
Carnegie Mellon

1

14-513 18-613

Carnegie Mellon

2

Thread Level Parallelism

18-213/18-613: Introduction to Computer Systems
25th Lecture, December 3rd, 2024

Carnegie Mellon

3

Today

 Parallel Computing Hardware CSAPP 12.6

 Consistency Models CSAPP 12.6

 Thread-Level Parallelism CSAPP 12.6

Carnegie Mellon

4

Today

 Parallel Computing Hardware
▪ Multicore

▪ Multiple separate processors on single chip

▪ Hyperthreading

▪ Efficient execution of multiple threads on single core

 Consistency Models
▪ What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism
▪ Splitting program into independent tasks

▪ Example: Parallel summation

▪ Examine some performance artifacts

▪ Divide-and conquer parallelism

▪ Example: Parallel quicksort

Carnegie Mellon

5

Typical Multicore Processor

 Multiple processors operating with coherent view of memory

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory

Carnegie Mellon

6

Out-of-Order Processor Structure

 Instruction control dynamically converts program into stream
of operations

 Operations mapped onto functional units to execute in parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Registers

Instruction
Decoder

Op. Queue

Data Cache

Instruction
Cache

PC

Carnegie Mellon

7

Hyperthreading Implementation

 Replicate instruction control to process K instruction streams

 K copies of all registers

 Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A
PC B

Carnegie Mellon

8

Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines
▪ Intel Xeon E5520 @ 2.27 GHz

▪ Nehalem, ca. 2010

▪ 8 Cores

▪ Each can do 2x hyperthreading

Carnegie Mellon

9

Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

▪ e.g., one thread per client to prevent one from delaying another

 Multi-core CPUs offer another opportunity

▪ Spread work over threads executing in parallel on N cores

▪ Happens automatically, if many independent tasks

▪ e.g., running many applications or serving many clients

▪ Can also write code to make one big task go faster

▪ by organizing it as multiple parallel sub-tasks

 Shark machines can execute 16 threads at once

▪ 8 cores, each with 2-way hyperthreading

▪ Theoretical speedup of 16X

▪ never achieved in our benchmarks

Carnegie Mellon

10

Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Carnegie Mellon

11

Non-Coherent Cache Scenario

 Write-back caches, without
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

At later points, a:2 and b:200
are written back to main memory

Carnegie Mellon

12

Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Carnegie Mellon

13

Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E
print 200

b:200S b:200S

print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 When cache sees request for
one of its E-tagged blocks

 Supply value from cache
(Note: value in memory
may be stale)

 Set tag to S

Carnegie Mellon

14

Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints

Carnegie Mellon

15

Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses

 Sequential consistency
▪ As if only one operation at a time, in an order consistent with the

order of operations within each thread

▪ Thus, overall effect consistent with each individual thread but
otherwise allows an arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints

Carnegie Mellon

16

Sequential Consistency Example

 Impossible outputs
▪ 100, 1 and 1, 100

▪ Would require reaching both Ra and Rb before either Wa or Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200

1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraintsint a = 1;

int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Carnegie Mellon

17

Non-Coherent Cache Scenario

 Write-back caches, without
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Sequentially consistent? No!

Carnegie Mellon

18

Non-Sequentially Consistent Scenario

 Coherent caches, but thread
consistency constraints violated
due to operation reordering

Main Memory

a:1 b:100

Thread1 Cache

a:2

Thread2 Cache

b:200

a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 Arch lets reads finish before writes b/c single thread accesses
different memory locations

12

3 4

Carnegie Mellon

19

Non-Sequentially Consistent Scenario

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

12

3 4

Thread1 Write
Buffer

Thread2 Write
Buffera:2 b:200

a:1b:100

 Why Reordered? Writes
take long time. Buffer
write, let read go ahead.
Instruction-level parallelism

Carnegie Mellon

20

Memory Models

 Sequentially Consistent:
▪ Each thread executes in proper order, any interleaving

 To ensure, requires
▪ Proper cache/memory behavior

▪ Proper intra-thread ordering constraints

Carnegie Mellon

21

Today

 Parallel Computing Hardware
▪ Multicore

▪ Multiple separate processors on single chip

▪ Hyperthreading

▪ Efficient execution of multiple threads on single core

 Consistency Models
▪ What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism
▪ Splitting program into independent tasks

▪ Example: Parallel summation

▪ Examine some performance artifacts

▪ Divide-and conquer parallelism

▪ Example: Parallel quicksort

Carnegie Mellon

22

Summation Example

 Sum numbers 0, …, N-1
▪ Should add up to (N-1)*N/2

 Partition into K ranges

▪ N/K values each

▪ Each of the t threads processes 1 range

▪ Accumulate leftover values serially

 Method #1: All threads update single global variable
▪ 1A: No synchronization

▪ 1B: Synchronize with pthread semaphore

▪ 1C: Synchronize with pthread mutex

▪ “Binary” semaphore. Only values 0 & 1

Carnegie Mellon

23

Accumulating in Single Global Variable:
Declarations

typedef unsigned long data_t;

/* Single accumulator */

volatile data_t global_sum;

/* Mutex & semaphore for global sum */

sem_t semaphore;

pthread_mutex_t mutex;

/* Number of elements summed by each thread */

size_t nelems_per_thread;

/* Keep track of thread IDs */

pthread_t tid[MAXTHREADS];

/* Identify each thread */

int myid[MAXTHREADS];

Carnegie Mellon

24

Accumulating in Single Global Variable:
Declarations

typedef unsigned long data_t;

/* Single accumulator */

volatile data_t global_sum;

/* Mutex & semaphore for global sum */

sem_t semaphore;

pthread_mutex_t mutex;

/* Number of elements summed by each thread */

size_t nelems_per_thread;

/* Keep track of thread IDs */

pthread_t tid[MAXTHREADS];

/* Identify each thread */

int myid[MAXTHREADS];

Carnegie Mellon

25

Accumulating in Single Global Variable:
Declarations

typedef unsigned long data_t;

/* Single accumulator */

volatile data_t global_sum;

/* Mutex & semaphore for global sum */

sem_t semaphore;

pthread_mutex_t mutex;

/* Number of elements summed by each thread */

size_t nelems_per_thread;

/* Keep track of thread IDs */

pthread_t tid[MAXTHREADS];

/* Identify each thread */

int myid[MAXTHREADS];

Carnegie Mellon

26

Accumulating in Single Global Variable:
Operation

nelems_per_thread = nelems / nthreads;

 /* Set global value */

 global_sum = 0;

 /* Create threads and wait for them to finish */

 for (i = 0; i < nthreads; i++) {

 myid[i] = i;

 Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);

 }

 for (i = 0; i < nthreads; i++)

 Pthread_join(tid[i], NULL);

 result = global_sum;

 /* Add leftover elements */

 for (e = nthreads * nelems_per_thread; e < nelems; e++)

 result += e;

Thread ID Thread routine

Thread arguments
(void *p)

Carnegie Mellon

27

Thread Function: No Synchronization

void *sum_race(void *vargp)

{

 int myid = *((int *)vargp);

 size_t start = myid * nelems_per_thread;

 size_t end = start + nelems_per_thread;

 size_t i;

 for (i = start; i < end; i++) {

 global_sum += i;

 }

 return NULL;

}

Carnegie Mellon

28

Unsynchronized Performance

 N = 230

 Best speedup = 2.86X

 Gets wrong answer when > 1 thread! Why?

Carnegie Mellon

29

Thread Function: Semaphore / Mutex

void *sum_sem(void *vargp)

{

 int myid = *((int *)vargp);

 size_t start = myid * nelems_per_thread;

 size_t end = start + nelems_per_thread;

 size_t i;

 for (i = start; i < end; i++) {

 sem_wait(&semaphore);

 global_sum += i;

 sem_post(&semaphore);

 }

 return NULL;

}

sem_wait(&semaphore);

global_sum += i;

sem_post(&semaphore);

pthread_mutex_lock(&mutex);

global_sum += i;

pthread_mutex_unlock(&mutex);

Semaphore

Mutex

Carnegie Mellon

30

Semaphore / Mutex Performance

 Terrible Performance
▪ 2.5 seconds ➔ ~10 minutes

 Mutex 3X faster than semaphore

 Clearly, neither is successful

What is main reason for
poor performance?

Carnegie Mellon

31

Separate Accumulation

 Method #2: Each thread accumulates into separate variable
▪ 2A: Accumulate in contiguous array elements

▪ 2B: Accumulate in spaced-apart array elements

▪ 2C: Accumulate in registers

/* Partial sum computed by each thread */

data_t psum[MAXTHREADS*MAXSPACING];

/* Spacing between accumulators */

size_t spacing = 1;

Carnegie Mellon

32

Separate Accumulation: Operation

nelems_per_thread = nelems / nthreads;

 /* Create threads and wait for them to finish */

 for (i = 0; i < nthreads; i++) {

 myid[i] = i;

 psum[i*spacing] = 0;

 Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);

 }

 for (i = 0; i < nthreads; i++)

 Pthread_join(tid[i], NULL);

 result = 0;

 /* Add up the partial sums computed by each thread */

 for (i = 0; i < nthreads; i++)

 result += psum[i*spacing];

 /* Add leftover elements */

 for (e = nthreads * nelems_per_thread; e < nelems; e++)

 result += e;

Carnegie Mellon

33

Thread Function: Memory Accumulation

void *sum_global(void *vargp)

{

 int myid = *((int *)vargp);

 size_t start = myid * nelems_per_thread;

 size_t end = start + nelems_per_thread;

 size_t i;

 size_t index = myid*spacing;

 psum[index] = 0;

 for (i = start; i < end; i++) {

 psum[index] += i;

 }

 return NULL;

}

Where is the mutex?

Carnegie Mellon

34

Memory Accumulation Performance

 Clear threading advantage
▪ Adjacent speedup: 5 X

▪ Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

 Why does spacing the accumulators apart matter?

Carnegie Mellon

35

False Sharing

 Coherence maintained on cache blocks

 To update psum[i], thread i must have exclusive access
▪ Threads sharing common cache block will keep fighting each other

for access to block

… …

0 7 8 15

Cache Block m Cache Block m+1

psum

Carnegie Mellon

36

False Sharing Performance

▪ Best spaced-apart performance 2.8 X better than best adjacent

 Demonstrates cache block size = 64
▪ 8-byte values

▪ No benefit increasing spacing beyond 8

Carnegie Mellon

37

Thread Function: Register Accumulation

void *sum_local(void *vargp)

{

 int myid = *((int *)vargp);

 size_t start = myid * nelems_per_thread;

 size_t end = start + nelems_per_thread;

 size_t i;

 size_t index = myid*spacing;

data_t sum = 0;

for (i = start; i < end; i++) {

sum += i;

}

psum[index] = sum;

 return NULL;

}

Carnegie Mellon

38

Register Accumulation Performance

 Clear threading advantage
▪ Speedup = 7.5 X

 2X better than fastest memory accumulation

Beware the speedup metric!

Carnegie Mellon

39

Lessons learned

 Sharing memory can be expensive
▪ Pay attention to true sharing

▪ Pay attention to false sharing

 Use registers whenever possible
▪ (Remember cachelab)

▪ Use local cache whenever possible

 Deal with leftovers

 When examining performance, compare to best possible
sequential implementation

Carnegie Mellon

40

Quiz Time!

Canvas Quiz: Day 25 – Thread Level Parallelism

Carnegie Mellon

41

A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
▪ Use parallel version of quicksort

 Sequential quicksort of set of values X
▪ Choose “pivot” p from X

▪ Rearrange X into

▪ L: Values  p

▪ R: Values > p

▪ Recursively sort L to get L

▪ Recursively sort R to get R

▪ Return L : p : R

Carnegie Mellon

42

Sequential Quicksort Visualized

X

p

L p R

p2L2 R2

p2

•

•

•

L

Carnegie Mellon

43

Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L

•

•

•

R

pL R

Carnegie Mellon

44

Sequential Quicksort Code

 Sort nele elements starting at base
▪ Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

 if (nele <= 1)

 return;

 if (nele == 2) {

 if (base[0] > base[1])

 swap(base, base+1);

 return;

 }

 /* Partition returns index of pivot */

 size_t m = partition(base, nele);

 if (m > 1)

 qsort_serial(base, m);

 if (nele-1 > m+1)

 qsort_serial(base+m+1, nele-m-1);

}

Carnegie Mellon

45

Parallel Quicksort
 Parallel quicksort of set of values X

▪ If N  Nthresh, do sequential quicksort

▪ Else

▪ Choose “pivot” p from X

▪ Rearrange X into

– L: Values  p

– R: Values > p

▪ Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

▪ Return L : p : R

Carnegie Mellon

46

Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p

•

•

•

L

•

•

•

Rp

Carnegie Mellon

47

Thread Structure: Sorting Tasks

 Task: Sort subrange of data
▪ Specify as:

▪ base: Starting address

▪ nele: Number of elements in subrange

 Run as separate thread

X

  

Task Threads

Carnegie Mellon

48

Small Sort Task Operation

 Sort subrange using serial quicksort

X

  

Task Threads

Carnegie Mellon

49

Large Sort Task Operation

X

  

pL R

X

  

pL R

Partition Subrange

Spawn 2 tasks

Carnegie Mellon

50

Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

 init_task(nele);

 global_base = base;

 global_end = global_base + nele - 1;

 task_queue_ptr tq = new_task_queue();

 tqsort_helper(base, nele, tq);

 join_tasks(tq);

 free_task_queue(tq);

}

Carnegie Mellon

51

Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

 task_queue_ptr tq) {

 if (nele <= nele_max_sort_serial) {

 /* Use sequential sort */

 qsort_serial(base, nele);

 return;

 }

 sort_task_t *t = new_task(base, nele, tq);

 spawn_task(tq, sort_thread, (void *) t);

}

Carnegie Mellon

52

Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition (if size of part > 1)

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

 sort_task_t *t = (sort_task_t *) vargp;

 data_t *base = t->base;

 size_t nele = t->nele;

 task_queue_ptr tq = t->tq;

 free(vargp);

 size_t m = partition(base, nele);

 if (m > 1)

 tqsort_helper(base, m, tq);

 if (nele-1 > m+1)

 tqsort_helper(base+m+1, nele-m-1, tq);

 return NULL;

}

Carnegie Mellon

53

Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort
▪ E.g., serial fraction = 64 means do serial sort for partitions of size ≤ 𝑁/64

 Sort N=227 (134,217,728) random values

 Best speedup = 6.84X

Carnegie Mellon

54

Parallel Quicksort Performance

 Good performance over wide range of fraction values
▪ Serial Fraction too small: Not enough parallelism

▪ Serial Fraction too large: Thread overhead too high

Carnegie Mellon

55

Amdahl’s Law

 Overall problem
▪ T Total sequential time required

▪ p Fraction of total that can be sped up (0  p  1)

▪ k Speedup factor

 Resulting Performance
▪ Tk = pT/k + (1-p)T

▪ Portion which can be sped up runs k times faster

▪ Portion which cannot be sped up stays the same

▪ Maximum possible speedup

▪ k = 

▪ T = (1-p)T

Carnegie Mellon

56

Amdahl’s Law Example

 Overall problem
▪ T = 10 Total time required

▪ p = 0.9 Fraction of total which can be sped up

▪ k = 9 Speedup factor

 Resulting Performance
▪ T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0 (a 5x speedup)

 Maximum possible speedup
▪ T = 0.1 * 10.0 = 1.0 (a 10x speedup)

▪ With infinite parallel computing resources!

▪ Limit speedup shows algorithmic limitation

Carnegie Mellon

57

Amdahl’s Law Example

Carnegie Mellon

58

Amdahl’s Law & Parallel Quicksort

 Sequential bottleneck
▪ Top-level partition: No speedup

▪ Second level:  2X speedup

▪ kth level:  2k-1X speedup

 Implications
▪ Good performance for small-scale parallelism

▪ Would need to parallelize partitioning step to get large-scale
parallelism

▪ Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

Carnegie Mellon

61

Lessons Learned

 Must have parallelization strategy
▪ Partition into K independent parts

▪ Divide-and-conquer

 Inner loops must be synchronization free
▪ Synchronization operations very expensive

 Watch out for hardware artifacts
▪ Need to understand processor & memory structure

▪ Sharing and false sharing of global data

 Beware of Amdahl’s Law
▪ Serial code can become bottleneck

 You can do it!
▪ Achieving modest levels of parallelism is not difficult

▪ Set up experimental framework and test multiple strategies

	Slide 1
	Slide 2: Thread Level Parallelism 18-213/18-613: Introduction to Computer Systems 25th Lecture, December 3rd, 2024
	Slide 3: Today
	Slide 4: Today
	Slide 5: Typical Multicore Processor
	Slide 6: Out-of-Order Processor Structure
	Slide 7: Hyperthreading Implementation
	Slide 8: Benchmark Machine
	Slide 9: Exploiting parallel execution
	Slide 10: Memory Consistency
	Slide 11: Non-Coherent Cache Scenario
	Slide 12: Snoopy Caches
	Slide 13: Snoopy Caches
	Slide 14: Memory Consistency
	Slide 15: Memory Consistency
	Slide 16: Sequential Consistency Example
	Slide 17: Non-Coherent Cache Scenario
	Slide 18: Non-Sequentially Consistent Scenario
	Slide 19: Non-Sequentially Consistent Scenario
	Slide 20: Memory Models
	Slide 21: Today
	Slide 22: Summation Example
	Slide 23: Accumulating in Single Global Variable: Declarations
	Slide 24: Accumulating in Single Global Variable: Declarations
	Slide 25: Accumulating in Single Global Variable: Declarations
	Slide 26: Accumulating in Single Global Variable: Operation
	Slide 27: Thread Function: No Synchronization
	Slide 28: Unsynchronized Performance
	Slide 29: Thread Function: Semaphore / Mutex
	Slide 30: Semaphore / Mutex Performance
	Slide 31: Separate Accumulation
	Slide 32: Separate Accumulation: Operation
	Slide 33: Thread Function: Memory Accumulation
	Slide 34: Memory Accumulation Performance
	Slide 35: False Sharing
	Slide 36: False Sharing Performance
	Slide 37: Thread Function: Register Accumulation
	Slide 38: Register Accumulation Performance
	Slide 39: Lessons learned
	Slide 40: Quiz Time!
	Slide 41: A More Substantial Example: Sort
	Slide 42: Sequential Quicksort Visualized
	Slide 43: Sequential Quicksort Visualized
	Slide 44: Sequential Quicksort Code
	Slide 45: Parallel Quicksort
	Slide 46: Parallel Quicksort Visualized
	Slide 47: Thread Structure: Sorting Tasks
	Slide 48: Small Sort Task Operation
	Slide 49: Large Sort Task Operation
	Slide 50: Top-Level Function (Simplified)
	Slide 51: Recursive sort routine (Simplified)
	Slide 52: Sort task thread (Simplified)
	Slide 53: Parallel Quicksort Performance
	Slide 54: Parallel Quicksort Performance
	Slide 55: Amdahl’s Law
	Slide 56: Amdahl’s Law Example
	Slide 57: Amdahl’s Law Example
	Slide 58: Amdahl’s Law & Parallel Quicksort
	Slide 61: Lessons Learned

