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Bits, Bytes, and Integers

m Representing information as bits
|
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Analog Computers

m Before digital computers there were analog computers.

m Consider a couple of simple analog computers:

= A simple circuit can allow one to adjust voltages using variable
resistors and measure the output using a volt meter:

= A simple network of adjustable parallel resistors can allow one to
find the average of the inputs.
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https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-

Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-

without-a-transistor-op-amp-and-any-external-supply
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Needing Less Accuracy, Precision is Better

m We don’t try to measure exactly
= We just ask, is it high enough to be “On”, or
" |s it low enough to be “Off”.

m We have two states, so we have a binary, or 2-ary, system.

= We represent these statesas 0 and 1

m Now we can easily interpret, communicate, and duplicate signals well enough to know
what they mean.
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Binary Representation

m Binary representation leads to a simple binary, i.e. base-2,
numbering system

" Orepresents 0

" 1 represents 1

= Each “place” represents a power of two, exactly as each place in our
usual “base 10”7, 10-ary numbering system represents a power of 10

m By encoding/interpreting sets of bits in various ways, we can
represent different things:

= Operations to be executed by the processor, numbers, enumerable
things, such as text characters

m As long as we can assign it to a discrete number, we can
represent it in binary
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Binary Representation:
Simple Numbers

m For example, we can count in binary, a base-2 numbering
system
= 000, 001, 010,011, 100, 101, 110, 111, ...
= 000 =0%2% + 0*21* 0*2° = O (in decimal)
= 001 =0%2% + 0*21* 1*29 = 1 (in decimal)
= 010 =0%22% + 1*21* 0*2° = 2 (in decimal)
= 011=0%22 + 1*21+ 1*20 = 3 (in decimal)
= Etc.
m For reference, consider some base-10 examples:
= 000 =0*10% + 0*10'+* 0*10Q°
= 001 =0*102 + 0*10! * 1*10°
= 357 =3*102 + 5*101 * 7%*20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7



Carnegie Mellon

Hexadecimal and Octal

m Writing out numbers in binary takes too many digits

m We want a way to represent numbers more densely such that
fewer digits are required

= But also such that it is easy to get at the bits that we want

m Any power-of-two base provides this property

® Qctal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our
familiar base-10.

® Each has been used by “computer people” over time
" Hexadecimal is often preferred because it is denser.
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Hexadecimal

: 4 @
m Hexadecimal 0016 to FFi6 SRR

= Base 16 number representation
= Use characters ‘0’ to ‘9" and ‘A’ to ‘F

m Consider 1A2B in Hexadecimal:
= 1*%163 + A*162 + 2*16' + B*16°
= 1*163 + 10*16%2 + 2*16! + 11*16° =6699 (decimal)

" The C Language prefixes hexadecimal numbers with “Ox”
so they aren’t confused with decimal numbers

= Write FA1D37B1sin C as

= OxFA1D37B
. Oxfald37b 18213: 0100 0111 0010 0101

4 7 2 5
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Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10



Carnegie Mellon

Boolean Algebra
m Developed by George Boole in 19th Century

= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or

m A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1

&0 1 | [0 1
0|0 O 0|0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A=1when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AMO 1
o1 0/0 1
110 111 O
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General Boolean Algebras

m Operate on Bit Vectors

= Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply
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Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}

"a=1if] €A
= 01101001 {0,3,5,6}
= 76543210
= 01010101 {0,2,4,6}
= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
m A Symmetric difference 00111100 {2,3,4,5}

m o~ Complement 10101010 {1,3,5,7}
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Bit-Level Operations in C

>
Operations &, |, ~, * Available in C o P&
m Operations &, |, ~, vailable in 5 o1 0000
= Apply to any “integral” data type 1|1 0001
= long, int, short, char, unsigned 2 12 10010
P ’ ’ 3 |3 |0011
= View arguments as bit vectors 4 | 4 10100
_ , i 5|5 | 0101
= Arguments applied bit-wise 6 16 10110
m Examples (Char data type) Z Z (1)(1,(1,3
= ~0x41 > 9 [ 9 ]1001
A |10 1010
. B (11| 1011
= ~0x00 - C |12 | 1100
D (13| 1101
) E [14] 1110
= 0x69 & 0x55 - F |15]| 1111

= 0x69 | 0X55 >
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Bit-Level Operations in C

\
St 2 o
H ~ A H H ‘3‘ O %

m Operations &, |, ~, M Available in C 5 1o T 0000
= Apply to any “integral” data type 1|1 0001
] . . 2 [ 2 [ 0010
long, int, short, char, unsigned 3 T3 0011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise > | 5 | 0101
g PP 6 | 6 | 0110
m Examples (Char data type) R R
= ~0x41 - 10111110 9 | 9 [ 1001
.~ A |10 1010
Ox00 - 11111111 B T11 11011
= 0x69 & 0x55: 0x69 | 0x55: Cc [12] 1100
0110 1001 0110 1001 D |13]1101
E |14 | 1110
& 0101 0101 | 0101 0101 F |15 | 1111

0100 0001 01111101
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Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= AlwaysreturnOor1
= Early termination

m Examples (char data type) Watch out for && vs. & (and || vs. |)...

" 10x41 - 0x00 Super common C programming pitfall!
= 10x00 - 0x01

= 110x41-> 0x01

" 0x69 && 0x55 - 0x01
= 0x69 || Ox55 - 0x01
= p&& *p (avoids null pointer access)
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Shift Operations

m Left Shift: x << vy Argument x | 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: < >> v
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2 | 00011000

. : 101 1
= Throw away extra bits on right Argument x [ 10100010

" Logical shift << 3 00010000

= Fill with 0’s on left Log. >> 2 00101000
= Arithmetic shift

= Replicate most significant bit on left

Arith.>> 2 | 11101000

m Undefined Behavior

= Shift amount < 0 or = word size
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Today: Bits, Bytes, and Integers

m Integers

= Representation: unsigned and signed
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Binary Number Lines

m In binary, the number of bits in the data type size
determines the number of points on the number line.

= We can assign the points any meaning we’d like

m Consider the following examples:
= 1 bit number line
- O
0 1
= 2 bit number line
9—0—0—0-
00 01 10 11
= 3 bit number line

9 000 0000

000 001010 011 100 101 110 111
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Some Purely Imaginary Examples

m 3 bit number line

o000 0000

-1/16 -1/8 -1/4 0 1/16 1/8 1/4 1/2

o000 0 00O

4

o000 0000

4 3 2 1 0 1 2 3

o000 0000
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Overflow

m Let’s consider a simple 3 digit number line:

o000 0000

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

m What happens if we add 1to 7?
" |n other words, what happens if we add 1to 1117

m 111+ 001 =1 000

= But, we only get 3 bits — so we lose the leading-1.
" This is called overflow

m The result is 000
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Modulus Arithmetic

m Let’s explore this idea of overflow some more
= 111+001=1000=000

111+ 010 =1001 =001

111+011= 1010 =010

111+100= 1011 =011

111+110 =1101=101
111+111=1110= 110

m So, arithmetic “wraps around” when it gets “too positive”
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Unsigned and Non-Negative Integers

m We'll use the term “ints” to mean the finite set of integer
numbers that we can represent on a number line enumerated
by some fixed number of bits, i.e. bit width.

m We normally represent unsighed and non-negative int using
simple binary as we have already discussed

= An “unsigned” int is any int on a number line, e.g. of a data type, that
doesn’t contain any negative numbers

= A non-negative number is a number greater than or equal to (>=) Oon a
number line, e.g. of a data type, that does contain negative numbers
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How represent negative Numbers?

m We could use the leading bit as a sign bit:
®" 0 means non-negative
= 1 means negative

o000 0000

000 001 010 011 100 101 110 111
0 1 2 3 -0 -1 -2 -3

m This has some benefits

" |t lets us represent negative and non-negative numbers
" Orepresents 0

m It also has some drawbacks
"= There is a -0, which is the same as 0, except that it is different
" How to add such numbers 1 + -1 should equal O
= But, by simple math, 001 + 101 = 110, which is -27?
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A Magic Trick!

m Let’s just start with three ideas:
= 1 should be represented as 1
"-1+1=0

= We want addition to work in the familiar way, with simple rules.
m We want a situation where “-1”+1 =0

m Consider a 3 bit number:
= 001+ “1”=0
= 001+111=0

= Remember 001 + 111 =1 000, and the leading one is lost to
overflow.

m“-1"=111
" Yep!
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Negative Numbers
m Well, if 111 is -1, what is -27

=1 -1
= 111-001=110

m Does that really work?
" [fitdoes-2+2=0
= 110 + 010=1000 =000

m -2 + 5 should be 3, right?
= 110+101= 1011 = 011
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Finding —x the easy way

m Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4
= 0101

m We can find its negative by flipping each bit and adding 1
= 0101 Thisis 5
= 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

1011 This is the “twos complement of 57, e.g. 5 with the bits
flipped and 1 added

0101 + 1011 = 1 0000 = 0000

"X ="x+1

m Because of the fixed width, the “two’s complement” of a
number can be used as its negative.
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Why Does This Work?

m Consider any number and its (ones) complement:
= 0101
= 1010

m They are called complements because complementary bits

are set. As a result, if they are added, all bits are necessarily
set:

" 0101 +1010=1111

m Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow
= (0101+1010)+1 = 1111+1 =10000 = 0000

m And if x+y =0, y must equal —x
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Why Does This Work? Cont.

mIfx+y=0

= v must equal —x

m So if x + (Complement(x) + 1) =0

= Complement(x) + 1 must equal —x

m Another way of looking at it:
" if x + (Complement(x) +1)=0
= x + Complement(x) =-1
= x =-1- Complement(x)
= -x =1+ Complement(x)
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Visualizing Two’s Complement

m Numbers “wrap around” with -1 at the very end

o000 0000

000 001 010 011 100 101 110 111
0 1 2 3 -4 -3 -2 -1

m A few things to note:
= All negative numbers start with a ”1”
= E.g. 100 is “-4”
® You can view the leading “1” as introducing a “-4”
= E.g. 101 =1*-4+0%2+1*1=-3
= But 010 =0*-4+1*2+0*1 =2
= -4 js missing a positive partner
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Complement & Increment Examples

x=0
Decimal Hex Binary
0 0| 00 00| 00000000 00000000
~0 -1| FF FF| 11111111 11111111
~0+1 0| 00 O0O| 00000000 0OOOOOOO

X =Tmin (The most negative two’s complement number)

Decimal [ Hex Binary
X -32768| 80 00 10000000 00000000
~X 32767| 7F FF| 01111111 11111111
~x+1 -32768| 80 00| 10000000 00000000

Canonical counter example
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Encoding Integers: Dense Form

Unsigned Two’s Complement
w-1 ) w—2 .
B2UX) = Y x;-2° BT(X) = —x, 2"+ x -2
i=0 i=0
short int x = 15213; \
short int y = -15213;

Sign
m C does not mandate using two’s complement .
= But, most machines do, and we will assume so B |t

m Cshort 2 bytes long

Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative
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Numeric Ranges

m Unsigned Values m Two’s Complement Values

[ ] 1 -
UMin 0 = TMin _ _yw-1
000..0 100...0
[ - w_
UMax 2" = TMax =  2%i-1
111...1 011..1
" Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535( FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 000OOOOOO
-1 -1| FF FF| 11111111 11111111
0 0| 00 00| 00000000 0OOOOOOO
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Today: Bits, Bytes, and Integers

m Integers

= Conversion, casting
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Mapping Sighed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 = 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 ‘+/ - 16 b 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
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Relation between Signed & Unsigned

Two’s Complement Unsigned
T2U
X > — > UX
T2B e B2U

Maintain Same Bit Pattern

w—1 0
Ux 1+1+|+ °® oo +|+]|+
X -|+]+ °©o o0 +]|+]+

Large negative weight
becomes
Large positive weight
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Conversion Visualized

m 2’s Comp. = Unsigned

= QOrdering Inversion ® UMax

= Negative — Big Positive ® UMax-1

/_:. TMax +1 | Unsigned

TMax @ *®  TMax Range
2’s Complement 0o @ @ 0
Range 1 .J/ -
-2
TMin
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Signed vs. Unsigned in C

m Constants

= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 42949672590

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= |Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u) ;

uy = ty; uy = fun (tx) ;
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Casting Surprises

m Expression Evaluation

"= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN=-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation  Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signhed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed
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Summary
Casting Sighed <= Unsignhed: Basic Rules

m Bit pattern is maintained

m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!
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Today: Bits, Bytes, and Integers

m Integers

= Expanding, truncating
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Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:
= X = Xyq s Xpye1 s Xupet » Xz 1+-0 X
L ]
k copies of MSB <€ w >
X o 0o
X, o 00 [ I BN ]
< k >< w >
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Sign Extension: Simple Example

Positive number

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Negative number

-16 8 4 2 1
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Truncation

m Task:

" Given k+w-bit signed or unsigned integer X
= Convert it to w-bit integer X’ with same value for “small enough” X

m Rule:
= Drop top k bits:
" XB= X, 1, X0, X
< k ><€ W >
X o 00 o 060

<€ w >
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Truncation: Simple Example

No sign change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 1l6 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -0 -10 mod 16 = 22U mod 16 = 06U = 6
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Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
" Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

® For small (in magnitude) numbers yields expected behavior
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Today: Bits, Bytes, and Integers

m Integers

= Addition, negation, multiplication, shifting
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Unsigned Addition

Operands: w bits u ==
—|— \% o000
True Sum: w+1 bits y+ v -
Discard Carry: whbits ~ UAdd (u , v) ceo .
>
L . Q@:" 000@@‘&%6
m Standard Addition Function 5T T 0000
" |gnores carry output ; ; 8823
m Implements Modular Arithmetic + o oto0
S = UAdd (u, v) = u+v mod?2v¥ 2 2 81%
7 |7 | 0111
unsigned char 1110 1001 E9 223 g g 1882
+ 1101 0101 + D5 + 213 A [10 ] 1010
B |11 | 1011
1 1011 1110 1BE 446 Cc [12 [ 1100
1011 1110 BE 190  [Fli4]1ito
F |15 | 1111
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Two’s Complement Addition

Operands: w bits u 200
+ v o 00

True Sum: w+1 bits
u + V oo
Discard Carry: w bits TAdd, (u, v) ¢o

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Will give s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 _lEE -66

1011 1110 BE -66
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Visualizing “True Sum” Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers uv Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface
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Visualizing Unsigned Addition

m Wraps Around Overflow
\

=" |f true sum > 2%
® At most once

True Sum
Jw+lT
Overflow
2% T j_ ‘|'
0 1

Modular Sum
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Visualizing 2’s Complement Addition

NegOver
m Values \

= 4-bit two’s comp.

TAdd,(u, v)

= Range from -8 to +7

m Wraps Around
" |f sum >2w1
= Becomes negative
= At most once
= |f sum < —2w1
= Becomes positive
= At most once

u 4 5 _ PosOver
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Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m Result: Same as computing ideal, exact result x*y and keeping
w lower bits.

m |ldeal,exact results can be bigger than w bits
= Worst case is up to 2w bits
= Unsigned, because all bits are magnitude
= Signed, but only for Tmin*Tmin, because anything added to Tmin
reduces its magnitude and Tmax is less than Tmin.
m SO, maintaining exact results...
= would need to keep expanding word size with each product computed
= Impossible in hardware (at least without limits), as all resources are finite
" |n practice, is done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages
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Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

Operands: w bits

* 2k Ol eee |01110] eee |0OIl0
True Product: w+k bits u - 2k o0 0| eee |0O]O
Discard k bits: w bits UMult, (u , 2) ooe 0] eee J0OJO
TMult, (u , 2¥)
m Examples
g << 3 == u * 8
" (u<< 5 - (u<kK 3) == u * 24

" Most machines shift and add faster than multiply
= Compiler generates this code automatically
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Carnegie Mellon

Unsighed Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
=y > kgives Lu / 2¢]
= Uses logical shift

k
u °oe eoe Binary Point
Operands:
l 2k Ol eee |O|110| eee |0OIO0
Division: 3/ 2k (0] eee 10]0 l/ cee
Result: |/ 2k | Lol e~ [0]O
Division Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x > 1 7606.5 7606 1D B6( 00011101 10110110

x >> 4 950.8125 950 03 B6( 00000011 10110110

x >> 8 | 59.4257813 59 00 3B 00000000 00111011
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Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x > kgives Lx / 2¢]

= Uses arithmetic shift
a Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a

bias). k
000 000 1 1
Operands: X Binary Point
l 2k Ol eee |O|110| eee |0O|0
Division: x / 2k Ll L I/ Ll
Result:  RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
X -15213 -15213 C4 93| 11000100 10010011
x > 1 -7606.5 -7607 E2 49| 11100010 01001001
x >> 4 -950.8125 -951 FC 49| 11111100 01001001
x >> 8 |-59.4257813 -60 FF C4( 11111111 11000100
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Carnegie Mellon

Round-toward-0 Divide

m Quotient of Negative Number by Power of 2
= Want [ x / 2¢] (Round Toward 0)
= Compute as L (x+(2%-1))/ 2~]
» InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k

Dividend: U 1 ot 0| eee |0O]O
_|_2k_1 Ol eee |O|O0|1]| eee |1]1

1 coe 1[ eee [1[1] Binary Point

Divisor: | 2k [O] ees |0[1]0] e+ |00 /

|_u/2k—| 1] eee |11111 XY 41 eee |111

Biasing has no effect
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Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x LAl ] eee
_|_2k_1 Ol eee [0|0O]1] eee |1]1

1 eoo oo
\ J
Y
Incremented by 1 Binary Point
Divisor: [ 2k 10| eee [0]1]0] e 0|0 /
[x/2¢] O e T T
\ J
Y

Incremented by 1

Biasing adds 1 to final result
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Carnegie Mellon

Today: Bits, Bytes, and Integers

m Byte Ordering

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59



Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and Linux
= Least significant byte has lowest address
m Becomes a concern when data is communicated

= Qver a network, via files, etc.

m Important notes
= Bits are not reversed, as the low order bit is the reference point.
= Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte
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Carnegie Mellon

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01l 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01
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Carnegie Mellon

Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code
" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop $ebx
8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx

804836¢c: 83 bb 28 0G 00 00 00 cmpl $0x0,0x28 (%ebx)

m Deciphering Numbers

= Value: O0x12ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

® Reverse: ab 12 00 00
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Thanks!

m Questions?
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