

From Bits through Integers

18-213/18-613
Introduction to Computer Systems

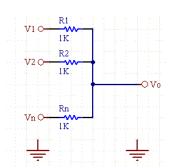
2nd Lecture, May 14, 2025

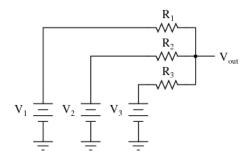
Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Analog Computers

- Before digital computers there were analog computers.
- Consider a couple of simple analog computers:
 - A simple circuit can allow one to adjust voltages using variable resistors and measure the output using a volt meter:
 - A simple network of adjustable parallel resistors can allow one to find the average of the inputs.





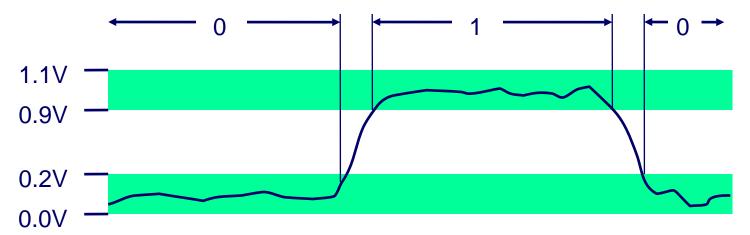
https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-

Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuitwithout-a-transistor-op-amp-and-any-external-supply

Needing Less Accuracy, Precision is Better

- We don't try to measure exactly
 - We just ask, is it high enough to be "On", or
 - Is it low enough to be "Off".
- We have two states, so we have a binary, or 2-ary, system.
 - We represent these states as 0 and 1
- Now we can easily interpret, communicate, and duplicate signals well enough to know what they mean.



Binary Representation

- Binary representation leads to a simple binary, i.e. base-2, numbering system
 - 0 represents 0
 - 1 represents 1
 - Each "place" represents a power of two, exactly as each place in our usual "base 10", 10-ary numbering system represents a power of 10
- By encoding/interpreting sets of bits in various ways, we can represent different things:
 - Operations to be executed by the processor, numbers, enumerable things, such as text characters
- As long as we can assign it to a discrete number, we can represent it in binary

Binary Representation: Simple Numbers

- For example, we can count in binary, a base-2 numbering system
 - **000**, 001, 010, 011, 100, 101, 110, 111, ...

$$-000 = 0*2^2 + 0*2^{1+} 0*2^0 = 0$$
 (in decimal)

$$-001 = 0*2^2 + 0*2^{1+} 1*2^0 = 1$$
 (in decimal)

•
$$010 = 0*2^2 + 1*2^{1+} 0*2^0 = 2$$
 (in decimal)

$$-011 = 0*2^2 + 1*2^{1+} 1*2^0 = 3$$
 (in decimal)

- Etc.
- For reference, consider some base-10 examples:

$$-000 = 0*10^2 + 0*10^{1+} 0*10^0$$

$$-001 = 0*10^2 + 0*10^1 + 1*10^0$$

$$\blacksquare$$
 357 = 3*10² + 5*10¹ + 7*2⁰

Hexadecimal and Octal

- Writing out numbers in binary takes too many digits
- We want a way to represent numbers more densely such that fewer digits are required
 - But also such that it is easy to get at the bits that we want
- Any power-of-two base provides this property
 - Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our familiar base-10.
 - Each has been used by "computer people" over time
 - Hexadecimal is often preferred because it is denser.

Hexadecimal

- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
- Consider 1A2B in Hexadecimal:
 - $-1*16^3 + A*16^2 + 2*16^1 + B*16^0$
 - $-1*16^3 + 10*16^2 + 2*16^1 + 11*16^0 = 6699 (decimal)$
 - The C Language prefixes hexadecimal numbers with "0x" so they aren't confused with decimal numbers
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

18213:	0100	0111	0010	010
	4	7	2	5

He	t De	Cill Binal 3
	0	0000
0 1 2 3 4 5 6 7 8	1 2 3 4 5 6 7	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
	9	1001
A	10	1010
B C D	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

■ A|B = 1 when either A=1 or B=1

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

~	
0	1
1	0

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

8	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
■ ∧	Symmetric difference	00111100	{ 2, 3, 4, 5 }
■ ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - ~0x41 →
 - •
 - ~0x00 →
 - •
 - $0x69 \& 0x55 \rightarrow$
 - •
 - $0x69 \mid 0x55 \rightarrow$

•

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
U	12	1100
D	13	1101
E	14	1110
F	15	1111
1		l

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- $^{\sim}$ °0x41 → 1011 1110
- $^{\circ}0x00 \rightarrow 111111111$

0x69 & 0x55:	0x69 0x55
0110 1001	0110 1001
& 0101 0101	0101 0101

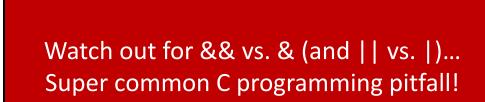
0100 0001 0111 1101

Hex Deciman

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Contrast: Logic Operations in C

- Contrast to Bit-Level Operators
 - Logic Operations: &&, ||,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type)
 - $!0x41 \rightarrow 0x00$
 - $!0x00 \rightarrow 0x01$
 - !!0x41→ 0x01
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 \mid \mid 0x55 \rightarrow 0x01$
 - p && *p (avoids null pointer access)



Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	11101000

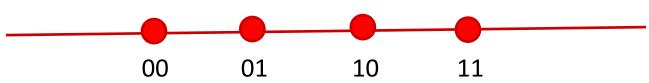
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

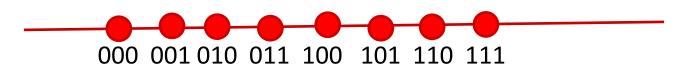
Binary Number Lines

- In binary, the number of bits in the data type size determines the number of points on the number line.
 - We can assign the points any meaning we'd like
- Consider the following examples:
 - 1 bit number line

2 bit number line

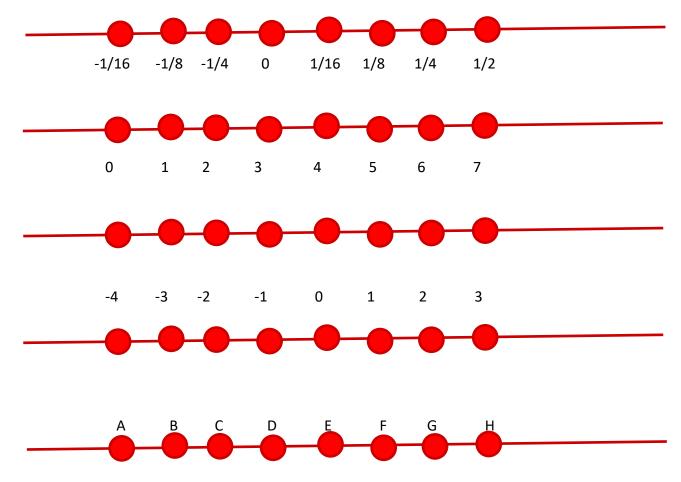


3 bit number line



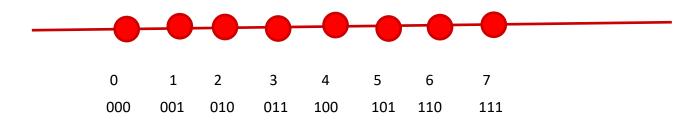
Some Purely Imaginary Examples

■ 3 bit number line



Overflow

Let's consider a simple 3 digit number line:



- What happens if we add 1 to 7?
 - In other words, what happens if we add 1 to 111?
- 111+ 001 = 1 000
 - But, we only get 3 bits so we lose the leading-1.
 - This is called overflow
- The result is 000

Modulus Arithmetic

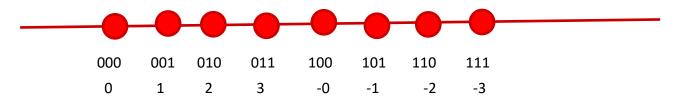
- Let's explore this idea of overflow some more
 - **111 + 001 = 1 000 = 000**
 - **111 + 010 = 1 001 = 001**
 - **111 + 011 = 1010 = 010**
 - **111 + 100 = 1011 = 011**
 - ...
 - **111 + 110 = 1 101 = 101**
 - **111 + 111 = 1 110 = 110**
- So, arithmetic "wraps around" when it gets "too positive"

Unsigned and Non-Negative Integers

- We'll use the term "ints" to mean the finite set of integer numbers that we can represent on a number line enumerated by some fixed number of bits, i.e. bit width.
- We normally represent unsigned and non-negative int using simple binary as we have already discussed
 - An "unsigned" int is any int on a number line, e.g. of a data type, that doesn't contain any negative numbers
 - A non-negative number is a number greater than or equal to (>=) 0 on a number line, e.g. of a data type, that does contain negative numbers

How represent negative Numbers?

- We could use the leading bit as a *sign bit*:
 - 0 means non-negative
 - 1 means negative



- This has some benefits
 - It lets us represent negative and non-negative numbers
 - 0 represents 0
- It also has some drawbacks
 - There is a -0, which is the same as 0, except that it is different
 - How to add such numbers 1 + -1 should equal 0
 - But, by simple math, 001 + 101 = 110, which is -2?

A Magic Trick!

- Let's just start with three ideas:
 - 1 should be represented as 1
 - -1 + 1 = 0
 - We want addition to work in the familiar way, with simple rules.
- We want a situation where "-1" + 1 = 0
- Consider a 3 bit number:
 - 001 + "-1" = 0
 - **•** 001 + 111 = 0
 - Remember 001 + 111 = 1 000, and the leading one is lost to overflow.
- **"**-1" = 111
 - Yep!

Negative Numbers

- Well, if 111 is -1, what is -2?
 - **-**1 1
 - 111 − 001 = 110
- Does that really work?
 - If it does -2 + 2 = 0
 - **110** + 010 = 1 000 = 000
- -2 + 5 should be 3, right?
 - **1**10 + 101 = 1 011 = 011

Finding –x the easy way

- Given a non-negative number in binary, e.g. 5, represented with a fixed bit width, e.g. 4
 - **0101**
- We can find its negative by flipping each bit and adding 1
 - 0101 This is 5
 - 1010 This is the "ones complement of 5", e.g. 5 with bits flipped
 - 1011 This is the "twos complement of 5", e.g. 5 with the bits flipped and 1 added
 - **•** 0101 + 1011 = 1 0000 = 0000
 - $-x = ^x + 1$
- Because of the fixed width, the "two's complement" of a number can be used as its negative.

Why Does This Work?

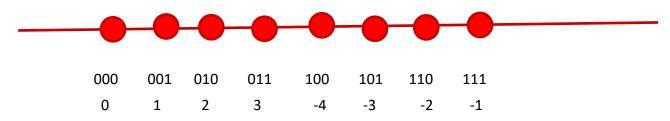
- Consider any number and its (ones) complement:
 - **0101**
 - **1010**
- They are called complements because complementary bits are set. As a result, if they are added, all bits are necessarily set:
 - 0101 + 1010 = 1111
- Adding 1 to the sum of a number and its complement necessarily results in a 0 due to overflow
 - (0101 + 1010) + 1 = 1111 + 1 = 10000 = 0000
- And if x + y = 0, y must equal -x

Why Does This Work? Cont.

- If x + y = 0
 - y must equal –x
- So if x + (Complement(x) + 1) = 0
 - Complement(x) + 1 must equal –x
- Another way of looking at it:
 - if x + (Complement(x) + 1) = 0
 - x + Complement(x) = -1
 - x = -1 Complement(x)
 - x = 1 + Complement(x)

Visualizing Two's Complement

Numbers "wrap around" with -1 at the very end



- A few things to note:
 - All negative numbers start with a "1"
 - E.g. 100 is "-4"
 - You can view the leading "1" as introducing a "-4"
 - E.g. 101 = 1*-4+0*2+1*1=-3
 - But 010 = 0*-4+1*2+0*1 = 2
 - -4 is missing a positive partner

Complement & Increment Examples

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

x = Tmin (The most negative two's complement number)

	Decimal	Hex	Binary
x	-32768	80 00	10000000 000000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	10000000 000000000

Canonical counter example

Encoding Integers: Dense Form

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign

- C does not mandate using two's complement
 - But, most machines do, and we will assume so
- C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative

Numeric Ranges

Unsigned Values

- *UMin* = 0 000...0
- $UMax = 2^w 1$ 111...1

■ Two's Complement Values

- TMin = -2^{w-1} 100...0
- TMax = $2^{w-1} 1$ 011...1
- Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

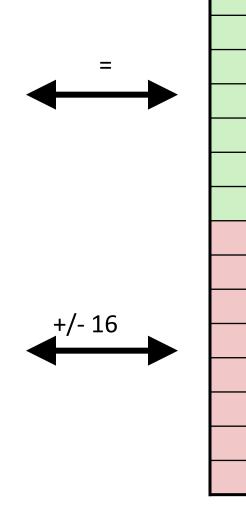
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Mapping Signed ↔ Unsigned

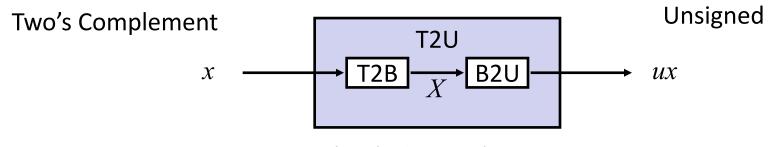
Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

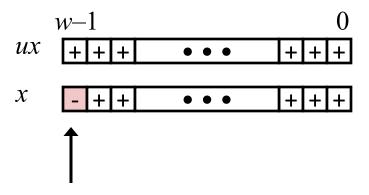


Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned



Maintain Same Bit Pattern

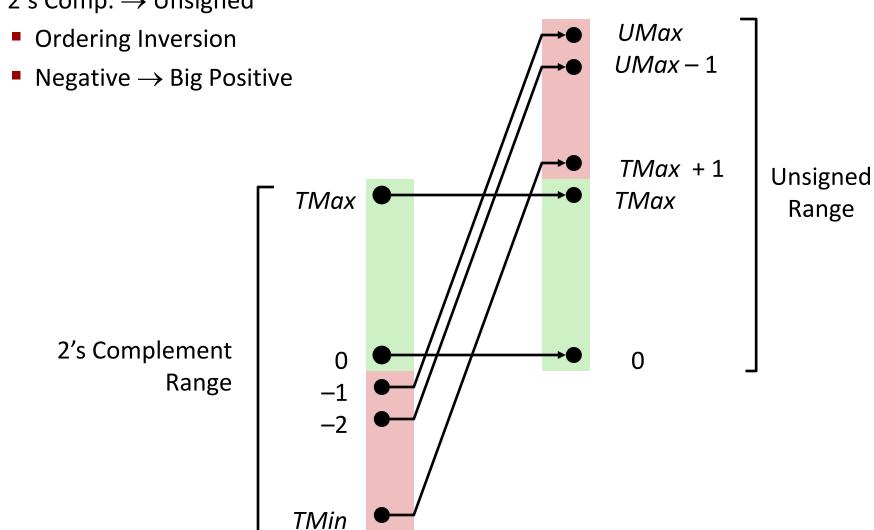


Large negative weight becomes

Large positive weight

Conversion Visualized

■ 2's Comp. → Unsigned



Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 OU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

Casting Surprises

- Expression Evaluation
 - If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operations <, >, ==, <=, >=
 - **Examples for** W = 32**: TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

ation
igned
gned
igned
gned
igned
gned
igned
igned
gned
ig ig ig ig ig

Summary Casting Signed ↔ Unsigned: Basic Rules

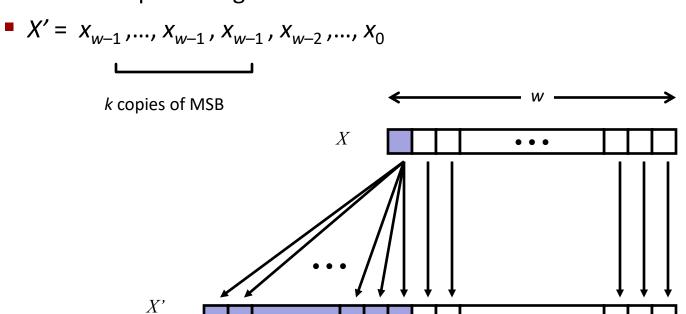
- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

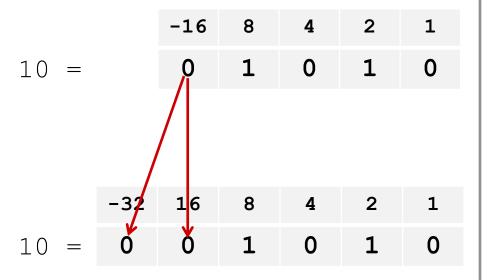
Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make *k* copies of sign bit:

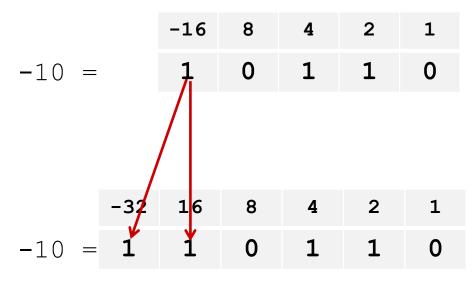


Sign Extension: Simple Example

Positive number

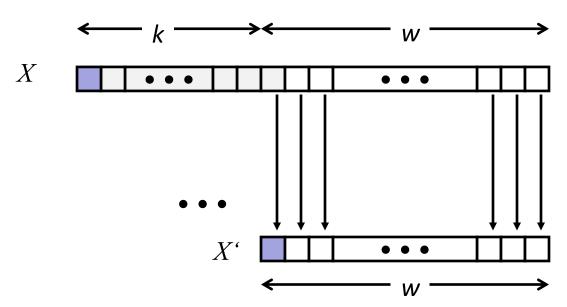


Negative number



Truncation

- Task:
 - Given k+w-bit signed or unsigned integer X
 - Convert it to w-bit integer X' with same value for "small enough" X
- Rule:
 - Drop top k bits:
 - $X = X = X_{w-1}, X_{w-2}, ..., X_0$



Truncation: Simple Example

No sign change

$$-16$$
 8 4 2 1 2 = 0 0 0 1 0

$$-16$$
 8 4 2 1 -6 = **1 1 0 1 0**

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $-6 \mod 16 = 26U \mod 16 = 10U = -6$

Sign change

	-16	8	4	2	1
10 =	0	1	0	1	0

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $10 \mod 16 = 10U \mod 16 = 10U = -6$

$$-16$$
 8 4 2 1 -10 = 1 0 1 1 0

$$-8$$
 4 2 1 6 = 0 1 1 0

 $-10 \mod 16 = 22U \mod 16 = 6U = 6$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small (in magnitude) numbers yields expected behavior

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Unsigned Addition

Operands: w bits

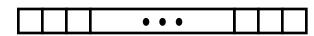
True Sum: w+1 bits

 $\frac{+v}{u+v}$

u

Discard Carry: w bits

 $UAdd_{w}(u, v)$



- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char		1110	1001	E 9	223
	+	1101	0101	+ D5	+ 213
	1	1011	1110	1BE	446
		1011	1110	BE	190

Hex Decimanary

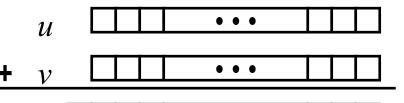
Ki.	V	A .
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits



. . .

 $TAdd_{w}(u, v)$

TAdd and UAdd have Identical Bit-Level Behavior

u + v

Signed vs. unsigned addition in C:

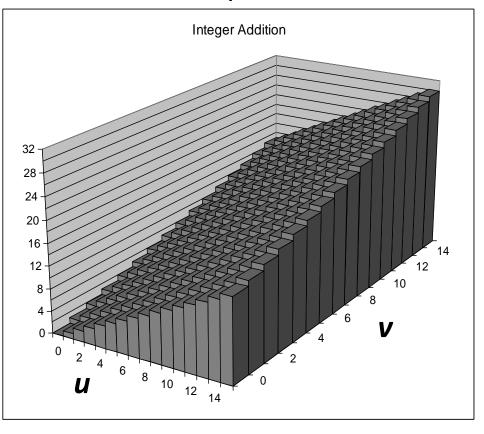
Will give s == t

-23

Visualizing "True Sum" Integer Addition

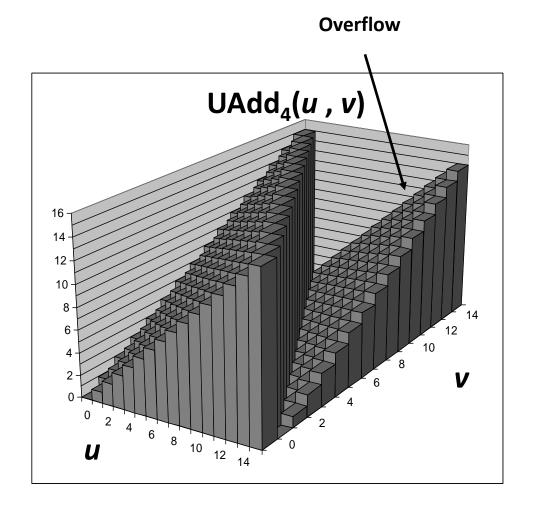
- Integer Addition
 - 4-bit integers u, v
 - Compute true sum $Add_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface

$Add_4(u, v)$



Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\ge 2^w$
 - At most once



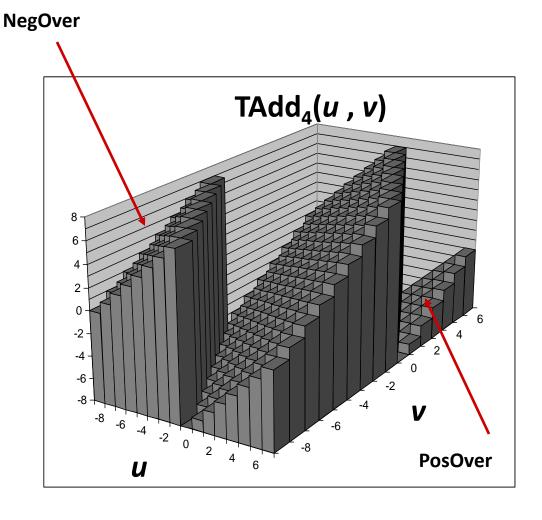
Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once



Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- Result: Same as computing ideal, exact result x*y and keeping w lower bits.
- Ideal, exact results can be bigger than w bits
 - Worst case is up to 2w bits
 - Unsigned, because all bits are magnitude
 - Signed, but only for Tmin*Tmin, because anything added to Tmin reduces its magnitude and Tmax is less than Tmin.
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - Impossible in hardware (at least without limits), as all resources are finite
 - In practice, is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

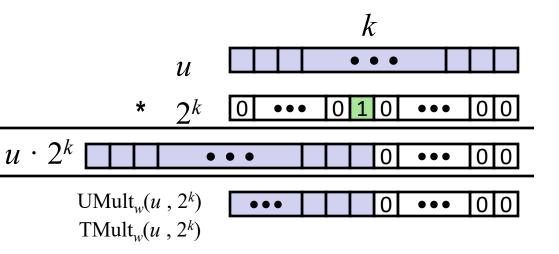
Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
 - Both signed and unsigned

True Product: w+k bits

Discard k bits: w bits

Operands: w bits

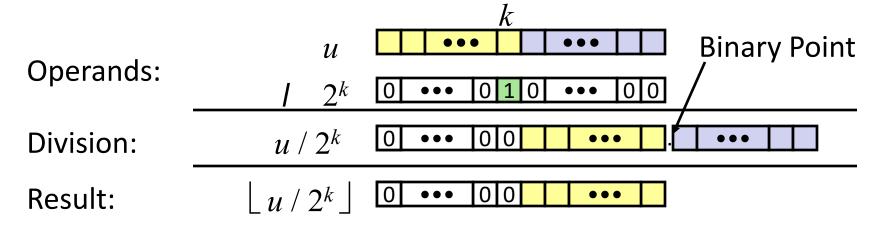


Examples

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

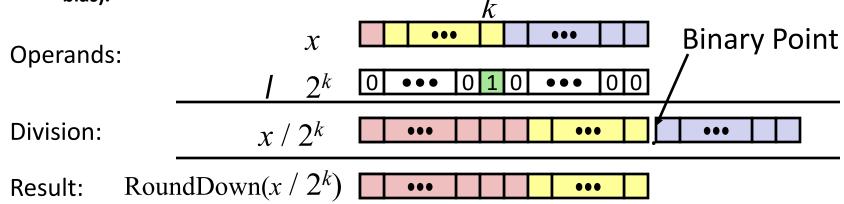
- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift



	Division	Computed	Hex	Binary		
x	15213	15213	3B 6D	00111011 01101101		
x >> 1	7606.5	7606	1D B6	00011101 10110110		
x >> 4	950.8125	950	03 B6	00000011 10110110		
x >> 8	59.4257813	59	00 3B	00000000 00111011		

Signed Power-of-2 Divide with Shift

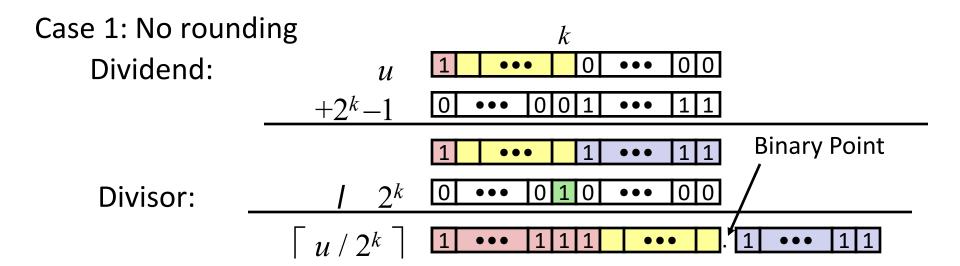
- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a bias).



	Division	Computed	Hex Binary		
x	-15213	-15213	C4 93	11000100 10010011	
x >> 1	-7606.5	-7607	E2 49	1 1100010 01001001	
x >> 4	-950.8125	-951	FC 49	11111100 01001001	
x >> 8	-59.4257813	-60	FF C4	1111111 11000100	

Round-toward-0 Divide

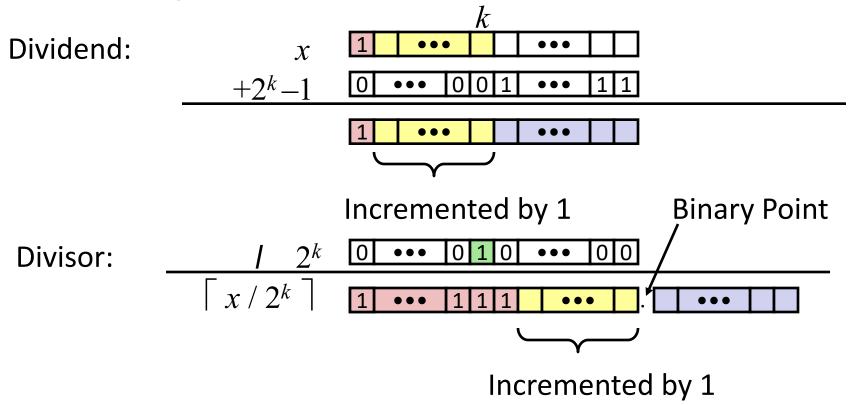
- Quotient of Negative Number by Power of 2
 - Want $\lceil x / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+(2^k-1))/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0



Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding



Biasing adds 1 to final result

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address
- Becomes a concern when data is communicated
 - Over a network, via files, etc.
- Important notes
 - Bits are not reversed, as the low order bit is the reference point.
 - Doesn't affect chars, or strings (arrays of chars), as chars are only one byte

Byte Ordering Example

- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Big Endi	an	0x100	0x101	0x102	0x103	
		01	23	45	67	
Little End	ian	0x100	0x101	0x102	0x103	
		67	45	23	01	

Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example Fragment

```
Address
                  Instruction Code
                                           Assembly Rendition
         8048365:
                     5b
                                                    %ebx
                                             pop
    8048366:
                81 c3 ab 12 00 00
                                        add
                                                $0x12ab, %ebx
   804836c: 83 bb 28 00 00 00 00
                                              \$0x0,0x28(\$ebx)
                                       cmpl
Deciphering Numbers
  Value:
                                        0x12ab
```

- Pad to 32 bits:
- Split into bytes:
- Reverse:

UNIZAD

0x000012ab

00 00 12 ab

ab 12 00 00

Thanks!

Questions?