
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

14-513 18-613

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

From Bits through Integers

18-213/18-613
Introduction to Computer Systems

2nd Lecture, May 14, 2025

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Analog Computers
 Before digital computers there were analog computers.

 Consider a couple of simple analog computers:

▪ A simple circuit can allow one to adjust voltages using variable
resistors and measure the output using a volt meter:

▪ A simple network of adjustable parallel resistors can allow one to
find the average of the inputs.

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-
Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-
without-a-transistor-op-amp-and-any-external-supply

https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Needing Less Accuracy, Precision is Better
 We don’t try to measure exactly

▪ We just ask, is it high enough to be “On”, or

▪ Is it low enough to be “Off”.

 We have two states, so we have a binary, or 2-ary, system.

▪ We represent these states as 0 and 1

 Now we can easily interpret, communicate, and duplicate signals well enough to know
what they mean.

0.0V

0.2V

0.9V

1.1V

0 1 0

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Representation
 Binary representation leads to a simple binary, i.e. base-2,

numbering system

▪ 0 represents 0

▪ 1 represents 1

▪ Each “place” represents a power of two, exactly as each place in our
usual “base 10”, 10-ary numbering system represents a power of 10

 By encoding/interpreting sets of bits in various ways, we can
represent different things:

▪ Operations to be executed by the processor, numbers, enumerable
things, such as text characters

 As long as we can assign it to a discrete number, we can
represent it in binary

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Representation:
Simple Numbers
 For example, we can count in binary, a base-2 numbering

system

▪ 000, 001, 010, 011, 100, 101, 110, 111, …

▪ 000 = 0*22 + 0*21 + 0*20 = 0 (in decimal)

▪ 001 = 0*22 + 0*21 + 1*20 = 1 (in decimal)

▪ 010 = 0*22 + 1*21 + 0*20 = 2 (in decimal)

▪ 011 = 0*22 + 1*21 + 1*20 = 3 (in decimal)

▪ Etc.

 For reference, consider some base-10 examples:

▪ 000 = 0*102 + 0*101 + 0*100

▪ 001 = 0*102 + 0*101 + 1*100

▪ 357 = 3*102 + 5*101 + 7*20

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Hexadecimal and Octal

 Writing out numbers in binary takes too many digits

 We want a way to represent numbers more densely such that
fewer digits are required

▪ But also such that it is easy to get at the bits that we want

 Any power-of-two base provides this property
▪ Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our

familiar base-10.

▪ Each has been used by “computer people” over time

▪ Hexadecimal is often preferred because it is denser.

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Hexadecimal
 Hexadecimal 0016 to FF16

▪ Base 16 number representation

▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Consider 1A2B in Hexadecimal:

▪ 1*163 + A*162 + 2*161 + B*160

▪ 1*163 + 10*162 + 2*161 + 11*160 = 6699 (decimal)

▪ The C Language prefixes hexadecimal numbers with “0x”
so they aren’t confused with decimal numbers

▪ Write FA1D37B16 in C as

▪ 0xFA1D37B

▪ 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

18213: 0100 0111 0010 0101

4 7 2 5

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Boolean Algebra
 Developed by George Boole in 19th Century

▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And
◼ A&B = 1 when both A=1 and B=1

Or
◼ A|B = 1 when either A=1 or B=1

Not
◼ ~A = 1 when A=0

Exclusive-Or (Xor)
◼ A^B = 1 when either A=1 or B=1, but not both

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

General Boolean Algebras

 Operate on Bit Vectors

▪ Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

 01000001

01101001

| 01010101

 01111101

01101001

^ 01010101

 00111100

~ 01010101

 1010101001000001 01111101 00111100 10101010

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Example: Representing & Manipulating Sets

 Representation

▪ Width w bit vector represents subsets of {0, …, w–1}

▪ aj = 1 if j ∈ A

▪ 01101001 { 0, 3, 5, 6 }

▪ 76543210

▪ 01010101 { 0, 2, 4, 6 }

▪ 76543210

 Operations
▪ & Intersection 01000001 { 0, 6 }

▪ | Union 01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~ Complement 10101010 { 1, 3, 5, 7 }

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C

▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

 Examples (Char data type)
▪ ~0x41 → 1011 11100xBE~010000012 → 101111102

▪ ~0x00 → 1111 11110xF~000000002 → 1111112

▪ 0x69 & 0x55: 0x69 | 0x55:

 0110 1001 0110 1001

 & 0101 0101 | 0101 0101

 ----------------- -----------------

 0100 0001011010 0111 1101011010012 012 & 010101012 → 010000012

0x7D

▪ 011010012 | 010101012 → 011111012

Bit-Level Operations in C

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Contrast: Logic Operations in C

 Contrast to Bit-Level Operators

▪ Logic Operations: &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

 Examples (char data type)
▪ !0x41 → 0x00

▪ !0x00 → 0x01

▪ !!0x41→ 0x01

▪ 0x69 && 0x55 → 0x01

▪ 0x69 || 0x55 → 0x01

▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
Super common C programming pitfall!

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Shift Operations

 Left Shift: x << y

▪ Shift bit-vector x left y positions

– Throw away extra bits on left

▪ Fill with 0’s on right

 Right Shift: x >> y

▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right

▪ Logical shift

▪ Fill with 0’s on left

▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior

▪ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Binary Number Lines
 In binary, the number of bits in the data type size

determines the number of points on the number line.

▪ We can assign the points any meaning we’d like

 Consider the following examples:
▪ 1 bit number line

 0 1

▪ 2 bit number line

 00 01 10 11

▪ 3 bit number line

 000 001 010 011 100 101 110 111

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Purely Imaginary Examples

 3 bit number line

 -1/16 -1/8 -1/4 0 1/16 1/8 1/4 1/2

 0 1 2 3 4 5 6 7

 -4 -3 -2 -1 0 1 2 3

 A B C D E F G H

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overflow

 Let’s consider a simple 3 digit number line:

 0 1 2 3 4 5 6 7

 000 001 010 011 100 101 110 111

 What happens if we add 1 to 7?

▪ In other words, what happens if we add 1 to 111?

 111+ 001 = 1 000
▪ But, we only get 3 bits – so we lose the leading-1.

▪ This is called overflow

 The result is 000

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Modulus Arithmetic

 Let’s explore this idea of overflow some more

▪ 111 + 001 = 1 000 = 000

▪ 111 + 010 = 1 001 = 001

▪ 111 + 011 = 1 010 = 010

▪ 111 + 100 = 1 011 = 011

▪ …

▪ 111 + 110 = 1 101 = 101

▪ 111 + 111 = 1 110 = 110

 So, arithmetic “wraps around” when it gets “too positive”

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned and Non-Negative Integers

 We’ll use the term “ints” to mean the finite set of integer
numbers that we can represent on a number line enumerated
by some fixed number of bits, i.e. bit width.

 We normally represent unsigned and non-negative int using
simple binary as we have already discussed

▪ An “unsigned” int is any int on a number line, e.g. of a data type, that
doesn’t contain any negative numbers

▪ A non-negative number is a number greater than or equal to (>=) 0 on a
number line, e.g. of a data type, that does contain negative numbers

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How represent negative Numbers?
 We could use the leading bit as a sign bit:

▪ 0 means non-negative

▪ 1 means negative

 000 001 010 011 100 101 110 111

 0 1 2 3 -0 -1 -2 -3

 This has some benefits

▪ It lets us represent negative and non-negative numbers

▪ 0 represents 0

 It also has some drawbacks

▪ There is a -0, which is the same as 0, except that it is different

▪ How to add such numbers 1 + -1 should equal 0

▪ But, by simple math, 001 + 101 = 110, which is -2?

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Magic Trick!
 Let’s just start with three ideas:

▪ 1 should be represented as 1

▪ -1 + 1 = 0

▪ We want addition to work in the familiar way, with simple rules.

 We want a situation where “-1” + 1 = 0

 Consider a 3 bit number:

▪ 001 + “-1” = 0

▪ 001 + 111 = 0

▪ Remember 001 + 111 = 1 000, and the leading one is lost to
overflow.

 “-1” = 111

▪ Yep!

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Negative Numbers

 Well, if 111 is -1, what is -2?

▪ -1 - 1

▪ 111 – 001 = 110

 Does that really work?

▪ If it does -2 + 2 = 0

▪ 110 + 010 = 1 000 = 000

 -2 + 5 should be 3, right?
▪ 110 + 101 = 1 011 = 011

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Finding –x the easy way

 Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4

▪ 0101

 We can find its negative by flipping each bit and adding 1
▪ 0101 This is 5

▪ 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

▪ 1011 This is the “twos complement of 5”, e.g. 5 with the bits
 flipped and 1 added

▪ 0101 + 1011 = 1 0000 = 0000

▪ -x = ~x+1

 Because of the fixed width, the “two’s complement” of a
number can be used as its negative.

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Does This Work?
 Consider any number and its (ones) complement:

▪ 0101

▪ 1010

 They are called complements because complementary bits
are set. As a result, if they are added, all bits are necessarily
set:

▪ 0101 + 1010 = 1111

 Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow
▪ (0101 + 1010) + 1 = 1111 + 1 = 1 0000 = 0000

 And if x + y = 0, y must equal –x

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Does This Work? Cont.

 If x + y = 0

▪ y must equal –x

 So if x + (Complement(x) + 1) = 0
▪ Complement(x) + 1 must equal –x

 Another way of looking at it:
▪ if x + (Complement(x) + 1) = 0

▪ x + Complement(x) = -1

▪ x = -1 - Complement(x)

▪ -x = 1 + Complement(x)

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Visualizing Two’s Complement

 Numbers “wrap around” with -1 at the very end

 000 001 010 011 100 101 110 111

 0 1 2 3 -4 -3 -2 -1

 A few things to note:
▪ All negative numbers start with a ”1”

▪ E.g. 100 is “-4”

▪ You can view the leading “1” as introducing a “-4”

▪ E.g. 101 = 1*-4+0*2+1*1= -3

▪ But 010 = 0*-4+1*2+0*1 = 2

▪ -4 is missing a positive partner

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Complement & Increment Examples

 Decimal Hex Binary
x -32768 80 00 10000000 00000000

~x 32767 7F FF 01111111 11111111

~x+1 -32768 80 00 10000000 00000000

x = Tmin (The most negative two’s complement number)

 Decimal Hex Binary
0 0 00 00 00000000 00000000

~0 -1 FF FF 11111111 11111111

~0+1 0 00 00 00000000 00000000

x = 0

Canonical counter example

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Encoding Integers: Dense Form

short int x = 15213;

 short int y = -15213;

 C does not mandate using two’s complement

▪ But, most machines do, and we will assume so

 C short 2 bytes long

 Sign Bit
▪ For 2’s complement, most significant bit indicates sign

▪ 0 for nonnegative

▪ 1 for negative

B2T (X) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X) = xi 2
i

i=0

w−1



Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Numeric Ranges
 Unsigned Values

▪ UMin = 0

000…0

▪ UMax = 2w – 1

111…1

 Two’s Complement Values

▪ TMin = –2w–1

100…0

▪ TMax = 2w–1 – 1

011…1

▪ Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
 2’s Comp. → Unsigned

▪ Ordering Inversion

▪ Negative → Big Positive

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signed vs. Unsigned in C

 Constants

▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

 Casting

▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0 0U == unsigned

 -1 0 < signed

 -1 0U > unsigned

 2147483647 -2147483648 > signed

 2147483647U -2147483648 < unsigned

 -1 -2 > signed

 (unsigned) -1 -2 > unsigned

 2147483647 2147483648U < unsigned

 2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

 0 0U

 -1 0

 -1 0U

 2147483647 -2147483647-1

 2147483647U -2147483647-1

 -1 -2

 (unsigned)-1 -2

 2147483647 2147483648U

 2147483647 (int) 2147483648U

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
▪ int is cast to unsigned!!

Summary
Casting Signed Unsigned: Basic Rules

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sign Extension

 Task:

▪ Given w-bit signed integer x

▪ Convert it to w+k-bit integer with same value

 Rule:
▪ Make k copies of sign bit:

▪ X’ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X’
• • • • • •

• • •

w

wk

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Truncation

 Task:

▪ Given k+w-bit signed or unsigned integer X

▪ Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
▪ Drop top k bits:

▪ X = xw–1 , xw–2 ,…, x0

• • •

• • •X‘

w

X • • • • • •

wk

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)

▪ Unsigned: zeros added

▪ Signed: sign extension

▪ Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted

▪ Unsigned: mod operation

▪ Signed: similar to mod

▪ For small (in magnitude) numbers yields expected behavior

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned Addition

 Standard Addition Function

▪ Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

223

+ 213

446

190

unsigned char

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior

▪ Signed vs. unsigned addition in C:

 int s, t, u, v;

 s = (int) ((unsigned) u + (unsigned) v);

 t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing “True Sum” Integer Addition

 Integer Addition

▪ 4-bit integers u, v

▪ Compute true sum
Add4(u , v)

▪ Values increase linearly
with u and v

▪ Forms planar surface

Add4(u , v)

u

v

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around

▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values

▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum  2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Multiplication
 Goal: Computing Product of w-bit numbers x, y

▪ Either signed or unsigned

 Result: Same as computing ideal, exact result x*y and keeping
w lower bits.

 Ideal,exact results can be bigger than w bits
▪ Worst case is up to 2w bits

▪ Unsigned, because all bits are magnitude

▪ Signed, but only for Tmin*Tmin, because anything added to Tmin
reduces its magnitude and Tmax is less than Tmin.

 So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ Impossible in hardware (at least without limits), as all resources are finite

▪ In practice, is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3) == u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives  u / 2k 

▪ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Signed Power-of-2 Divide with Shift
 Quotient of Signed by Power of 2
▪ x >> k gives  x / 2k 

▪ Uses arithmetic shift

▪
Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a
bias).

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
x -15213 -15213 C4 93 11000100 10010011

x >> 1 -7606.5 -7607 E2 49 11100010 01001001

x >> 4 -950.8125 -951 FC 49 11111100 01001001

x >> 8 -59.4257813 -60 FF C4 11111111 11000100

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Round-toward-0 Divide
 Quotient of Negative Number by Power of 2
▪ Want  x / 2k  (Round Toward 0)

▪ Compute as  (x+(2k-1))/ 2k 

▪ In C: (x + (1<<k)-1) >> k

▪ Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers

▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Byte Ordering

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Byte Ordering

 So, how are the bytes within a multi-byte word ordered in
memory?

 Conventions

▪ Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and Linux

▪ Least significant byte has lowest address

 Becomes a concern when data is communicated
▪ Over a network, via files, etc.

 Important notes
▪ Bits are not reversed, as the low order bit is the reference point.

▪ Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Byte Ordering Example

 Example

▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Instruction Code Assembly Rendition

 8048365: 5b pop %ebx

 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly

▪ Text representation of binary machine code

▪ Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse: ab 12 00 00

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thanks!

 Questions?

	Slide 1
	Slide 2
	Slide 3: Bits, Bytes, and Integers
	Slide 4: Analog Computers
	Slide 5: Needing Less Accuracy, Precision is Better
	Slide 6: Binary Representation
	Slide 7: Binary Representation: Simple Numbers
	Slide 8: Hexadecimal and Octal
	Slide 9: Hexadecimal
	Slide 10: Today: Bits, Bytes, and Integers
	Slide 11: Boolean Algebra
	Slide 12: General Boolean Algebras
	Slide 13: Example: Representing & Manipulating Sets
	Slide 14: Bit-Level Operations in C
	Slide 15: Bit-Level Operations in C
	Slide 16: Contrast: Logic Operations in C
	Slide 17: Shift Operations
	Slide 18: Today: Bits, Bytes, and Integers
	Slide 19: Binary Number Lines
	Slide 20: Some Purely Imaginary Examples
	Slide 21: Overflow
	Slide 22: Modulus Arithmetic
	Slide 23: Unsigned and Non-Negative Integers
	Slide 24: How represent negative Numbers?
	Slide 25: A Magic Trick!
	Slide 26: Negative Numbers
	Slide 27: Finding –x the easy way
	Slide 28: Why Does This Work?
	Slide 29: Why Does This Work? Cont.
	Slide 30: Visualizing Two’s Complement
	Slide 31: Complement & Increment Examples
	Slide 32: Encoding Integers: Dense Form
	Slide 33: Numeric Ranges
	Slide 34: Today: Bits, Bytes, and Integers
	Slide 35: Mapping Signed  Unsigned
	Slide 36: Relation between Signed & Unsigned
	Slide 37: Conversion Visualized
	Slide 38: Signed vs. Unsigned in C
	Slide 39: Casting Surprises
	Slide 40: Summary Casting Signed ↔ Unsigned: Basic Rules
	Slide 41: Today: Bits, Bytes, and Integers
	Slide 42: Sign Extension
	Slide 43: Sign Extension: Simple Example
	Slide 44: Truncation
	Slide 45: Truncation: Simple Example
	Slide 46: Summary: Expanding, Truncating: Basic Rules
	Slide 47: Today: Bits, Bytes, and Integers
	Slide 48: Unsigned Addition
	Slide 49: Two’s Complement Addition
	Slide 50: Visualizing “True Sum” Integer Addition
	Slide 51: Visualizing Unsigned Addition
	Slide 52: Visualizing 2’s Complement Addition
	Slide 53: Multiplication
	Slide 54: Power-of-2 Multiply with Shift
	Slide 55: Unsigned Power-of-2 Divide with Shift
	Slide 56: Signed Power-of-2 Divide with Shift
	Slide 57: Round-toward-0 Divide
	Slide 58: Correct Power-of-2 Divide (Cont.)
	Slide 59: Today: Bits, Bytes, and Integers
	Slide 60: Byte Ordering
	Slide 61: Byte Ordering Example
	Slide 62: Reading Byte-Reversed Listings
	Slide 63: Thanks!

