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Thread Level Parallelism

18-213/18-613: Introduction to Computer Systems
25th Lecture, December 3rd, 2024
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Today

 Parallel  Computing Hardware    CSAPP 12.6

 Consistency Models     CSAPP 12.6

 Thread-Level Parallelism     CSAPP 12.6
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Today

 Parallel  Computing Hardware   
▪ Multicore

▪ Multiple separate processors on single chip

▪ Hyperthreading

▪ Efficient execution of multiple threads on single core

 Consistency Models    
▪ What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism    
▪ Splitting program into independent tasks

▪ Example: Parallel summation

▪ Examine some performance artifacts

▪ Divide-and conquer parallelism

▪ Example: Parallel quicksort
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Typical Multicore Processor

 Multiple processors operating with coherent view of memory

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory
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Out-of-Order Processor Structure

 Instruction control dynamically converts program into stream 
of operations

 Operations mapped onto functional units to execute in parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Registers

Instruction 
Decoder

Op. Queue

Data Cache

Instruction
Cache

PC
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Hyperthreading Implementation

 Replicate instruction control to process K instruction streams

 K copies of all registers

 Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction 
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A
PC B
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Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines
▪ Intel Xeon E5520 @ 2.27 GHz

▪ Nehalem, ca. 2010

▪ 8 Cores

▪ Each can do 2x hyperthreading
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Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

▪ e.g., one thread per client to prevent one from delaying another

 Multi-core CPUs offer another opportunity

▪ Spread work over threads executing in parallel on N cores

▪ Happens automatically, if many independent tasks

▪ e.g., running many applications or serving many clients

▪ Can also write code to make one big task go faster

▪ by organizing it as multiple parallel sub-tasks

 Shark machines can execute 16 threads at once

▪ 8 cores, each with 2-way hyperthreading

▪ Theoretical speedup of 16X

▪ never achieved in our benchmarks
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Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses 

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Non-Coherent Cache Scenario

 Write-back caches, without 
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

At later points, a:2 and b:200
are written back to main memory
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E
print 200

b:200S b:200S

print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 When cache sees request for 
one of its E-tagged blocks

 Supply value from cache
(Note: value in memory 
may be stale)

 Set tag to S
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Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses 

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses 

 Sequential consistency
▪ As if only one operation at a time, in an order consistent with the 

order of operations within each thread

▪ Thus, overall effect consistent with each individual thread but 
otherwise allows an arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Sequential Consistency Example

 Impossible outputs
▪ 100, 1 and 1, 100

▪ Would require reaching both Ra and Rb before either Wa or Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200

1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Non-Coherent Cache Scenario

 Write-back caches, without 
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Sequentially consistent? No!
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Non-Sequentially Consistent Scenario

 Coherent caches, but thread 
consistency constraints violated 
due to operation reordering

Main Memory

a:1 b:100

Thread1 Cache

a:2

Thread2 Cache

b:200

a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 Arch lets reads finish before writes b/c single thread accesses 
different memory locations

12

3 4
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Non-Sequentially Consistent Scenario

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

12

3 4

Thread1 Write 
Buffer

Thread2 Write 
Buffera:2 b:200

a:1b:100

 Why Reordered? Writes 
take long time.  Buffer 
write, let read go ahead. 
Instruction-level parallelism
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Memory Models

 Sequentially Consistent:
▪ Each thread executes in proper order, any interleaving

 To ensure, requires
▪ Proper cache/memory behavior

▪ Proper intra-thread ordering constraints
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Today

 Parallel  Computing Hardware
▪ Multicore

▪ Multiple separate processors on single chip

▪ Hyperthreading

▪ Efficient execution of multiple threads on single core

 Consistency Models
▪ What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism
▪ Splitting program into independent tasks

▪ Example: Parallel summation

▪ Examine some performance artifacts

▪ Divide-and conquer parallelism

▪ Example: Parallel quicksort
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Summation Example

 Sum numbers 0, …, N-1
▪ Should add up to (N-1)*N/2

 Partition into K ranges

▪ N/K values each

▪ Each of the t threads processes 1 range 

▪ Accumulate leftover values serially

 Method #1: All threads update single global variable
▪ 1A: No synchronization

▪ 1B: Synchronize with pthread semaphore

▪ 1C: Synchronize with pthread mutex

▪ “Binary” semaphore.  Only values 0 & 1
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Accumulating in Single Global Variable: 
Declarations

typedef unsigned long data_t;

/* Single accumulator */

volatile data_t global_sum;

/* Mutex & semaphore for global sum */

sem_t semaphore;

pthread_mutex_t mutex;

/* Number of elements summed by each thread */

size_t nelems_per_thread;

/* Keep track of thread IDs */

pthread_t tid[MAXTHREADS];

/* Identify each thread */

int myid[MAXTHREADS];
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Accumulating in Single Global Variable: 
Declarations
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/* Single accumulator */
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Accumulating in Single Global Variable: 
Declarations

typedef unsigned long data_t;

/* Single accumulator */

volatile data_t global_sum;

/* Mutex & semaphore for global sum */

sem_t semaphore;

pthread_mutex_t mutex;

/* Number of elements summed by each thread */

size_t nelems_per_thread;

/* Keep track of thread IDs */

pthread_t tid[MAXTHREADS];

/* Identify each thread */

int myid[MAXTHREADS];
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Accumulating in Single Global Variable: 
Operation

nelems_per_thread = nelems / nthreads;

    /* Set global value */

    global_sum = 0;

    /* Create threads and wait for them to finish */

    for (i = 0; i < nthreads; i++) {

 myid[i] = i;

 Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);

    }                                                

    for (i = 0; i < nthreads; i++)                   

 Pthread_join(tid[i], NULL);                  

   

    result = global_sum; 

                          

    /* Add leftover elements */

    for (e = nthreads * nelems_per_thread; e < nelems; e++)

        result += e;

Thread ID Thread routine

Thread arguments
(void *p) 
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Thread Function: No Synchronization

void *sum_race(void *vargp) 

{

    int myid = *((int *)vargp);          

    size_t start = myid * nelems_per_thread;

    size_t end = start + nelems_per_thread; 

    size_t i;

    for (i = start; i < end; i++) {

 global_sum += i;                  

    }                            

    return NULL;

}
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Unsynchronized Performance

 N = 230

 Best speedup = 2.86X

 Gets wrong answer when > 1 thread! Why?
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Thread Function: Semaphore / Mutex

void *sum_sem(void *vargp) 

{

    int myid = *((int *)vargp);

    size_t start = myid * nelems_per_thread;

    size_t end = start + nelems_per_thread;

    size_t i;

    for (i = start; i < end; i++) {

        sem_wait(&semaphore);

 global_sum += i;

 sem_post(&semaphore);

    }                            

    return NULL;

}

sem_wait(&semaphore);

global_sum += i;

sem_post(&semaphore); 

pthread_mutex_lock(&mutex);

global_sum += i;

pthread_mutex_unlock(&mutex);

Semaphore

Mutex
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Semaphore / Mutex Performance

 Terrible Performance
▪ 2.5 seconds ➔ ~10 minutes

 Mutex 3X faster than semaphore

 Clearly, neither is successful

What is main reason for 
poor performance?



Carnegie Mellon

31

Separate Accumulation

 Method #2: Each thread accumulates into separate variable
▪ 2A: Accumulate in contiguous array elements

▪ 2B: Accumulate in spaced-apart array elements

▪ 2C: Accumulate in registers

/* Partial sum computed by each thread */ 

data_t psum[MAXTHREADS*MAXSPACING];

/* Spacing between accumulators */

size_t spacing = 1;
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Separate Accumulation: Operation

nelems_per_thread = nelems / nthreads;

    /* Create threads and wait for them to finish */

    for (i = 0; i < nthreads; i++) {

 myid[i] = i;

 psum[i*spacing] = 0;

 Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);

    }                                                

    for (i = 0; i < nthreads; i++)                   

 Pthread_join(tid[i], NULL);                  

   

    result = 0;

    /* Add up the partial sums computed by each thread */

    for (i = 0; i < nthreads; i++)                   

 result += psum[i*spacing]; 

                          

    /* Add leftover elements */

    for (e = nthreads * nelems_per_thread; e < nelems; e++)

        result += e;
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Thread Function: Memory Accumulation

void *sum_global(void *vargp) 

{

    int myid = *((int *)vargp);          

    size_t start = myid * nelems_per_thread;

    size_t end = start + nelems_per_thread; 

    size_t i;

    size_t index = myid*spacing;

    psum[index] = 0;

    for (i = start; i < end; i++) {

 psum[index] += i;                  

    } 

    return NULL;

}

Where is the mutex?
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Memory Accumulation Performance

 Clear threading advantage
▪ Adjacent speedup: 5 X

▪ Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

 Why does spacing the accumulators apart matter?
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False Sharing

 Coherence maintained on cache blocks

 To update psum[i], thread i must have exclusive access
▪ Threads sharing common cache block will keep fighting each other 

for access to block

… …

0 7 8 15

Cache Block m Cache Block m+1

psum
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False Sharing Performance

▪ Best spaced-apart performance 2.8 X better than best adjacent

 Demonstrates cache block size = 64
▪ 8-byte values

▪ No benefit increasing spacing beyond 8
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Thread Function: Register Accumulation

void *sum_local(void *vargp) 

{

    int myid = *((int *)vargp);          

    size_t start = myid * nelems_per_thread;

    size_t end = start + nelems_per_thread; 

    size_t i;

    size_t index = myid*spacing;

data_t sum = 0;

for (i = start; i < end; i++) {

sum += i;                  

}

psum[index] = sum;

    return NULL;

}
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Register Accumulation Performance

 Clear threading advantage
▪ Speedup = 7.5 X

 2X better than fastest memory accumulation

Beware the speedup metric!
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Lessons learned

 Sharing memory can be expensive
▪ Pay attention to true sharing

▪ Pay attention to false sharing

 Use registers whenever possible
▪ (Remember cachelab)

▪ Use local cache whenever possible

 Deal with leftovers

 When examining performance, compare to best possible 
sequential implementation
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Quiz Time!

Canvas Quiz:  Day 25 – Thread Level Parallelism
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A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
▪ Use parallel version of quicksort

 Sequential quicksort of set of values X
▪ Choose “pivot” p from X

▪ Rearrange X into

▪ L: Values  p

▪ R: Values > p

▪ Recursively sort L to get L

▪ Recursively sort R to get R

▪ Return L : p : R
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Sequential Quicksort Visualized

X

p

L p R

p2L2 R2

p2

•

•

•

L
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Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L

•

•

•

R

pL R
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Sequential Quicksort Code

 Sort nele elements starting at base
▪ Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

  if (nele <= 1)

    return;

  if (nele == 2) {

    if (base[0] > base[1])

      swap(base, base+1);

    return;

  }

  /* Partition returns index of pivot */

  size_t m = partition(base, nele);

  if (m > 1)

    qsort_serial(base, m);

  if (nele-1 > m+1)

    qsort_serial(base+m+1, nele-m-1);

}
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Parallel Quicksort
 Parallel quicksort of set of values X

▪ If N  Nthresh, do sequential quicksort

▪ Else

▪ Choose “pivot” p from X

▪ Rearrange X into

– L: Values  p

– R: Values > p

▪ Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

▪ Return L : p : R
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Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p

•

•

•

L

•

•

•

Rp
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Thread Structure: Sorting Tasks

 Task: Sort subrange of data
▪ Specify as:

▪ base: Starting address

▪ nele: Number of elements in subrange

 Run as separate thread

X

  

Task Threads



Carnegie Mellon

48

Small Sort Task Operation

 Sort subrange using serial quicksort

X

  

Task Threads



Carnegie Mellon

49

Large Sort Task Operation

X

  

pL R

X

  

pL R

Partition Subrange

Spawn 2 tasks
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Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

    init_task(nele);

    global_base = base;

    global_end = global_base + nele - 1;

    task_queue_ptr tq = new_task_queue();

    tqsort_helper(base, nele, tq);

    join_tasks(tq);

    free_task_queue(tq);

}
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Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

                          task_queue_ptr tq) {

    if (nele <= nele_max_sort_serial) {

        /* Use sequential sort */

        qsort_serial(base, nele);

 return;

    }

    sort_task_t *t = new_task(base, nele, tq);

    spawn_task(tq, sort_thread, (void *) t);

}
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Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition (if size of part > 1)

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

    sort_task_t *t = (sort_task_t *) vargp;

    data_t *base = t->base;

    size_t nele = t->nele;

    task_queue_ptr tq = t->tq;

    free(vargp);

    size_t m = partition(base, nele);

    if (m > 1)

        tqsort_helper(base, m, tq);

    if (nele-1 > m+1)

        tqsort_helper(base+m+1, nele-m-1, tq);

    return NULL;

}
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Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort
▪ E.g., serial fraction = 64 means do serial sort for partitions of size ≤ 𝑁/64

 Sort N=227 (134,217,728) random values

 Best speedup = 6.84X
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Parallel Quicksort Performance

 Good performance over wide range of fraction values
▪ Serial Fraction too small: Not enough parallelism

▪ Serial Fraction too large: Thread overhead too high
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Amdahl’s Law

 Overall problem
▪ T Total sequential time required

▪ p Fraction of total that can be sped up (0  p   1)

▪ k Speedup factor

 Resulting Performance
▪ Tk = pT/k + (1-p)T

▪ Portion which can be sped up runs k times faster

▪ Portion which cannot be sped up stays the same

▪ Maximum possible speedup

▪ k = 

▪ T = (1-p)T
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Amdahl’s Law Example

 Overall problem
▪ T = 10 Total time required

▪ p = 0.9 Fraction of total which can be sped up

▪ k = 9 Speedup factor

 Resulting Performance
▪ T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0      (a 5x speedup)

 Maximum possible speedup
▪ T = 0.1 * 10.0 = 1.0       (a 10x speedup)

▪ With infinite parallel computing resources!

▪ Limit speedup shows algorithmic limitation
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Amdahl’s Law Example
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Amdahl’s Law & Parallel Quicksort

 Sequential bottleneck
▪ Top-level partition: No speedup

▪ Second level:  2X speedup

▪ kth level:   2k-1X speedup

 Implications
▪ Good performance for small-scale parallelism

▪ Would need to parallelize partitioning step to get large-scale 
parallelism

▪ Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 
1992
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Lessons Learned

 Must have parallelization strategy
▪ Partition into K independent parts

▪ Divide-and-conquer

 Inner loops must be synchronization free
▪ Synchronization operations very expensive

 Watch out for hardware artifacts
▪ Need to understand processor & memory structure

▪ Sharing and false sharing of global data

 Beware of Amdahl’s Law
▪ Serial code can become bottleneck

 You can do it!
▪ Achieving modest levels of parallelism is not difficult

▪ Set up experimental framework and test multiple strategies
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