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Synchronization: Basic

18-213/18-613: Introduction to Computer Systems
23rd Lecture, November 21, 2024
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Today

m Recap: Threads, races, and deadlocks

m Sharing CSAPP 12.4
m Mutual exclusion CSAPP 12.5
m Semaphores CSAPP 12.5
m Producer-Consumer Synchronization CSAPP 12.5
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Traditional View of a Process
m Process = process context + code, data, and stack

______ Izrgiefsic_o[\t_e)_(t_ - = Code, data, and stack

Program context: Sp —s Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk Run-time heap

VM structures PC —> Read-only code/data
Descriptor table

brk pointer
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Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack -
P brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

I

I |
| I
| [
I |
- :
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: Data registers : PC — Read'only COde/data
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I |
| I
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I |
| I
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A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
" Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
® Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer
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Race conditions

m Event A can happen either before or after event B

m The program behaves differently depending on which one
happens first
= Races are not necessarily bugs!
= Only if one of the possible behaviors is incorrect
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Race condition example

false
if (fileExists == true) { fileExists = true
file = loadFile()
}
else {
log(*'uh-oh™)
}

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 8
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Race condition example

< . E =3
true true

if (fileExists == true) { fileExists = true if (fileExists == true) { fileExists = true
} file = loadFile() file = loadFile() (—D

}
else { else {
: log(*'uh-oh") log(*'uh-oh")

3

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 9
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Race condition example

false true l

if (fileExists == true) { fileExists = true if (fileExists == true) { fileExists = true
file = loadFile() file = loadFile()

} }

else { else {
log("'uh-oh™) log("'uh-oh™)

} }

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 10
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More race condition examples

m File is deleted, in between when a program checks
whether the file exists, and when it opens the file
(“time-of-check to time-of-use” race)

m Child exits before parent can add it to the job list (tsh)

m Child thread reads variable after parent has changed it
(previous lecture)

m Two threads update the same variable simultaneously
(later in this lecture)
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Deadlock

m Whenever two or more threads/processes/... are stuck
waiting for each other to do something
m Inreal life:

= Alice cannot put the groceries down until Bob opens the door
= Bob cannot open the door until Alice hands him the keys

= Alice cannot hand Bob the keys because she is holding the
groceries

m In programming:

= Client is waiting for server to send a message before it closes the
connection

= Server is waiting for client to close the connection before it sends
the message (server has a bug)

m Deadlock is always a bug
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Today

Recap: Threads, races, and deadlocks
Sharing

M
M
m Mutual exclusion
m Semaphores

M

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13



Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

" The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

m Requires answers to the following questions:
= What is the memory model for threads?
" How are instances of variables mapped to memory?
= How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Threads Memory Model: Conceptual

m Multiple threads run within the context of a single process
m Each thread has its own separate thread context

= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

m All threads share the remaining process context
" Code, data, heap, and shared library segments of the process virtual address space

=  QOpen files and installed handlers

Thread 1 Thread 2
(private) (private) Shared code and data
stack 1 stack 2
shared libraries
Thread 1 context: Thread 2 context: .
Data registers Data registers run-time heap
Condition codes Condition codes read/write data
SP, SP, read-only code/data
PC, PC,
15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

Threads Memory Model: Actual

m Separation of data is not strictly enforced:
= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

Virtual Address Space

o
stack 1 KK > stack 2

R
\ B Shared code and data
Thread 1 hread 2
(private) (pri shared libraries
Thread 1 context: Thread 2 context: ‘\

_ _ \__run-time heap
Data registers Data registers %% read /write data
Condition codes Condition codes
read-only code/data
SP, SP,
PC, PC,

The mismatch between the conceptual and operation model
is a source of confusion and errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16
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Example Program to lllustrate Sharing

char **ptr; /* global var */ void *thread(void *vargp)
{
int main(int argc, char *argv][]) long myid = (long)vargp:;
{ static #nt cnt = 0;
long 1i;
pthread t tid; printf ('J[%$1d]: %s (cnt=%d)\n",
char *msgs[2] = { myid, ptr[myid], ++cnt);
"Hello from foo", return NULL;
"Hello from bar" } \\
}; \
Peer threads reference main thread’s stack
ptr = msgs; indirectly through global ptr variable
for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i) ; €= A common, but inelegant way to
Pthread exit (NULL) ; = pass a single argument to a
} sharing.c thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17
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Mapping Variable Instances to Memory

m Global variables

= Def: Variable declared outside of a function
= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute

= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18
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Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])

/

char **ptr; /* global var *
int main(int main,

long 1i;

pthread t tid;

char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i) ;
Pthread exit (NULL) ;

Notation:
«—— instance of

Local vars: 1 instance (i .m, msgs.m) msgs in main

Local var: 2 instances (
myid.pO [peerthread 0’s stack],
myid.pl [peerthread 1’s stack]

void *threAd (void *wvargp)

{
long myid = (long)vargp:;
static int cnt = 0;
printf\{"[%1d]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NNLL;

}

} sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

\
Local static var: 1 instance (cnt [data))

19



Shared Variable Analysis

m Which variables are shared?

Variable Referenced by  Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO0 no yes no
myid.pl no no yes

char **ptr; /* global var */ | : _
int main(int main, char *argv[]) ({ void *thread(void *vargp)

long i; pthread t tid; { .
char *msgs[2] = {"Hello from foo", long myid = (long)vargp;
"Hello from bar" }’. static int cnt = O,'
ptr = msgs;

printf (" [%$1d]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);
return NULL;

for (1 = 0; i < 2; i++)
Pthread create(&tid,
NULL, thread, (void *)1i);
Pthread exit (NULL) ;} }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20




Shared Variable Analysis

m Which variables are shared?

Variable Referenced by  Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?7

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO0 no yes no
myid.pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr, cnt, and msgs are shared
m i andmyid are not shared

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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Synchronizing Threads

m Shared variables are handy...

m ..but introduce the possibility of nasty synchronization
errors.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22



badcnt. c: Improper Synchronization

/* Global shared wvariable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;

pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */

if (cnt !'= (2 * niters))
printf ("BOOM! cnt=%1d\n", cnt);
else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;
} badcnt.c

/* Thread routine */
void *thread(void *vargp)
{
long j, niters =
*((long *)vargp);

for (J = 0;
cnt++;

jJ < niters; j++)

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

23
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Assembly Code for Counter Loop

C code for counter loop in thread i

for (j = 0; j < niters; j++)
cnt++;
Asm code for thread i
movqg (%rdi), Srcx
1_:estq 3rcx,srcx } H.: Head
jle .L2
movl $0, %eax
L3
movqg cnt(%rip) ,%rdx L; : Load cnt
addg $1, %rdx U; : Update cnt
movqg %rdx, cnt(%rip) |/ S;:Storecnt
[ addg $1, %rax ]
cmpg S%rcx, 3rax .
jne .L3 } T+ Tail
.L2:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Concurrent Execution

m Key idea: In general, any sequentially consistent™
interleaving is possible, but some give an unexpected result!
= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx,  %rdx, cnt
Note: One of many

possible interleavings

[ TRY
L
=

=

=Y

0
1 -
1

e

N

N

N)
'
NININ|E=|

N

NININR|IRIRIRIO|IO|O

= IINININININ | = - -
—I—IMC\I,—IU’CF
1

1 - OK

*For now. In reality, on x86 even non-sequentially consistent interleavings are possible

Y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25



Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx,  %rdx, cnt

[ TRY
L
=

Thread 1
critical section

=)

=Y

0
1 -
1

Thread 2
critical section

=)

N

N

N
'
NIN(N (=]

N

NININRIRIRROO|O

= IINININININ (= - -
—I—IMC\I,—IU’CF
1

=y
=
1

OK
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Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %rdx,  %rdx, cnt

1 H, - - 0
1 L, 0 - 0
1 u, 1 - 0
2 H, - - 0
2 L, - 0 0
1 S, 1 - 1
1 T, 1 - 1
2 u, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

(badcnt will print “BOOM!”)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27
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Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %rdx, %rdx, cnt

[ WY
L
=

o

0

=

N

N

N

=Y

=)

Y

= =

NRIRERERININNIN|=
—|-H|wclw clir T
[ T
=

N

Oops again!

m We can analyze the behavior using a progress graph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28
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Progress Graphs

Thread 2 A progress graph depicts
the discrete execution

o o o o o O state space of concurrent

T threads.
2 (L, S,)

i ° ¢ ¢ ¢ ® Each axis corresponds to
S, the sequential order of

¢ ® ® ° ° ° instructions in a thread.
U,

Each point corresponds to

T ® ® ® ¢ ¢ a possible execution state
L, (Inst,, Inst,).
o o o o o o
H E.g., (L, S,) denotes state
2 where thread 1 has

¢ ° ® ® * *— Thread1 completed L, and thread
2 has completed S,.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
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Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
® ° ® ° ° ® state transitions that describes one
T, possible concurrent execution of the
threads.
[ ) ® [ ) o o
S, x Example:
i ¢ ° ¢ ¢ H1, L1, U1, H2, L2, S1, T1, U2, S2, T2
U,
® [ ) o ’—”—»
L,
[ ) [ ] o x o o
H,

H, L, U, S Ty

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30
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Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal

® ° ® ° e state transitions that describes one

T, x possible concurrent execution of the
threads.

[ ) ® [ ) o o
S, x Example:

i ¢ ° ¢ ¢ H1, L1, U1, H2, L2, S1,T1, U2, S2, T2
U,

® [ ) o ’—”—»
L,

[ ) [ ] o x o o
H,

H, L, U, S Ty

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31
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Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
it o o o o o section Wlt.h respect to the
shared variable cnt
T,
9 ¢ o o o ® Instructions in critical
S, sections (wrt some shared
critical ! o . . o o variable) should not be
section . interleaved
wrt 3 U2 Unsafe region
cnt 7 ® ° ® ° ® Sets of states where such
L, interleaving occurs form
. . . . . . unsdfe regions
H,
¢ ¢ ¢ ° ¢ *— Thread 1
H, L, U, S, L
N\ J
"

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32



Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2

not enter any unsafe region

e o —0 > )
T T Def: A trajectory is safe iff it does
2
9 ® @ A
S, ‘ Claim: A trajectory is correct (wrt
critical cnt) iff it is safe

section

wrt < U, Unsafe region
cnt x o o x_”_’.

L, unsafe

K x o o x o o
H,
— > 2 - o— Thread 1
H, L, U, S, 1
N /
~~

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



badcnt. c: Improper Synchronization

/* Global shared wvariable */

{

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

long niters;
pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%1d\n", cnt);
else

/* Thread routine */
void *thread(void *vargp)

{
long j, niters =
*((long *)vargp)

for (j = 0; j < niters; j++)
cnt++;

return NULL;

Noristie | main | thresdt | tresd2 |
cnt yes* yes yes

printf ("OK cnt=%1d\n", cnt);
exit(0) ;

} badcnt.c

niters.m yes yes yes
tidl.m yes no no
j.1 no yes no
j.2 no no yes
niters.1 no yes no
niters.2 no no yes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Today

Threads review
Sharing

N
N
m Mutual exclusion
m Semaphores

L]

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.

= j.e., need to guarantee mutually exclusive access for each critical
section.

m Classic solution:
= Mutex (pthreads)
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Condition variables (pthreads)
= Monitors (Java)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36
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MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable
m enum {locked = 0, unlocked = 1}

m lock(m)

= |f the mutex is currently not locked, lock it and return
= Otherwise, wait (spinning, yielding, etc) and retry

m unlock(m)

= Update the mutex state to unlocked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37
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MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable *

m Swap(*a, b)
[t = *a; *a =Db; return t;]
// Notation: what's inside the brackets [ ] is indivisible (a.k.a. atomic)
// by the magic of hardware / OS

m Lock(m):

while (swap(&m->state, locked) == locked) ;

m Unlock(m):

m->state = unlocked;

*For now. In reality, many other implementations and design choices (c.f., 15-410, 418, etc).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38



Carnegie Mellon

badcnt. c: Improper Synchronization

/* Global shared wvariable */
volatile long cnt = 0; /* Counter */

{

}

int main(int argc,

char **argv)

long niters;
pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))
printf ("BOOM! cnt=%1d\n", cnt);
else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;
badcnt.c

/* Thread routine */
void *thread(void *wvargp)

{
long j, niters =
*((long *)vargp)

for (j = 0;
cnt++;

jJ < niters; j++)

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How can we fix this using
synchronization?
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goodmecnt. c: Mutex Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
pthread mutex t mutex;
pthread mutex init(&mutex, NULL); // No special attributes

m Surround critical section with lock and unlock:

for (1 = 0; i < niters; i++) { linux> ./goodmcnt 10000
pthread mutex lock (&mutex) ; OK cnt=20000
cnt++; linux> ./goodmcnt 10000
pthread mutex unlock (&mutex) ; OK cnt=20000
}
| Function | badcnt | goodment
Time (ms) 12.0 214.0
niters = 10°

Slowdown 1.0 17.8

Bryant and O’Hallaron, Compt 40



Why Mutexes Work

Thread 2
Provide mutually exclusive
' ° ° y y * * g access to shared variable by
T, surrounding critical section
' . . . . . . . with lock and unlock
un(m) operations
SZ
U, Unsafe region
I'2
lo(m)
H, 1 0 0
po > > . . Thread 1
7’ H, lo(m) L, U, S; un(m) T,
Initially

Bryantc'a‘nd_o%allaron, Computer Systems: A Programmer’s Perspective, Third Edition 4
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Why Mutexes Work

Thread 2
Provide mutually exclusive
' * ° * g * * g access to shared variable by
T, surrounding critical section
' . . . . . . . with lock and unlock
un(m) operations
S, Mutex invariant creates a
X . . . . . . . forbidden region that encloses
u, Unsafe region unsafe region and tha.t cannot
' . . . . . . . be entered by any trajectory.
I'2
lo(m)
H, 1 0 0
po > > . . . Thread 1
0 H, lo(m) L, U, S; un(m) T,
Initially: m=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42
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Why Mutexes Work

Thread 2
Provide mutually exclusive
' * ° * g * * g access to shared variable by
T, surrounding critical section
' . . . . . . . with lock and unlock
un(m) operations
S, Mutex invariant creates a
X . . . . . . . forbidden region that encloses
U unsafe region and that cannot
2 ' . . . . . . . be entered by any trajectory.
lo(m) o 0 1
) [ ] [ ] [ ] [ ) ’ [ ]
H, 1 0 0 ]
po > > . . . Thread 1
0 H, lo(m) L, U, S; un(m) T,
Initially: m=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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Why Mutexes Work

Thread 2
, 1 0 0 0 0 , 1 Provide mutually exFIuswe
i . . . . . ° y access to shared variable by
T, surrounding critical section
1 L o0 O with lock and unlock
un(m) . . Forbidden region . . operations
S, Mutex invariant creates a
[ 0 Lo . . A JO 0 forbidden region that encloses
unsafe region and that cannot
Uz .
0 LU . . . LI, be entered by any trajectory.
L
2 lo [ 0 [ [ [ [ ] [ ] 0 [ 0
lo(m) 1 1 0 0 0 0 1 1
HZ
11 T Thread 1
B H, lo(m) L, U, S; un(m) T,
Initially
m=1
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Today

Threads review
Sharing

|
|
m Mutual exclusion
m Semaphores

|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45
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Semaphores

m Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

m P(s)
"= |f sis nonzero, then decrement s by 1 and return immediately.
= Test and decrement operations occur atomically (indivisibly)

If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

After restarting, the P operation decrements s and returns control to the
caller.

m V(s):
" Increments by 1.
= Increment operation occurs atomically

= |f there are any threads blocked in a P operation waiting for s to become non-
zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

m Semaphore invariant: s 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46
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Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [ while (s == 0) wait(); s--; ]
= Dutch for “Proberen” (test)
= V(s): [ s++; ]
= Dutch for “Verhogen” (increment)

m OS kernel guarantees that operations between brackets [ ] are
executed indivisibly/atomically

= Only one P or V operation at a time can modify s.
= Whenwhile loop in P terminates, only that P can decrement s

m Semaphore invariant: s 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47



Carnegie Mellon

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *s, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */
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Using Semaphores to Coordinate

Access to Shared Resources

m Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
= Use counting semaphores to keep track of resource state.
= Use binary semaphores to notify other threads.

m The Producer-Consumer Problem

" Mediating interactions between processes that generate
information and that then make use of that information
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Producer-Consumer Problem

| shared _{ consumer
buffer thread

producer
thread

m Common synchronization pattern:
" Producer waits for empty slot, inserts item in buffer, and notifies consumer
= Consumer waits for item, removes it from buffer, and notifies producer

m Examples
= Multimedia processing:
= Producer creates video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

= Consumer retrieves events from buffer and paints the display
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Producer-Consumer on 1-element Buffer

m Maintain two semaphores: full + empty

full
0
J|  empty .
empty buffer
1
full
1
[ ful .
empty buffer
0
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Producer-Consumer on 1-element Buffer

#include "csapp.h int main(int argc, char** argv) ({

pthread t tid producer;

#define NITERS 5 pthread t tid consumer;

void *producer (void *argqg) ;

: : /* Initialize the semaphores */ |nitial
void *consumer (void *argqg) ;

Sem init (&shared.empty, O, 1y7 value

Sem init (&shared.full, 0, 0);
struct { -

int buf; /* shared var */
sem t full; /* sems */
sem t empty;

} shared;

/* Create threads and wait */
Pthread create(&tid producer, NULL,
producer, NULL) ;
Pthread create(&tid consumer, NULL,
consumer, NULL) ;
Pthread join(tid producer, NULL) ;
Pthread join(tid consumer, NULL) ;

return 0;
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Producer-Consumer on 1-element Buffer

Initially: empty==1, full==0

Producer Thread Consumer Thread
void *producer (void *arg) ({ void *consumer (void *arg) ({
int i, item; int i, item;
for (i=0; i<NITERS; i++) { for (i=0; i<NITERS; i++) {
/* Produce item */ /* Read item from buf */
item = i; P (&shared. full) ;
printf ("produced %d\n", item = shared.buf;
item) ; V(&shared.empty) ;
/* Write item to buf */ /* Consume item */
P (&shared.empty) ; printf ("consumed %d\n“, item);
shared.buf = item; }
V(&shared. full) ; return NULL;
} }
return NULL;
}
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Why 2 Semaphores for 1-Entry Buffer?

m Consider multiple producers & multiple consumers

e

e ———] shared -~
. buffer

m Producers will contend with each other to get empty
m Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P (&shared. full) ;
shared.buf = item; item = shared.buf;

V(&shared. full) ; V (&shared.empty) ;
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Producer-Consumer on an n-element Buffer

en 0 and n elements @
° / °

m Implemented using a shared buffer package called sbuf.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55



Carnegie Mellon

Circular Buffer (n = 10)

m Store elements in array of size n
m items: number of elements in buffer
m Empty buffer:

= front =rear

m Nonempty buffer
® rear: index of most recently inserted element
" front: (index of next element to remove — 1) mod n

m Initially:

rear
items 0

o
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Circular Buffer Operation (n = 10)

m Insert 7 elements

front| O o 1 2 3 4 5 6 7 8 9
rear 7
items 7

m Remove 5 elements
front| 5 o 1 2 3 4 5 6 7 8 9
rear 7
items 2

m Insert 6 elements
front 5 o 1 2 3 4 5 6 7 8 9
rear 3
items 8

m Remove 8 elements
front| 3 o 1 2 3 4 5 6 7 8 9
rear 3

items 0
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Sequential Circular Buffer Code

init(int v)

{

items = front = rear = 0;

}

insert(int v)
{
if (items >= n)
error () ;
if (++rear >= n) rear = 0;
buf[rear] = v;
items++;

}

int remove ()
{
if (items == 0)
error () ;
if (++front >= n) front = 0;
int v = buf[front];
items--;
return v;

}
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Producer-Consumer on an n-element Buffer

en 0 and n elements @
° / °
[ ]

e YY) -

o ~©

m Requires a mutex and two counting semaphores:
" mutex:enforces mutually exclusive access to the buffer and counters

" s]ots: counts the available slots in the buffer
" jtems: counts the available items in the buffer

m Makes use of general semaphores

= Will range in value from 0 to n
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sbuf Package - Declarations

#include "csapp.h”

typedef struct {

int *buf; /* Buffer array */
int n; /* Maximum number of slots *x/
int front; /* buf[front+l (mod n)] is first item */
int rear; /* buf[rear] is last item * /
sem t mutex; /* Protects accesses to buf */
sem t slots; /* Counts available slots *x/
sem t items; /* Counts available items *x/
} sbuf t;

void sbuf init(sbuf t *sp, int n);
void sbuf deinit(sbuf t *sp);

void sbuf insert(sbuf t *sp, int item);
int sbuf remove (sbuf t *sp);

sbuf.h
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sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

/* Create an empty, bounded, shared FIFO buffer with n slots */

void sbuf init(sbuf t *sp, int n)

{
sp->buf = Calloc(n, sizeof (int))
sp->n = n; /* Buffer holds max of n items */
sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
Sem init (&sp->mutex, 0, 1); /* Binary semaphore for locking */
Sem init (&sp->slots, 0, n); /* Initially, buf has n empty slots */
Sem init(&sp->items, 0, 0); /* Initially, buf has zero items */

}

/* Clean up buffer sp */
void sbuf deinit(sbuf t *sp)
{

Free (sp->buf) ;
}

sbuf.c
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sbuf Package - Implementation

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp */
void sbuf insert(sbuf t *sp, int item)

{

P (&sp->slots) ; /* Wait for available slot */

P (&sp->mutex) ; /* Lock the buffer *x /

if (++sp->rear >= sp->n) /* Increment index (mod n) */
sp->rear = 0;

sp->buf [sp->rear] = item; /* Insert the item */

V (&sp->mutex) ; /* Unlock the buffer *x /

V(&sp->items) ; /* Announce available item */

sbuf.c
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sbuf Package - Implementation

Removing an item from a shared buffer:

/* Remove and return the first item from buffer sp */
int sbuf remove (sbuf t *sp)

{

int item;

P (&sp->items) ; /* Wait for available item */
P (&sp->mutex) ; /* Lock the buffer *x /
if (++sp->front >= sp->n) /* Increment index (mod n) */

sp->front = 0;

item = sp->buf[sp->front]; /* Remove the item */
V (&sp->mutex) ; /* Unlock the buffer *x /
V (&sp->slots) ; /* Announce available slot */

return item;

} sbuf.c
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Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access
= E.g., using mutex lock and unlock, semaphore P and V

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion

= And can also support producer-consumer synchronization
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