Use munmap to remove mapped region

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 VM requires hardware support
▪ Exception handling mechanism

▪ TLB

▪ Various control registers

 VM requires OS support
▪ Managing page tables

▪ Implementing page replacement policies

▪ Managing file system

 VM enables many capabilities
▪ Loading programs from memory

▪ Providing memory protection

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using mmap to Support Attack Lab

stack_top = new_stack + STACK_SIZE - 8;

asm("movq %%rsp,%%rax ; movq %1,%%rsp ;

movq %%rax,%0"

 : "=r" (global_save_stack) // %0

 : "r" (stack_top) // %1

);

launch(global_offset);

void *new_stack = mmap(START_ADDR, STACK_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,

 MAP_PRIVATE | MAP_GROWSDOWN | MAP_ANONYMOUS | MAP_FIXED,

 0, 0);

if (new_stack != START_ADDR) {

 munmap(new_stack, STACK_SIZE);

 exit(1);

}

asm("movq %0,%%rsp"

 :

 : "r" (global_save_stack) // %0

);

munmap(new_stack, STACK_SIZE);

Allocate new region

Divert stack to new region & execute attack code Restore stack and remove region

	Slide 1
	Slide 2: Virtual Memory: Systems 18-213/18-613: Introduction to Computer Systems 13th Lecture, June 10, 2025
	Slide 3: Review: Virtual Memory & Physical Memory
	Slide 4: Review: Translating with a k-level Page Table
	Slide 5: Review: Translation Lookaside Buffer (TLB)
	Slide 6: Recall: Set Associative Cache
	Slide 7: Review of Symbols
	Slide 8: Today
	Slide 9: Simple Memory System Example
	Slide 10: Simple Memory System TLB
	Slide 11: Simple Memory System Page Table
	Slide 12: Simple Memory System Cache
	Slide 13: Address Translation Example
	Slide 14: Address Translation Example
	Slide 15: Address Translation Example: TLB/Cache Miss
	Slide 16: Address Translation Example: TLB/Cache Miss
	Slide 18: Today
	Slide 19: Intel Core i7 Memory System
	Slide 20: End-to-end Core i7 Address Translation
	Slide 21: Core i7 Level 1-3 Page Table Entries
	Slide 22: Core i7 Level 4 Page Table Entries
	Slide 23: Core i7 Page Table Translation
	Slide 24: Cute Trick for Speeding Up L1 Access
	Slide 25: Virtual Address Space of a Linux Process
	Slide 26: Linux Organizes VM as Collection of “Areas”
	Slide 27: Linux Page Fault Handling
	Slide 28: Today
	Slide 29: Memory Mapping
	Slide 30: Review: Memory Management & Protection
	Slide 31: Sharing Revisited: Shared Objects
	Slide 32: Sharing Revisited: Shared Objects
	Slide 33: Sharing Revisited: Private Copy-on-write (COW) Objects
	Slide 34: Sharing Revisited: Private Copy-on-write (COW) Objects
	Slide 35: Finding Shareable Pages
	Slide 36: User-Level Memory Mapping
	Slide 37: User-Level Memory Mapping
	Slide 38: Uses of mmap
	Slide 39: Example: Using mmap to Support Attack Lab
	Slide 40: Using mmap to Support Attack Lab
	Slide 41: Using mmap to Support Attack Lab
	Slide 42: Using mmap to Support Attack Lab
	Slide 43: Using mmap to Support Attack Lab
	Slide 44: Summary
	Slide 45: Using mmap to Support Attack Lab

