Carnegie Mellon

4

———m .

" S Ay Dt it

14-513

VELCOVE ‘ | B3
| o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Machine-Level Programming V:
Advanced Topics

18-213/18-613: Introduction to Computer Systems
8th Lecture, May 28, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Memory Layout
m Buffer Overflow

= Vulnerability CSAPP 3.10.3
= Protection CSAPP 3.10.4
m Unions CSAPP 3.9.2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

not drawn to scale

x86-64 Linux Memory Layout

00007FFFFFFFFFFF
(= 297-1) Shared
Libraries
m Stack 00007FFFF0000000 F— N
= Runtime stack (8MB limit) ac
= E.g., local variables 1 > VB
m Heap /
= Dynamically allocated as needed
" When call malloc (), calloc (), new()
m Data
= Statically allocated data
= E.g., global vars, static vars, string constants
m Text / Shared Libraries t
= Executable machine instructions Heap
= Read-only Data
Text
Hex Address 400000
000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

not drawn to scale

Memory Allocation Example

OOOO7FFFFFFFFFFF
Shared
char big array[11<<24]; /* 16 MB */ Libraries
char huge array[lL<<31l]; /* 2 GB */ Stack
int global = 0; 1
int useless() { return 0; }
int main ()
{
void *phugel, *psmall2, *phuge3, *psmall4;
int local = 0;
phugel = malloc(1lL << 28); /* 256 MB */
psmall2 = malloc(lL << 8); /* 256 B */ 4
phuge3 = malloc (1L << 32),; /* 4 GB */
psmall4 = malloc(lL << 8); /* 256 B */ Heap
/* Some print statements ... */
} Data
Text
Where does everything go?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

not drawn to scale

Xx86-64 Example Addresses

Shared
address range ~247 HTETEE
Stack
local 0x00007ffed4d3be87c 1
phugel 0x00007£7262al1le010 -~_§§§§§§9
phuge3 0x00007£7162a1d010 \
psmall4 0x000000008359d120 Heap
psmall2 0x000000008359d010 1!
big array 0x0000000080601060
huge array 0x0000000000601060
main () 0x000000000040060c %
useless () 0x0000000000400590
Heap
(Exact values can vary)
Data (statically allocated)
Text (code)
000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

not drawn to scale

Runaway Stack Example

OOOO7FFFFFFFFFFF
Shared
int recurse(int x) { Libraries
int a[l<<15]; // 4*2~15 = 128 KiB — g
printf("x = %d. a at %$p\n", x, a);
a[0] = (1<<14)-1; 1 > 8B
afa[0]] = x-1;
if (a[a[0]] == 0) /
return -1;
return recurse(af[a[0]]) - 1;
}
m Functions store local data on Jisstesy (57
stack in stack frame G & ok Gl eeaa
m Recursive functions cause deep | X Z o 2 3F XTI a

nesting of frames -
4. a at 0x7f£d4d182da540

X 3. a at 0x7££d4d182ba530
X 2. a at 0x7££d4d1829a520
Segmentation fault (core dumped)

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Today

m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

m Unions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Recall: Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun(0) -> 3.1400000000
fun(l) -> 3.1400000000
fun(2) -> 3.1399998665
fun(3) -> 2.0000006104
fun(6) -> Stack smashing detected
fun(8) -> Segmentation fault

= Result is system specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example

typedef struct { fun(0) -> 3.1400000000
int a[2]; fun(l) -> 3.1400000000
double d; fun(2) -> 3.1399998665
j EneEets (9] fun(3) -> 2.0000006104

fun(4) -> Segmentation fault
fun(8) -> 3.1400000000

\

?77?

EXPIanatlon' Critical State

Critical State

Critical State

Critical State

d7 ... d4

d3 ... dO
a[l]

_ a [0] 0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

>

Location accessed by
fun (i)

R N W b~ 01O NN

struct t =

Such problems are a BIG deal

m Generally called a “buffer overflow”

= when exceeding the memory size allocated for an array
m Why a big deal?

= |t’s the #1 technical cause of security vulnerabilities

= Whatis #1 overall cause?
= social engineering / user ignorance

m Most common form
" Unchecked lengths on string inputs
= Particularly for bounded character arrays on the stack
= sometimes referred to as stack smashing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Exploits Based on Buffer Overflows

m Buffer overflow bugs can allow remote machines to execute
arbitrary code on victim machines

m Distressingly common in real programs
" Programmers keep making the same mistakes ®
= Recent measures make these attacks much more difficult

m Examples across the decades
Original “Internet worm” (1988)
“IM wars” (1999)

Twilight hack on Wii (2000s)

= ...and many, many more

m You will learn some of the tricks in attacklab

= Hopefully to convince you to never leave such holes in your programs!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Example: the original Internet worm (1988)

m Exploited a few vulnerabilities to spread

= Early versions of the finger server (fingerd) used gets () to read the
argument sent by the client:

» finger droh@cs.cmu.edu

= Worm attacked fingerd server by sending phony argument:
» finger “exploit-code padding new-return-
address”

= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

m Once on a machine, scanned for other machines to attack

= invaded ~6000 computers in hours (10% of the Internet ©)
= see June 1989 article in Comm. of the ACM

= the young author of the worm was prosecuted...

= and CERT was formed... still homed at CMU

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Example 2: IM War

m July, 1999

= Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

IM War (cont.)

m August 1999

= Mysteriously, Messenger clients can no longer access AIM servers

" Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes
= At least 13 such skirmishes

= What was really happening?
= AOL had discovered a buffer overflow bug in their own AIM clients

= They exploited it to detect and block Microsoft: the exploit code
returned a 4-byte signature (the bytes at some location in the AIM
client) to server

= When Microsoft changed code to match signature, AOL changed
signature location

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experilence 1n this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting theilr own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,

Phil Bucking It was later determined that this

Founder, Bucking Consulting email originated from within
philbucking@yahoo.com .
Microsoft!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

HOW THE HEARTBLEED BUG WORKS:

k king th istak
Programmers keep making these mistakes...
SERVER, ARE YOU 51"!LLTHERE".’
IF 50, REPLY "POTATO" (6 LETTERS). ser Meg wants these 6 letters: FOTATO. User Meg wants
) Hum... fhese 4 letters: BIRD.
\
O
BIRD
' . o
SERVER, ARE YOU STiLL THERE? .
IF 50, REFLY “HAT" (500 LEWERS) ser Meg wants these 500 letters: HAT.
0 /
0
o]
'
(these 4 letters: BIRD.
s to set server’s master key to "148) (o]
35038534 Isabel vants pages about " o
snakes but not too long". User Karen
' SLe RS l

https://xkcd.com/1354/

SERVER, ARE YOU STiLL. THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

J

ser Meg wants these 500 letters: HAT.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Aside: Worms and Viruses

m Worm: A program that
= Canrun by itself
= Can propagate a fully working version of itself to other computers

m Virus: Code that

= Adds itself to other programs
= Does not run independently

m Both are (usually) designed to spread among computers
and to wreak havoc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

String Library Code

m Implementation of Unix function gets ()

/* Get string from stdin */
char *gets (char *dest)
{
int c¢c = getchar();
char *p = dest;
while (c '= EOF && c '= '\n') {
*p++ = c;
c = getchar();
}
*p = '\0";
return dest;
}

= No way to specify limit on number of characters to read

m Similar problems with other library functions
= strcpy, strcat: Copy strings of arbitrary length
= scanf, £fscanf, sscanf, when given $s conversion specification

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Vulnerable Buffer Code

/* Echo Line */
void echo()

{

char buf[4]; /* Way too small! */ & btw how blg
gets (buf) ; ’.)
puts (buf) ; is big enough?

}

void call echo() {
echo () ;

}

unix>. /bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

unix>. /bufdemo-nsp

Type a string:012345678901234567890123
012345678901234567890123

Segmentation Fault

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Buffer Overflow Disassembly

echo:
000000000040069¢c <echo>:
40069c: 48 83 ec 18 sub $0x18,%rsp
4006a0: 48 89 e7 mov $rsp, srdi
4006a3: e8 a5 ff ff ff callg 40064d <gets>
4006a8: 48 89 e7 mov $rsp,srdi
4006ab: e8 50 fe ff ff callg 400500 <puts@plt>
4006b0: 48 83 c4 18 add $0x18,%$rsp
4006b4: c3 retq
call_echo:
4006b5: 48 83 ec 08 sub $0x8,%rsp
4006b9: b8 00 00 00 0O mov $0x0, %eax
4006be: e8 d9 ff ff ff callg 40069c <echo>
4006c3: 48 83 c4 08 add S0x8,%rsp
4006¢c7: c3 retqg

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

21

Carnegie Mellon

Buffer Overflow Stack Example

Before call to gets

Stack Frame
forcall echo

/* Echo Line */
Return Address void echo ()
(8 bytes) {

char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

20 bytes unused }

[SII2]J[1]}[0]| buf «—%rsp

echo:
subg $0x18, %rsp
movqg 3rsp, %rdi
call gets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Buffer Overflow Stack Example

Before call to gets

_void echo () echo:

Stack Frame { subg $0x18, $rsp

forcall _echo char buf[4]; movqg %rsp, %$rdi
gets (buf) ; call gets
00j00]00]O0O0 }
00140]106]c3
call_echo:

20 bytes unused 4006be: callg 4006cf <echo>

4006c3: add $0x8,%rsp

[31][2]][11]|[0]]| buf «— %rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Buffer Overflow Stack Example #1

After call to gets
void echo() echo:

Stack Frame { subq $0x18, %rsp

forcall_echo char buf[4]; movqg %rsp, %rdi
gets (buf) ; call gets

oo|oo|o0]o00 }
00|40 06| c3
00132]131]30 call_echo:
39138|37]|36 o
351343332 4006be: callg 4006cf <echo>
31130|39]|38 4006c3: add $0x8,%rsp
37136|35]| 34
33]132|31|30 | buf «—%rsp

unix>. /bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012

“01234567890123456789012\0”

Overflowed buffer, but did not corrupt state

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Buffer Overflow Stack Example #2

After call to gets
void echo() echo:

Stack Frame { subq $0x18, %rsp

forcall_echo char buf[4]; movqg %rsp, %rdi
gets (buf) ; call gets

oo|oofoo0]o0 }
00|40 06]00
33]132(31]30 call_echo:
39138|37]|36 o
351343332 4006be: callg 4006cf <echo>
31130|39]|38 4006c3: add $0x8,%rsp
37136|35]| 34
33]132|31|30 | buf «—%rsp

unix>. /bufdemo-nsp
Type a string:012345678901234567890123

012345678901234567890123
Segmentation fault

Program “returned” to 0x0400600, and then crashed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Stack Smashing Attacks

void P () { Stack after call to gets ()

Q(); return 3\

- .. <+— address
} A P stack frame

>

int Q() {
char buf[64]; arex:

gets (buf) ; <

return ...: data written <

by gets () pad

}

void S() {
/* Something
unexpected */

> Q stack frame

}
m Overwrite normal return address A with address of some other code S
m When Q executes ret, will jump to other code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Crafting Smashing String

int echo() {

Stack Frame char buf[4];
for call echo gets (buf) ;
return ...,

00|00|00]0O0 }
00]40]06|c3

‘_\ srsp Target Code

void smash () {
printf ("I've been smashed!\n");

> 24 bytes exit (0);
}

y 00000000004006c8 <smash>:
4006c8: 48 83 ec 08

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
c8 06 40 00 00 00 00 OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Smashing String Effect

Stack Frame
for call echo

([oolooloo]oo0
00| 40|06 c8
33323130

< 39|38|37]|36
35|34|33(|32

+—3rsp Target Code

void smash () {
printf ("I've been smashed!\n");

exit (0) ;
3130|3938 }
371363534
[33]3231)30 00000000004006c8 <smash>:
4006c8: 48 83 ec 08
Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
c8 06 40 00 00 00 00 OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Performing Stack Smash

linux> cat smash-hex. txt

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 c8 06 40 00 00 00 00 OO
linux> cat smash-hex.txt | ./hexify | ./bufdemo-nsp

Type a string:0123456789012345678901237@

I've been smashed!

m Put hex sequence in file smash-hex.txt

m Use hexify program to convert hex digits to characters
= Some of them are non-printing

m Provide as input to vulnerable program

void smash() {
printf ("I've been smashed!\n") ;
exit (0) ;

}

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
c8 06 40 00 00 00 00 OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Code Injection Attacks

gets (buf) ;

return ..

char buf[64];

3
LI 4

void P () {
Q(); return
- <+<—r address
} A
int Q() {

data written
by gets ()

<

Carnegie Mellon

Stack after call to gets ()

pad

exploit
code

\

P stack frame

>

> Q stack frame

J

m Input string contains byte representation of executable code
m Overwrite return address A with address of buffer B
m When Q executes ret, will jump to exploit code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

30

How Does The Attack Code Execute?

rip —| Stack
rsp —
void P(){ rsp >
Q(); 18
rsp —
} pad
ri >
ret ret P exp|oit
int Q() { Shared , | code
char buf[64]; Libraries "N
gets (buf); // A->B
return ...;
} Heap

Data
B =3 Text

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

What To Do About Buffer Overflow Attacks

m Avoid overflow vulnerabilities
m Employ system-level protections

m Have compiler use “stack canaries”

m Lets talk about each...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

1. Avoid Overflow Vulnerabilities in Code (!)

/* Echo Line */

void echo ()

{
char buf[4];
fgets (buf, 4, stdin);
puts (buf) ;

m For example, use library routines that limit string lengths
= fgetsinstead of gets
= strncpy instead of strcpy
= Don’t use scanf with $s conversion specification
= Use £gets to read the string
= Oruse $ns where n is a suitable integer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

2. System-Level Protections can help

m Randomized stack offsets Stack base
p
= At start of program, allocate
random amount of space on
Random
stack)
allocation
m Shifts stack addresses for entire
program L
= Makes it difficult for hacker to AT
predict beginning of inserted Application
code Code
= E.g.: 5 executions of memory
allocation code B?
local Ox7ffedd3be87c Ox7fff75a4f9fc Ox7ffeadb7c80c Ox7ffeaea2fdac 0x7ffcd452017c pa d
= Stack repositioned each time exploit
program executes B2 el

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

2. System-Level Protections can help

Stack after call to gets ()

m Nonexecutable code
segments

" |n traditional x86, can mark
region of memory as either

“read-only” or “writeable” ar
= Can execute anything
readable data written < pad
= x86-64 added explicit by gets ()
“execute” permission exploit
= Stack marked as non- B —\o| COdE
executable

Any attempt to execute this code will fail

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

\

P stack frame

>

> Q stack frame

35

Carnegie Mellon

3. Stack Canaries can help

m ldea

= Place special value (“canary”) on stack just beyond buffer
® Check for corruption before exiting function
m GCC Implementation
= -fstack-protector
= Now the default (disabled earlier)

unix>. /bufdemo-sp

Type a string:0123456
0123456

unix>. /bufdemo-sp
Type a string:012345678
*** stack smashing detected ***

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Protected Buffer Disassembly

echo: Aside: $fs:0x28]
40072f: sub $0x18,%rsp * Read from memory using
400733: mov $fs:0x28, %rax mented add .
40073c: mov $rax,0x8 (%rsp) segme e aadressing
400741: =xor %eax, $eax * Segment is read-only
400743: mov %rsp,srdi * Value generated randomly

400746: callg 4006e0 <gets>
40074b: mov $rsp,srdi

40074e: callg 400570 <puts@plt>
400753: mov 0x8 (%rsp) , Srax
400758: xor $fs:0x28,%rax
400761: Ije 400768 <echo+0x39>
400763: callg 400580 < stack chk fail@plt>
400768: add $0x18,%rsp

40076c: retq

every time program runs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Setting Up Canary

Before call to gets

/* Echo Line */
Stack Frame T~
forcall echo {
char buf[4]; /* Way too small! */
gets (buf) ;
Return Address puts (buf) ;
(8 bytes) }
Canary
(8 bytes)
[31|[2]|[1]}[0]]| buf «— %rsp

echo:
mov $fs:0x28, %$rax # Get canary
mov $rax, 0x8 (%rsp) # Place on stack

Xor %eax, %eax # Erase register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Checking Canary

After call to gets
/* Echo Line */
void echo()
Stack Frame {
formain char buf[4]; /* Way too small! */
gets (buf) ;
Return Address puts (buf) ;
(8 bytes))
Some systems:
Canary Input: 0123456 LSB of canary is 0x00
(8 bytes) Allows input 01234567
00| 36|35]| 34
33]132|31|30 | buf «—%rsp
echo:
mov 0x8 ($rsp) ,%rax # Retrieve from stack
xor %$fs:0x28, Srax # Compare to canary
je .L6 # If same, OK
call stack chk fail # FAIL

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Return-Oriented Programming Attacks

m Challenge (for hackers)

= Stack randomization makes it hard to predict buffer location
= Marking stack nonexecutable makes it hard to insert binary code

m Alternative Strategy
= Use existing code
= E.g., library code from stdlib
= String together fragments to achieve overall desired outcome
= Does not overcome stack canaries

m Construct program from gadgets
= Sequence of instructions ending in ret
= Encoded by single byte O0xc3

® Code positions fixed from run to run
= Code is executable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Gadget Example #1

long ab_plus _c
(long a, long b, long c)
{

return a*b + c;

}

00000000004004d0 <ab_plus_ c>:
4004d0: 48 0f af fe imul %rsi,%rdi
4004d4: | 48 8d 04 17 | lea (%rdi,%rdx,1l) ,6%rax
4004d8: | c3 retq

rax € rdi + rdx
Gadget address = 0x4004d4

m Use tail end of existing functions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Gadget Example #2

void setval (unsigned *p) ({
*p = 3347663060u;

}

/ Encodesmovqg %rax, %$rdi

<setwval>:
4004d9: c7 07 d4] 48 89 c7]| movl $0xc78948d4, (%$rdi)

4004df: retqg

\ rdi € rax

Gadget address = 0x4004dc

m Repurpose byte codes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

ROP Execution

Stack
/) Gadget n code .
o
—p Gadget 2 code
= rzcose [
Srsp = |
\> Gadget 1 code .

m Trigger with ret instruction
= Will start executing Gadget 1

m Final ret in each gadget will start next one
" ret: pop address from stack and jump to that address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Crafting an ROP Attack String

Stack Frame
forcall echo

(Toolooloo[oo0

004004 [dc m Gadget #1
00|lo00]00]|00 = 0x4004d4 rax €< rdi+ rdx
gg :g g: ‘;g ——%rsp m Gadget #2

< 39|38|371]36 " 0x4004dc rdiérax
35|34]33]32 m Combination
31]30)39)38 rdi € rdi + rdx

37|36|35|34
[33132]31]|30|buf

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33
d4 04 40 00 00 00 00 00 dc 04 40 00 00 00 0O OO

Multiple gadgets will corrupt stack upwards

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

What Happens when echo returns?

Stack Frame
forcall echo

(Tooloo[oolo0
00|40 04]ac

Echo executes ret

=

00100]1007]00 u Starts Gadget #1
o0f[40fo04]da|—q, ¢
5rSP 2. Gadget #1 executes r
< 33132|311|30 g et
39138137136 = Starts Gadget #2
35[34[33]32 3. Gadget #2 executes ret
31|30)39]38 = Goes off somewhere ...

37|36|35|34
[33132]31]|30|buf

Multiple gadgets will corrupt stack upwards

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

ROP Defense: IBT

“Indirect Branch Tracking (IBT) is a control flow integrity
technology for x86-64 processors that creates a special
"branch target" instruction that has no function other than to
mark a location as a valid indirect branch target, with the
processor capable of being put into a mode where it will raise
an exception if an indirect branch is made to a location
without a branch target instruction.

IBT is designed to protect against computer security exploits
that use indirect branch instructions to jump into code in
unintended ways, such as return-oriented programming.”

-- https://en.wikipedia.org/wiki/Indirect_Branch_Tracking

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

ROP Defense: IBT, cont.

m “If IBT is enabled, the CPU will ensure that every indirect branch lands
on a special instruction (endbr32 or endbr64), which executes as a no-
op; if anything else is found, the processor will raise a control-
protection (#CP) exception.” (https://lwn.net/Articles/889475/)

m “[x86-64’s] IBT cannot ensure that the target of an indirect branch
matches the caller's expectations, but it can ensure that the target was
meant to be reached in this way [i.e. via an indirect jump, but not
necessarily the intended indiret jump].”
(https://Ilwn.net/Articles/889475/)

m Complete compliance w.r.t. marking indirect jump targets is require
while IBT is enable, which can be tricky, for example, w.r.t. library
code, firmware code, and future code.

= |BT is most likely turned off before any access to firmware, for
example.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

https://lwn.net/Articles/889475/

Carnegie Mellon

ROP Defense: IBT, cont.

m “The ENDBRANCH (see Section 73 for details) is a new instruction that is used
to mark valid jump target addresses of indirect calls and jumps in the program.
This instruction opcode is selected to be one that is a NOP on legacy machines
such that programs compiled with ENDBRANCH new instruction continue to
function on old machines without the CET enforcement. On processors that
support CET the ENDBRANCH is still a NOP and is primarily used as a marker
instruction by the processor pipeline to detect control flow violations. The CPU
implements a state machine that tracks indirect jmp and call instructions.
When one of these instructions is seen, the state machine moves from IDLE to
WAIT_FOR_ENDBRANCH state. In WAIT_FOR_ENDBRANCH state the next
instruction in the program stream must be an ENDBRANCH. If an ENDBRANCH
is not seen the processor causes a control protection exception (#CP), else the
state machine moves back to IDLE state.”

= Control-flow Enforcement Technology Specification , Section 1.2, Page 11, Document Number:
334525-003, Revision 3.0, Intel, May 2019.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

ROP Defense: IBT, cont.

m “The ENDBRANCH (see Section 73 for details) is a new instruction that is used
to mark valid jump target addresses of indirect calls and jumps in the program.
This instruction opcode is selected to be one that is a NOP on legacy machines
such that programs compiled with ENDBRANCH new instruction continue to
function on old machines without the CET enforcement. On processors that
support CET the ENDBRANCH is still a NOP and is primarily used as a marker
instruction by the processor pipeline to detect control flow violations. The CPU
implements a state machine that tracks indirect jmp and call instructions.
When one of these instructions is seen, the state machine moves from IDLE to
WAIT_FOR_ENDBRANCH state. In WAIT_FOR_ENDBRANCH state the next
instruction in the program stream must be an ENDBRANCH. If an ENDBRANCH
is not seen the processor causes a control protection exception (#CP), else the
state machine moves back to IDLE state.”

= Control-flow Enforcement Technology Specification , Section 3.1, Page 19, Document Number:
334525-003, Revision 3.0, Intel, May 2019.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

ROP Defense: IBT, cont.

foo:
.LFB6:
.cfi_startproc

endbré64

pushqg Srbp

.cfi def cfa offset 16
.cfi offset 6, -16
movqg %$rsp, %rbp

.cfi def cfa register 6

movl %edi, -4 (%rbp)
movl %esi, -8 (%rbp)
cmpl $6, -8 (%rbp)
Jja L2
movl -8 (%rbp), %eax
leag 0(,%rax,4), %rdx
leag L4 (%rip), Srax
movl (%rdx, $rax), %eax
cltg
leag L4 (%rip), Srdx
addg rdx, %rax
notrack jmp *Irax
.section .rodata
.align 4
.align 4

m Note the handling of the entry to function calls and the jump for a
switch statement above

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today

m Memory Layout

m Buffer Overflow
" Vulnerability
® Protection

m Unions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Union Allocation

m Allocate according to largest element
m Can only use one field at a time

union Ul {
char c;
int i[2]; c

double v; | i[0] i[1]

} *up;

struct S1 { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

c i[0] i[1l] v

sp+0 sp+4 sp+8 sp+16 sp+24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Using Union to Access Bit Patterns

typedef union {
float £;
unsigned u;

} bit float t; 0 4

float bit2float (unsigned u) unsigned float2bit (float f)
{ {

bit float t arg; bit float t arg;
arg.u = u; arg.f = £;
return arg.f; return arg.u;

} }

Sameas (float) u? Same as (unsigned) f?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Byte Ordering Revisited

mldea
= Short/long/quad words stored in memory as 2/4/8 consecutive bytes
= Which byte is most (least) significant?
= Can cause problems when exchanging binary data between machines
m Big Endian
= Most significant byte has lowest address
" Sparc, Internet

m Little Endian
= |Least significant byte has lowest address
" Intel x86, ARM Android and IOS

m Bi Endian

= Can be configured either way
= ARM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Byte Ordering Example

union {
unsigned char c[8];
unsigned short s[4];

How are the bytes inside

unsigned int i[2]; short/int/long stored?
unsigned long 1[1];
} dw;
Memory addresses growing >
32-bit | c[0]1 | c[1l] | c[2] | c[3] | c[4] | c[3] | c[6] | c[T7]
s[0] s[1] s[2] s[3]

i[0] i[1l]
1[0]

64-bit | €[0] | c[1] | c[2] | c[3] | c[4] | c[3] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]

1[0]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Byte Ordering Example (Cont).

int j;
for (j = 0; j < 8; j++)
dw.c[j§] = Oxf0 + j;

printf ("Characters 0-7 ==

[0x%x,0x%$x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",
dw.c[0], dw.c[1l], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[7]) ;

printf ("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",
dw.s[0], dw.s[1l], dw.s[2], dw.s[3]) ;

printf ("Ints 0-1 == [0x%x,0x%x]\n",
dw.i[0], dw.i[1]);

printf ("Long 0 == [0x%1x]\n",
dw.1[0]) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Byte Ordering on Sun

Big Endian
£0 f1 £2 £3 f4 £5 £6 £7
c[0] | c[1] | c[2] | c[3] | c[4] | c[S5] |c[6] |c[7]
s[0] s[1] s[2] s[3]
i[O0] i[1]
1[0]
MSB R LSB MSB LSB
Print]
Output on Sun:
Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf0fl,0xf2f3,0xf4£f5,0xf6£7]
Ints 0-1 == [O0xfOfl1f2f3,0xf4f5f6£f7]
Long 0 == [0xfOflf2f3]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Byte Ordering on 1A32

Little Endian

£f0 fl £2 £3 f4 £5 f6 £7
c[O0] | c[1l] | c[2] | c[3] | c[4] | c[5] |[c[6] | c[7]
s[0] s[1] s[2] s[3]
i[O0] if[l]
1[0]
LSB MSB LSB MSB
) Print
Output:
Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0x£f4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf1lf0,0xf3f2,0x£f5f4,0x£f7£6]
Ints 0-1 == [Oxf3f2f1f0,0xf7£f6£5£4]
Long 0 == [0xf3£f2£f1£f0]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

58

Byte Ordering on x86-64

Little Endian
£f0 fl £2 £3 f4 £5 f6 £7
c[O0] | c[1l] | c[2] | c[3] | c[4] | c[5] |[c[6] | c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]
LSB MSB

-
«

Print

Output on x86-64.

Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0xf6,0x£f7]
Shorts 0-3 == [0xf1lf0,0x£f3f2,0x£f5f4,0x£f7£6]

Ints 0-1 == [Oxf3f2f1£f0,0xf7£f6£5£4]

Long 0 == [0xf7£f6£5f4£3£f2f1£0]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Summary of Compound Types in C

m Arrays
® Contiguous allocation of memory
= Aligned to satisfy every element’s alighment requirement
= Pointer to first element
= No bounds checking

m Structures
= Allocate bytes in order declared
= Pad in middle and at end to satisfy alignment

m Unions
= Qverlay declarations
= Way to circumvent type system

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Summary

m Memory Layout

m Buffer Overflow
= Vulnerability
" Protection
= Code Injection Attack
= Return Oriented Programming

m Unions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

	Slide 1
	Slide 2: Machine-Level Programming V: Advanced Topics 18-213/18-613: Introduction to Computer Systems 8th Lecture, May 28, 2025
	Slide 3: Today
	Slide 4: x86-64 Linux Memory Layout
	Slide 5: Memory Allocation Example
	Slide 6: x86-64 Example Addresses
	Slide 7: Runaway Stack Example
	Slide 8: Today
	Slide 9: Recall: Memory Referencing Bug Example
	Slide 10: Memory Referencing Bug Example
	Slide 11: Such problems are a BIG deal
	Slide 12: Exploits Based on Buffer Overflows
	Slide 13: Example: the original Internet worm (1988)
	Slide 14: Example 2: IM War
	Slide 15: IM War (cont.)
	Slide 16
	Slide 17: Programmers keep making these mistakes…
	Slide 18: Aside: Worms and Viruses
	Slide 19: String Library Code
	Slide 20: Vulnerable Buffer Code
	Slide 21: Buffer Overflow Disassembly
	Slide 22: Buffer Overflow Stack Example
	Slide 23: Buffer Overflow Stack Example
	Slide 24: Buffer Overflow Stack Example #1
	Slide 25: Buffer Overflow Stack Example #2
	Slide 26: Stack Smashing Attacks
	Slide 27: Crafting Smashing String
	Slide 28: Smashing String Effect
	Slide 29: Performing Stack Smash
	Slide 30: Code Injection Attacks
	Slide 31: How Does The Attack Code Execute?
	Slide 32: What To Do About Buffer Overflow Attacks
	Slide 33: 1. Avoid Overflow Vulnerabilities in Code (!)
	Slide 34: 2. System-Level Protections can help
	Slide 35: 2. System-Level Protections can help
	Slide 36: 3. Stack Canaries can help
	Slide 37: Protected Buffer Disassembly
	Slide 38: Setting Up Canary
	Slide 39: Checking Canary
	Slide 40: Return-Oriented Programming Attacks
	Slide 41: Gadget Example #1
	Slide 42: Gadget Example #2
	Slide 43: ROP Execution
	Slide 44: Crafting an ROP Attack String
	Slide 45: What Happens when echo returns?
	Slide 46: ROP Defense: IBT
	Slide 47: ROP Defense: IBT, cont.
	Slide 48: ROP Defense: IBT, cont.
	Slide 49: ROP Defense: IBT, cont.
	Slide 50: ROP Defense: IBT, cont.
	Slide 51: Today
	Slide 52: Union Allocation
	Slide 53: Using Union to Access Bit Patterns
	Slide 54: Byte Ordering Revisited
	Slide 55: Byte Ordering Example
	Slide 56: Byte Ordering Example (Cont).
	Slide 57: Byte Ordering on Sun
	Slide 58: Byte Ordering on IA32
	Slide 59: Byte Ordering on x86-64
	Slide 60: Summary of Compound Types in C
	Slide 61: Summary

