Carnegie Mellon

AN R L TS e

o AN iiting v

14-513

g e g
i - s ol B Yar e ' 5 —2-‘3

Carnegie Mellon

Thread Level Parallelism

18-213/18-613: Introduction to Computer Systems
25th Lecture, December 3 2024

Carnegie Mellon

Today
m Parallel Computing Hardware CSAPP 12.6
m Consistency Models CSAPP 12.6

m Thread-Level Parallelism CSAPP 12.6

Carnegie Mellon

Today

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip
= Hyperthreading
= Efficient execution of multiple threads on single core

m Consistency Models
= What happens when multiple threads are reading & writing shared state

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Examine some performance artifacts
= Divide-and conquer parallelism
= Example: Parallel quicksort

Carnegie Mellon

IntegratedMemory Controller/-3:Ch DOR3:
3 : o | - s |4

T
{

Typical Multicore Processor

L3 unified cache
(shared by all cores)

Core 0 Core 1 ' Core2 Core3
. CoreO Core n-1 i)
Regs Regs Shared L3 Cache
L1 L1 L1 L1 !
: d-cache| | i-cache d-cache| | i-cache E
i L2 unified cache L2 unified cache i

Main memory

m Multiple processors operating with coherent view of memory

Carnegie Mellon

Out-of-Order Processor Structure

Instruction Control
Instruction
Cache
Registers Op. Queue
I PC
R
Functional Units

m Instruction control dynamically converts program into stream
of operations

m Operations mapped onto functional units to execute in parallel

Carnegie Mellon

Hyperthreading Implementation

Instruction Control
Instruction
Reg A Op. Queue A l Cache
A
Reg B Op. Queue B
T PCA PCB

A 4 1 A\ AN 4

Functional Units

m Replicate instruction control to process K instruction streams

m K copies of all registers
m Share functional units

Carnegie Mellon

Benchmark Machine

m Get data about machine from /proc/cpuinfo

m Shark Machines
= Intel Xeon E5520 @ 2.27 GHz
®" Nehalem, ca. 2010
= 8 Cores
® Each can do 2x hyperthreading

Carnegie Mellon

Exploiting parallel execution

m So far, we’ve used threads to deal with 1/O delays

= e.g., one thread per client to prevent one from delaying another
m Multi-core CPUs offer another opportunity

= Spread work over threads executing in parallel on N cores

" Happens automatically, if many independent tasks
= e.g., running many applications or serving many clients
= Can also write code to make one big task go faster

= by organizing it as multiple parallel sub-tasks
m Shark machines can execute 16 threads at once
= 8 cores, each with 2-way hyperthreading

" Theoretical speedup of 16X

= never achieved in our benchmarks

Carnegie Mellon

Memory Consistency

inta=1;

intb = 100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

m What are the possible values printed?

= Depends on memory consistency model
" Abstract model of how hardware handles concurrent accesses

10

Carnegie Mellon

Non-Coherent Cache Scenario

m Write-back caches, without
coordination between them

Thread1 Cache
a: 2 b:100

™

a:1

inta=1;

int b =100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread2 Cache

a:1 b:200

7

in Me

b:100

print 1

print 100

At later points, a:2 and b:200
are written back to main memory

1

Carnegie Mellon

Snoopy Caches —
int b = 100;

m Tag each cache block with state A
Invalid Cannot use value Thread1: Thread2:
Shared Readable copy Wa: a=2; Whb: b = 200;
Exclusive Writeable copy Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
El a:2
E | b:200
Main Memory
a:1 b:100

12

Snoopy Caches

Tag each cache block with state
Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Carnegie Mellon

inta=1;

int b = 100;
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
S| a2 S| a:2
S | b:2Q0 s :200
\mmmw/
a:1 b:100

print 2
print 200

m When cache sees request for
one of its E-tagged blocks

m Supply value from cache
(Note: value in memory
may be stale)

m Settagto$S

13

Memory Consistency

inta=1;
int b =100;

O

Threadl:
Wa: a=2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

m What are the possible values printed?

= Depends on memory consistency model

Carnegie Mellon

Thread consistency
constraints

Wa—— Rb

Wb——— Ra

" Abstract model of how hardware handles concurrent accesses

14

Carnegie Mellon

Memory Consistency

inta=1;

int b = 100; Thread consistency

/\ constraints

Wa———— Rb
Threadl: Thread2:
Wa: a=2; Wb: b = 200; Wh R
Rb: print(b); | | Ra: print(a); a

m What are the possible values printed?

= Depends on memory consistency model

= Abstract model of how hardware handles concurrent accesses
m Sequential consistency

= As if only one operation at a time, in an order consistent with the
order of operations within each thread

" Thus, overall effect consistent with each individual thread but
otherwise allows an arbitrary interleaving

15

Carnegie Mellon

Sequential Consistency Example

- Y Thread consistency
!": Z ~ 1’00 constraints
in —/;\ Wa—— Rb
Thread1: Thread2: Wb Ra
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a); Rb Wb Ra 100, 2
Wa < Rb ———Ra 200, 2
Wb <
Ra ———Rb 2,200
Ra —— Wa ——Rb 1,200
Wb < Ra ——Rb 2,200
Wa <
Rb ———Ra 200, 2

m Impossible outputs
= 100,1and 1,100
= Would require reaching both Ra and Rb before either Wa or Wb

16

Carnegie Mellon

Non-Coherent Cache Scenario

inta=1;
m Write-back caches, without int b = 100;
coordination between them /\
Threadl: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
a: 2 b:100 a:1 b:200 print 1

N c print 100

in Me . .
m Sequentially consistent? No!

a:1 b:100

17

Carnegie Mellon

Non-Sequentially Consistent Scenario

m Coherent caches, but thread
consistency constraints violated
due to operation reordering

inta=1;

int b =100;

Thread1l: Thread2:

Wa: a=2; Whb: b = 200; 4
Rb: print(b); | | Ra: print(a); | 1

a:2 b:200
Threadl Cache Thread2 Cache
b:100 a:1
Maifi MehQry
a:1 b:100

print 1

print 100

m Arch lets reads finish before writes b/c single thread accesses
different memory locations

18

Carnegie Mellon

Non-Sequentially Consistent Scenario

inta=1;
int b = 100;
Threadl Cache Thread2 Cache Thread1: Thread2:
3| Wa: a=2; Whb: b = 200; 4
bil{) 781:1 2 | Rb: print(b); | | Ra: print(a); |1
Threadl Write hread2 Write = Why Reordered? Writes
Buffer—— Buffer [5-200 tak.e long time. Buffer
, VAN , ™~ write, let read go ahead.
Main em}gx Instruction-level parallelism
a:1 b:100

m Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

19

Carnegie Mellon

Memory Models

m Sequentially Consistent:
= Each thread executes in proper order, any interleaving

m To ensure, requires
" Proper cache/memory behavior
® Proper intra-thread ordering constraints

20

Carnegie Mellon

Today

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Examine some performance artifacts
= Divide-and conquer parallelism
= Example: Parallel quicksort

21

Summation Example

m Sum numbers O, ..., N-1
= Should add up to (N-1)*N/2
m Partition into K ranges

x |_N/KJ values each
= Each of the t threads processes 1 range

= Accumulate leftover values serially
m Method #1: All threads update single global variable

= 1A: No synchronization
= 1B: Synchronize with pthread semaphore
= 1C: Synchronize with pthread mutex
= “Binary” semaphore. Only values 0 & 1

22

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data t global sum;

23

Carnegie Mellon

Accumulating in Single Global Variable:
Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;

24

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;

/* Number of elements summed by each thread */
size t nelems per thread;

/* Keep track of thread IDs */
pthread_t tid [MAXTHREADS] ;

/* Identify each thread */
int myid[MAXTHREADS] ;

25

Accumulating in Single Global Variable:

Operation

nelems_pe:_thread = nelems / nthreads;

/* Set global value */
global sum = 0;

Thread ID Thread routine

/* Create threads and wait £ them to finish */

}

for (1 = 0; 1 < nthreads; i++) " r
Pthread join (tid[i], NULL); Thread arguments

(void *p)

Pthread create(&tid[i], NULL, thread fun, &myid[i]);

result = global sum;

/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

26

Carnegie Mellon

Thread Function: No Synchronization

void *sum race (void *vargp)

{
int myid = *((int *)vargp):
size t start = myid * nelems per thread;
size_ t end = start + nelems per thread;
size t i;

for (1 = start; i1 < end; i++) {
global sum += i;

}

return NULL;

27

Carnegie Mellon

Unsynchronized Performance

Parallel Sums #1
2.5
2 \
1.5
== Race
1

0.5

Elapsed Seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

m N=230
m Best speedup = 2.86X
m Gets wrong answer when > 1 thread! Why?

28

Carnegie Mellon

Thread Function: Semaphore / Mutex

Semaphore

void *sum sem(void *vargp)

{
int myid = *((int *)vargp):;
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;

for (1 = start; 1 < end; i++) {
sem wait (&semaphore) ;
global sum += i;

sem post (&semaphore) ;

}
return NULL;

Mutex

pthread mutex lock (&mutex) ;
global sum += i;
pthread mutex unlock (&mutex) ;

29

Carnegie Mellon

Semaphore / Mutex Performance

Parallel Sums #2

/"‘v\/\/ Vo

=l—Semaphore
200 / Mutex
100 [

1 2 3 4 5 6 7 & 9 1011 12 13 14 15 16

700

600

500

I
(an]
(o=]

Elapsed Seconds
o
o
(]

E

Threads

What is main reason for

m Terrible Performance
poor performance?

= 2.5seconds =» ~10 minutes
m Mutex 3X faster than semaphore
m Clearly, neither is successful .

Carnegie Mellon

Separate Accumulation

m Method #2: Each thread accumulates into separate variable
= 2A: Accumulate in contiguous array elements
= 2B: Accumulate in spaced-apart array elements
= 2C: Accumulate in registers

/* Partial sum computed by each thread */
data_t psum[MAXTHREADS*MAXSPACING] ;

/* Spacing between accumulators */
size t spacing = 1;

31

Carnegie Mellon

Separate Accumulation: Operation

nelems_pe:_thread = nelems / nthreads;

/* Create threads and wait for them to finish */
for (1 = 0; 1 < nthreads; i++) {
myid[i] = i;
psum[i*spacing] = 0;
Pthread create(&tid[i], NULL, thread fun, &myid[i]);
}
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);

result = 0;

/* Add up the partial sums computed by each thread */
for (i = 0; i < nthreads; i++)
result += psum[i*spacing];

/* Add leftover elements */

for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

32

Carnegie Mellon

Thread Function: Memory Accumulation

Where is the mutex?

void *sum global (void *vargp)

{
int myid = *((int *)vargp):
size t start = myid * nelems per thread;
size_ t end = start + nelems per thread;
size t i;

size t index = myid*spacing;

psum[index] = O;

for (i = start; i < end; i++) {
psum[index] += 1i;

}

return NULL;

33

Carnegie Mellon

Memory Accumulation Performance

Parallel Sums #3

P
ra i

Elapsed Seconds
=
= n
9

=4 Race
M Adjacent memory acc
\\\ == Spaced memory acc

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16

©
n

o

Threads

m Clear threading advantage
= Adjacent speedup: 5 X
= Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

m Why does spacing the accumulators apart matter?

34

Carnegie Mellon

False Sharing

psum

Y Y

Cache Block m Cache Block m+1

m Coherence maintained on cache blocks
m To update psumli], thread i must have exclusive access

" Threads sharing common cache block will keep fighting each other
for access to block

35

Carnegie Mellon

False Sharing Performance

False Sharing Effects

=51

=52

—8—54

S8
——516

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

= Best spaced-apart performance 2.8 X better than best adjacent

m Demonstrates cache block size = 64

= 8-byte values
= No benefit increasing spacing beyond 8

36

Carnegie Mellon

Thread Function: Register Accumulation

void *sum local(void *vargp)
{
int myid = *((int *)vargp):
size t start = myid * nelems per thread;
size_ t end = start + nelems per thread;
size t i;
size t index = myid*spacing;
data t sum = 0;
for (i = start; i1 < end; i++) {
sum += i;
}
psum[index] = sum;
return NULL;

37

Carnegie Mellon

Register Accumulation Performance

Parallel Sums #4

[aS]
wu

\\ : —=Race
\\ —l—Spaced memory acc

T — _
‘\‘1"-"—.—-.._-__._'_.,. o

1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16

P

=
un

Elapsed Seconds

=

o
n

o

Threads

m Clear threading advantage
= Speedup=7.5X
m 2X better than fastest memory accumulation

Beware the speedup metric!

38

Carnegie Mellon

Lessons learned

m Sharing memory can be expensive
= Pay attention to true sharing
= Pay attention to false sharing

m Use registers whenever possible
= (Remember cachelab)
= Use local cache whenever possible

m Deal with leftovers

m When examining performance, compare to best possible
sequential implementation

39

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 25 —Thread Level Parallelism

40

Carnegie Mellon

A More Substantial Example: Sort

m Sort set of N random numbers
m Multiple possible algorithms
= Use parallel version of quicksort

m Sequential quicksort of set of values X
® Choose “pivot” p from X

Rearrange X into
= L:Values<p
= R:Values>p

Recursively sort L to get L'

Recursively sort R to get R’

ReturnLl':p: R’

4

Carnegie Mellon

Sequential Quicksort Visualized

X

L [R

42

Carnegie Mellon

Sequential Quicksort Visualized

-'

X
[[
[p3]
s w R
N ~ e
PHET r

43

Carnegie Mellon

Sequential Quicksort Code

void gsort serial (data_t *base, size_ t nele) {
if (nele <= 1)
return;
if (nele == 2) {
if (base[0] > base[l])
swap (base, base+l) ;
return;

}

/* Partition returns index of pivot */
size t m = partition(base, nele);
if (m > 1)
gsort serial (base, m);
if (nele-1 > m+l)
gsort serial (base+m+l, nele-m-1);

}

m Sort nele elements starting at base
= Recursively sort L or R if has more than one element

44

Carnegie Mellon

Parallel Quicksort

m Parallel quicksort of set of values X
= |f N < Nthresh, do sequential quicksort
= Else

= Choose “pivot” p from X
= Rearrange X into
— L: Values<p
— R:Values > p
= Recursively spawn separate threads
— SortLto get L
— Sort Rto get R’
= Returnl':p: R’

45

Carnegie Mellon

Parallel Quicksort Visualized

—
| ><

46

Carnegie Mellon

Thread Structure: Sorting Tasks

Task Threads
m Task: Sort subrange of data

= Specify as:
= base: Starting address

= nele: Number of elements in subrange
m Run as separate thread

47

Small Sort Task Operation

X
0
Task Threads

m Sort subrange using serial quicksort

48

Carnegie Mellon

Large Sort Task Operation

'
’/
Partition Subrange el
/”
-
/”
[[{
P
// »” -~
U Pig
Spawn 2 tasks / R
,l R
”

49

Carnegie Mellon

Top-Level Function (Simplified)

void tgsort(data t *base, size t nele) {
init task(nele);
global base = base;
global end = global base + nele - 1;
task queue ptr tq = new_task queue() ;
tgsort helper (base, nele, tq);
join tasks(tq);
free task queue(tq);

Sets up data structures

[

m Calls recursive sort routine

m Keeps joining threads until none left
[

Frees data structures

50

Carnegie Mellon

Recursive sort routine (Simplified)

/* Multi-threaded quicksort */
static void tgsort helper (data t *base, size_t nele,
task queue ptr tq) {
if (nele <= nele max sort serial) {
/* Use sequential sort */
gsort serial (base, nele);
return;

}
sort _task t *t = new_ task(base, nele, tq);
spawn_task (tq, sort thread, (void *) t);

m Small partition: Sort serially
m Large partition: Spawn new sort task

51

Carnegie Mellon

Sort task thread (Simplified)

/* Thread routine for many-threaded quicksort */
static void *sort thread(void *vargp) ({
sort _task t *t = (sort task t *) vargp;
data t *base = t->base;
size t nele = t->nele;
task _queue ptr tg = t->tq;
free (vargp) ;
size t m = partition(base, nele);
if (m > 1)
tgsort helper (base, m, tq);
if (nele-1 > m+l)
tgsort helper (base+m+l, nele-m-1, tq);
return NULL;

m Get task parameters
m Perform partitioning step

m Call recursive sort routine on each partition (if size of part > 1)

52

Carnegie Mellon

Parallel Quicksort Performance

22.00

Parallel Quicksort

20.00 ~

18.00 \

16.00 \

14.00 \

12.00 \

10.00 \

8.00 \\
6.00 \
4.00

2.00

/

e —

0.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

——Elapsed seconds
Multicore limit

= Hyperthread limit

m Serial fraction: Fraction of input at which do serial sort

= E.g., serial fraction = 64 means do serial sort for partitions of size < N/64

m Sort N=227 (134,217,728) random values
m Best speedup = 6.84X

53

Carnegie Mellon

Parallel Quicksort Performance

22.00

L~ Parallel Quicksort

18.00 \\
16.00 \
14.00 \
12.00
\ ——Elapsed seconds
10.00
\ Multicore limit
8.00 \ = Hyperthread limit
6.00 \ /
4.00

\.._________________..—-""‘

2.00

0.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Serial Fraction

m Good performance over wide range of fraction values
= Serial Fraction too small: Not enough parallelism
= Serial Fraction too large: Thread overhead too high

54

Carnegie Mellon

Amdahl’s Law

m Overall problem
= T Total sequential time required
" p Fraction of total that can be sped up (0<p <1)
= k Speedup factor

m Resulting Performance
" T, =pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
= Maximum possible speedup
= k=00

. Too = (1_p)T

55

Carnegie Mellon

Amdahl’s Law Example

m Overall problem
= T=10 Total time required
" p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor

m Resulting Performance
" T,=09%*10/9+0.1*10=1.0+1.0=2.0 (a5xspeedup)

m Maximum possible speedup
= T =0.1*10.0=1.0 (a 10xspeedup)
= With infinite parallel computing resources!
= Limit speedup shows algorithmic limitation

56

Carnegie Mellon

Amdahl’s Law Example

Amdahl's Law

H.00 T
i]

B.00 ,ﬁf‘-
/ Pamllel po rtion
k.00 Fi a6

wa / S
/ —— P

N\ R

=
|I|IIL

Tt T eR?EgYEEEY g

T
THk 1]

NHumberof procesors

57

Carnegie Mellon

Amdahl’s Law & Parallel Quicksort

m Sequential bottleneck
= Top-level partition: No speedup
= Second level: < 2X speedup
= kth Jevel: <2KIX speedup

m Implications

" Good performance for small-scale parallelism

= Would need to parallelize partitioning step to get large-scale
parallelism

= Parallel Sorting by Regular Sampling

— H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

58

Carnegie Mellon

Lessons Learned

m Must have parallelization strategy
= Partition into K independent parts
= Divide-and-conquer

m Inner loops must be synchronization free
= Synchronization operations very expensive

m Watch out for hardware artifacts
" Need to understand processor & memory structure
= Sharing and false sharing of global data

m Beware of Amdahl’s Law
= Serial code can become bottleneck

m Youcando it!

= Achieving modest levels of parallelism is not difficult
= Set up experimental framework and test multiple strategies

61

	Slide 1
	Slide 2: Thread Level Parallelism 18-213/18-613: Introduction to Computer Systems 25th Lecture, December 3rd, 2024
	Slide 3: Today
	Slide 4: Today
	Slide 5: Typical Multicore Processor
	Slide 6: Out-of-Order Processor Structure
	Slide 7: Hyperthreading Implementation
	Slide 8: Benchmark Machine
	Slide 9: Exploiting parallel execution
	Slide 10: Memory Consistency
	Slide 11: Non-Coherent Cache Scenario
	Slide 12: Snoopy Caches
	Slide 13: Snoopy Caches
	Slide 14: Memory Consistency
	Slide 15: Memory Consistency
	Slide 16: Sequential Consistency Example
	Slide 17: Non-Coherent Cache Scenario
	Slide 18: Non-Sequentially Consistent Scenario
	Slide 19: Non-Sequentially Consistent Scenario
	Slide 20: Memory Models
	Slide 21: Today
	Slide 22: Summation Example
	Slide 23: Accumulating in Single Global Variable: Declarations
	Slide 24: Accumulating in Single Global Variable: Declarations
	Slide 25: Accumulating in Single Global Variable: Declarations
	Slide 26: Accumulating in Single Global Variable: Operation
	Slide 27: Thread Function: No Synchronization
	Slide 28: Unsynchronized Performance
	Slide 29: Thread Function: Semaphore / Mutex
	Slide 30: Semaphore / Mutex Performance
	Slide 31: Separate Accumulation
	Slide 32: Separate Accumulation: Operation
	Slide 33: Thread Function: Memory Accumulation
	Slide 34: Memory Accumulation Performance
	Slide 35: False Sharing
	Slide 36: False Sharing Performance
	Slide 37: Thread Function: Register Accumulation
	Slide 38: Register Accumulation Performance
	Slide 39: Lessons learned
	Slide 40: Quiz Time!
	Slide 41: A More Substantial Example: Sort
	Slide 42: Sequential Quicksort Visualized
	Slide 43: Sequential Quicksort Visualized
	Slide 44: Sequential Quicksort Code
	Slide 45: Parallel Quicksort
	Slide 46: Parallel Quicksort Visualized
	Slide 47: Thread Structure: Sorting Tasks
	Slide 48: Small Sort Task Operation
	Slide 49: Large Sort Task Operation
	Slide 50: Top-Level Function (Simplified)
	Slide 51: Recursive sort routine (Simplified)
	Slide 52: Sort task thread (Simplified)
	Slide 53: Parallel Quicksort Performance
	Slide 54: Parallel Quicksort Performance
	Slide 55: Amdahl’s Law
	Slide 56: Amdahl’s Law Example
	Slide 57: Amdahl’s Law Example
	Slide 58: Amdahl’s Law & Parallel Quicksort
	Slide 61: Lessons Learned

