
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

14-513 18-613



2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

From Bits through Integers

18-213/18-613
Introduction to Computer Systems 

2nd Lecture, May 14, 2025



3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering
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Analog Computers
 Before digital computers there were analog computers. 

 Consider a couple of simple analog computers:

▪ A simple circuit can allow one to adjust voltages using variable 
resistors and measure the output using a volt meter:

▪ A simple network of adjustable parallel resistors can allow one to 
find the average of the inputs. 

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-
Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-
without-a-transistor-op-amp-and-any-external-supply

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply
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Needing Less Accuracy, Precision is Better
 We don’t try to measure exactly

▪ We just ask, is it high enough to be “On”, or

▪ Is it low enough to be “Off”. 

  We have two states, so we have a binary, or 2-ary, system.

▪ We represent these states as 0 and 1

 Now we can easily interpret, communicate, and duplicate signals well enough to know 
what they mean. 

0.0V

0.2V

0.9V

1.1V

0 1 0
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Binary Representation
 Binary representation leads to a simple binary, i.e. base-2, 

numbering system

▪ 0 represents 0

▪ 1 represents 1

▪ Each “place” represents a power of two, exactly as each place in our 
usual “base 10”, 10-ary numbering system represents a power of 10

 By encoding/interpreting sets of bits in various ways, we can 
represent different things:

▪ Operations to be executed by the processor, numbers, enumerable 
things, such as text characters

 As long as we can assign it to a discrete number, we can 
represent it in binary 
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Binary Representation:
Simple Numbers
 For example, we can count in binary, a base-2 numbering 

system

▪ 000, 001, 010, 011, 100, 101, 110, 111, …

▪ 000 = 0*22  +  0*21  +  0*20   =  0 (in decimal)

▪ 001 = 0*22  +  0*21  +  1*20   =  1 (in decimal)

▪ 010 = 0*22  +  1*21  +  0*20   =  2 (in decimal)

▪ 011 = 0*22  +  1*21  +  1*20   =  3 (in decimal)

▪ Etc.

 For reference, consider some base-10 examples:

▪ 000 = 0*102  +  0*101  +  0*100   

▪ 001 = 0*102  +  0*101  +  1*100  

▪ 357 = 3*102  +  5*101  +  7*20  
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Hexadecimal and Octal

 Writing out numbers in binary takes too many digits 

 We want a way to represent numbers more densely such that 
fewer digits are required

▪ But also such that it is easy to get at the bits that we want

 Any power-of-two base provides this property
▪ Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our 

familiar base-10.

▪ Each has been used by “computer people” over time

▪ Hexadecimal is often preferred because it is denser. 



9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Hexadecimal
 Hexadecimal 0016 to FF16

▪ Base 16 number representation

▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Consider 1A2B in Hexadecimal:

▪ 1*163   +    A*162   +   2*161   +   B*160

▪ 1*163   +    10*162   +   2*161   +   11*160   = 6699 (decimal)

▪ The C Language prefixes hexadecimal numbers with “0x” 
so they aren’t confused with decimal numbers

▪ Write FA1D37B16 in C as

▪ 0xFA1D37B

▪ 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

18213: 0100 0111 0010 0101

4 7 2 5
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering
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Boolean Algebra
 Developed by George Boole in 19th Century

▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And
◼ A&B = 1 when both A=1 and B=1

Or
◼ A|B = 1 when either A=1 or B=1

Not
◼ ~A = 1 when A=0

Exclusive-Or (Xor)
◼ A^B = 1 when either A=1 or B=1, but not both
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General Boolean Algebras

 Operate on Bit Vectors

▪ Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

  01000001

01101001

| 01010101

  01111101

01101001

^ 01010101

  00111100

~ 01010101

  1010101001000001 01111101 00111100 10101010
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Example: Representing & Manipulating Sets

 Representation

▪ Width w bit vector represents subsets of {0, …, w–1}

▪ aj = 1 if j  ∈ A

▪  01101001 { 0, 3, 5, 6 }

▪  76543210

▪  01010101 { 0, 2, 4, 6 }

▪  76543210

 Operations
▪ &    Intersection  01000001 { 0, 6 }

▪ |     Union   01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^     Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~     Complement  10101010 { 1, 3, 5, 7 }
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Bit-Level Operations in C

 Operations &,  |,  ~,  ^ Available in C

▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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 Operations &,  |,  ~,  ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 1011 11100xBE~010000012 → 101111102

▪ ~0x00 → 1111 11110xF~000000002 → 1111112

▪ 0x69 & 0x55:                   0x69 | 0x55: 

      0110 1001   0110 1001  

  & 0101 0101                 | 0101 0101 

 -----------------  -----------------

      0100 0001011010          0111 1101011010012 012 & 010101012 → 010000012

0x7D

▪ 011010012 | 010101012 → 011111012

Bit-Level Operations in C

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Contrast: Logic Operations in C

 Contrast to Bit-Level Operators

▪ Logic Operations: &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

 Examples (char data type)
▪ !0x41 →  0x00

▪ !0x00 →  0x01

▪ !!0x41→  0x01

▪ 0x69 && 0x55 →  0x01

▪ 0x69 || 0x55 →  0x01

▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)… 
Super common C programming pitfall!
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Shift Operations

 Left Shift: x << y

▪ Shift bit-vector x left y positions

– Throw away extra bits on left

▪ Fill with 0’s on right

 Right Shift: x >> y

▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right

▪ Logical shift

▪ Fill with 0’s on left

▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior

▪ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting
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Binary Number Lines
 In binary, the number of bits in the data type size 

determines the number of points on the number line. 

▪ We can assign the points any meaning we’d like

 Consider the following examples:
▪ 1 bit number line

                            0                                                  1

▪ 2 bit number line

                           00            01              10             11                 

▪ 3 bit number line

                  000  001 010  011  100   101  110  111     
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Some Purely Imaginary Examples

 3 bit number line

                             -1/16       -1/8     -1/4         0           1/16      1/8        1/4          1/2

                                0             1         2            3              4             5           6             7

                                -4          -3        -2            -1             0            1            2             3

                                   A            B          C            D             E             F           G             H
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Overflow

 Let’s consider a simple 3 digit number line:

                                              

                                             0              1          2             3            4            5            6   7

                                            000        001       010        011       100         101      110          111

                                                       

 What happens if we add 1 to 7?

▪ In other words, what happens if we add 1 to 111?

 111+ 001 = 1 000
▪ But, we only get 3 bits – so we lose the leading-1. 

▪ This is called overflow

 The result is 000



22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Modulus Arithmetic

 Let’s explore this idea of overflow some more

▪ 111 + 001 = 1 000 = 000

▪ 111 + 010  = 1 001 = 001

▪ 111 + 011 =  1 010  = 010

▪ 111 + 100 =  1 011  = 011

▪ …

▪ 111 + 110  = 1 101 = 101

▪ 111 + 111 = 1 110 =  110

 So, arithmetic “wraps around” when it gets “too positive”
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Unsigned and Non-Negative Integers

 We’ll use the term “ints” to mean the finite set of integer 
numbers that we can represent on a number line enumerated 
by some fixed number of bits, i.e. bit width. 

 We normally represent unsigned and non-negative int using 
simple binary as we have already discussed

▪ An “unsigned” int is any int on a number line, e.g. of a data type, that 
doesn’t contain any negative numbers

▪ A non-negative number is a number greater than or equal to (>=) 0 on a 
number line, e.g. of a data type, that does contain negative numbers
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How represent negative Numbers?
 We could use the leading bit as a sign bit:

▪ 0 means non-negative

▪ 1 means negative

                       000        001      010        011         100        101       110        111

                         0            1           2            3              -0          -1            -2          -3

 This has some benefits

▪ It lets us represent negative and non-negative numbers

▪ 0 represents 0

 It also has some drawbacks

▪ There is a -0, which is the same as 0, except that it is different

▪ How to add such numbers 1 + -1 should equal 0

▪ But, by simple math, 001 + 101 = 110, which is -2?
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A Magic Trick!
 Let’s just start with three ideas:

▪ 1 should be represented as 1

▪ -1 + 1 = 0

▪ We want addition to work in the familiar way, with simple rules.

 We want a situation where “-1” + 1 = 0

 Consider a 3 bit number:

▪ 001 + “-1” = 0

▪ 001 + 111 = 0 

▪ Remember 001 + 111 = 1 000, and the leading one is lost to 
overflow.

 “-1” = 111

▪ Yep!
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Negative Numbers

 Well, if 111 is -1, what is -2? 

▪ -1   -  1

▪ 111 – 001 = 110

 Does that really work?

▪ If it does -2 + 2 = 0

▪ 110  +  010 = 1 000  = 000

 -2 + 5 should be 3, right? 
▪ 110 + 101 =  1 011  =  011
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Finding –x the easy way

 Given a non-negative number in binary, e.g. 5, represented 
with a fixed bit width, e.g. 4

▪ 0101

 We can find its negative by flipping each bit and adding 1
▪ 0101 This is 5

▪ 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

▪ 1011          This is the “twos complement of 5”, e.g. 5 with the bits 
 flipped and 1 added

▪ 0101  +  1011 =  1 0000 = 0000

▪ -x = ~x+1

 Because of the fixed width, the “two’s complement” of a 
number can be used as its negative.  
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Why Does This Work?
  Consider any number and its (ones) complement:

▪ 0101

▪ 1010

 They are called complements because complementary bits 
are set. As a result, if they are added, all bits are necessarily 
set:

▪ 0101 + 1010 = 1111

 Adding 1 to the sum of a number and its complement 
necessarily results in a 0 due to overflow
▪ (0101 + 1010) + 1   =   1111 + 1   = 1 0000  =  0000

 And if x + y = 0, y must equal –x
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Why Does This Work? Cont.

  If x + y = 0

▪ y must equal –x

 So if x + (Complement(x) + 1) = 0
▪ Complement(x) + 1 must equal –x

 Another way of looking at it:
▪ if x + (Complement(x) + 1) = 0

▪ x + Complement(x) = -1

▪ x = -1 - Complement(x)

▪ -x = 1 + Complement(x)
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Visualizing Two’s Complement

 Numbers “wrap around” with -1 at the very end

                       000        001      010        011         100        101       110        111

                         0            1           2            3              -4          -3            -2          -1

 A few things to note:
▪ All negative numbers start with a ”1”

▪ E.g. 100 is “-4”

▪ You can view the leading “1” as introducing a “-4”

▪ E.g.  101 = 1*-4+0*2+1*1= -3 

▪ But  010 = 0*-4+1*2+0*1 = 2

▪ -4 is missing a positive partner
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Complement & Increment Examples

 Decimal Hex Binary 
x -32768 80 00 10000000 00000000 

~x 32767 7F FF 01111111 11111111 

~x+1 -32768 80 00 10000000 00000000 
 

x = Tmin   (The most negative two’s complement number)

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 

~0 -1 FF FF 11111111 11111111 

~0+1 0 00 00 00000000 00000000 
 

x = 0

Canonical counter example
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Encoding Integers: Dense Form

short int x =  15213;

  short int y = -15213;

 C does not mandate using two’s complement

▪ But, most machines do, and we will assume so

 C short 2 bytes long

 Sign Bit
▪ For 2’s complement, most significant bit indicates sign

▪ 0 for nonnegative

▪ 1 for negative

B2T (X ) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X ) = xi 2
i

i=0

w−1



Unsigned Two’s Complement

Sign 
Bit

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

y -15213 C4 93 11000100 10010011 
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Numeric Ranges
 Unsigned Values

▪ UMin = 0

000…0

▪ UMax =  2w – 1

111…1

 Two’s Complement Values

▪ TMin =  –2w–1

100…0

▪ TMax =  2w–1 – 1

011…1

▪ Minus 1

111…1

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 

TMax 32767 7F FF 01111111 11111111 

TMin -32768 80 00 10000000 00000000 

-1 -1 FF FF 11111111 11111111 

0 0 00 00 00000000 00000000 
 

Values for W = 16
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering
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Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16
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+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax  + 1

2’s Complement 
Range

Unsigned
Range

Conversion Visualized
 2’s Comp. → Unsigned

▪ Ordering Inversion

▪ Negative → Big Positive
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Signed vs. Unsigned in C

 Constants

▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

 Casting

▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux;                   int fun(unsigned u);

uy = ty;                   uy = fun(tx);
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0 0U == unsigned

 -1 0 < signed

 -1 0U > unsigned

 2147483647 -2147483648 > signed

 2147483647U -2147483648 < unsigned

 -1 -2 > signed

 (unsigned) -1 -2 > unsigned

  2147483647 2147483648U < unsigned

  2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression, 
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

 0 0U 

 -1 0 

 -1 0U 

 2147483647 -2147483647-1 

 2147483647U -2147483647-1 

 -1 -2 

 (unsigned)-1 -2 

  2147483647 2147483648U 

  2147483647 (int) 2147483648U 



40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
▪ int is cast to unsigned!!

Summary
Casting Signed  Unsigned: Basic Rules
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering



42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sign Extension

 Task:

▪ Given w-bit signed integer x

▪ Convert it to w+k-bit integer with same value

 Rule:
▪ Make k copies of sign bit:

▪ X’ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X 

X’
• • • • • •

• • •

w

wk
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Sign Extension: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

10 = 

-32 16 8 4 2 1

0 0 1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 = 

Positive number Negative number
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Truncation

 Task:

▪ Given k+w-bit signed or unsigned integer X

▪ Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
▪ Drop top k bits:

▪ X  =  xw–1 , xw–2 ,…, x0

• • •

• • •X‘ 

w

X • • • • • •

wk
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Truncation: Simple Example

10 = 

-16 8 4 2 1

0 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

6 = 

-8 4 2 1

0 1 1 0

Sign change

2 = 

-16 8 4 2 1

0 0 0 1 0

2 = 

-8 4 2 1

0 0 1 0

-6 = 

-16 8 4 2 1

1 1 0 1 0

-6 = 

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6
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Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)

▪ Unsigned: zeros added

▪ Signed: sign extension

▪ Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted

▪ Unsigned: mod operation

▪ Signed: similar to mod

▪ For small (in magnitude) numbers yields expected behavior
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering
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Unsigned Addition

 Standard Addition Function

▪ Ignores carry output

 Implements Modular Arithmetic
s  =  UAddw(u , v) = u + v  mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+  1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

223

+ 213

446

190

unsigned char
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Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior

▪ Signed vs. unsigned addition in C:

 int s, t, u, v;

 s = (int) ((unsigned) u + (unsigned) v);

 t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+  1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66
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6
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4

8

12

16

20

24

28

32

Integer Addition

Visualizing “True Sum” Integer Addition

 Integer Addition

▪ 4-bit integers u, v

▪ Compute true sum 
Add4(u , v)

▪ Values increase linearly 
with u and v

▪ Forms planar surface

Add4(u , v)

u

v
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12

14

16

Visualizing Unsigned Addition

 Wraps Around

▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow
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-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values

▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum  2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver
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Multiplication
 Goal: Computing Product of w-bit numbers x, y

▪ Either signed or unsigned

 Result: Same as computing ideal, exact result x*y and keeping 
w lower bits.

 Ideal,exact results can be bigger than w bits
▪ Worst case is up to 2w bits

▪ Unsigned, because all bits are magnitude

▪ Signed, but only for Tmin*Tmin, because anything added to Tmin 
reduces its magnitude and Tmax is less than Tmin.

 So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ Impossible in hardware (at least without limits), as all resources are finite

▪ In practice, is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages
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Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3) == u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k  bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••
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Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives   u / 2k 

▪ Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 

x >> 1 7606.5 7606 1D B6 00011101 10110110 

x >> 4 950.8125 950 03 B6 00000011 10110110 

x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u

2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0
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Signed Power-of-2 Divide with Shift
 Quotient of Signed by Power of 2
▪ x >> k gives   x / 2k 

▪ Uses arithmetic shift

▪
Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a 
bias).

0 0 1 0 0 0•••

x

2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary 
x -15213 -15213 C4 93 11000100 10010011 

x >> 1 -7606.5 -7607 E2 49  11100010 01001001 

x >> 4 -950.8125 -951 FC 49 11111100 01001001 

x >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Round-toward-0 Divide
 Quotient of Negative Number by Power of 2
▪ Want   x / 2k     (Round Toward 0)

▪ Compute as   (x+(2k-1))/ 2k 

▪ In C: (x + (1<<k)-1) >> k

▪ Biases dividend toward 0

Case 1: No rounding

Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1



59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering



60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Byte Ordering

 So, how are the bytes within a multi-byte word ordered in 
memory?

 Conventions

▪ Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and Linux

▪ Least significant byte has lowest address

 Becomes a concern when data is communicated
▪ Over a network, via files, etc. 

 Important notes
▪ Bits are not reversed, as the low order bit is the reference point. 

▪ Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte
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Byte Ordering Example

 Example

▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Address Instruction Code Assembly Rendition

 8048365: 5b                   pop    %ebx

 8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx

 804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly

▪ Text representation of binary machine code

▪ Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse: ab 12 00 00
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Thanks!

 Questions?
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