Carnegie Mellon

T —

PR
el s sine

<« AN it s

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Synchronization: Basic

18-213/18-613: Introduction to Computer Systems
23rd Lecture, November 21, 2024

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m Recap: Threads, races, and deadlocks

m Sharing CSAPP 12.4
m Mutual exclusion CSAPP 12.5
m Semaphores CSAPP 12.5
m Producer-Consumer Synchronization CSAPP 12.5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Traditional View of a Process
m Process = process context + code, data, and stack

______ Izrgiefsic_o[\t_e)_(t_ - = Code, data, and stack

Program context: Sp —s Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk Run-time heap

VM structures PC —> Read-only code/data
Descriptor table

brk pointer

|
I
I
|
I
I
|
I
I
|
Kernel context: I Read/write data
I
|
I
I
|
I
I
|
I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack -
P brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

I

I |
| I
| [
I |
- :
I

: Data registers : PC — Read'only COde/data
| [
I |
| I
| [
I |
| I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
" Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
® Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Race conditions

m Event A can happen either before or after event B

m The program behaves differently depending on which one
happens first
= Races are not necessarily bugs!
= Only if one of the possible behaviors is incorrect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Race condition example

false
if (fileExists == true) { fileExists = true
file = loadFile()
}
else {
log(*'uh-oh™)
}

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 8

Carnegie Mellon

Race condition example

< . E =3
true true

if (fileExists == true) { fileExists = true if (fileExists == true) { fileExists = true
} file = loadFile() file = loadFile() (—D

}
else { else {
: log(*'uh-oh") log(*'uh-oh")

3

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 9

Carnegie Mellon

Race condition example

false true l

if (fileExists == true) { fileExists = true if (fileExists == true) { fileExists = true
file = loadFile() file = loadFile()

} }

else { else {
log("'uh-oh™) log("'uh-oh™)

} }

Lin Clark
https://hacks.mozilla.org/2017/06/avoiding-race-conditions-in-sharedarraybuffers-with-atomics/ 10

Carnegie Mellon

More race condition examples

m File is deleted, in between when a program checks
whether the file exists, and when it opens the file
(“time-of-check to time-of-use” race)

m Child exits before parent can add it to the job list (tsh)

m Child thread reads variable after parent has changed it
(previous lecture)

m Two threads update the same variable simultaneously
(later in this lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Deadlock

m Whenever two or more threads/processes/... are stuck
waiting for each other to do something
m Inreal life:

= Alice cannot put the groceries down until Bob opens the door
= Bob cannot open the door until Alice hands him the keys

= Alice cannot hand Bob the keys because she is holding the
groceries

m In programming:

= Client is waiting for server to send a message before it closes the
connection

= Server is waiting for client to close the connection before it sends
the message (server has a bug)

m Deadlock is always a bug

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Today

Recap: Threads, races, and deadlocks
Sharing

M
M
m Mutual exclusion
m Semaphores

M

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

" The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

m Requires answers to the following questions:
= What is the memory model for threads?
" How are instances of variables mapped to memory?
= How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Threads Memory Model: Conceptual

m Multiple threads run within the context of a single process
m Each thread has its own separate thread context

= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

m All threads share the remaining process context
" Code, data, heap, and shared library segments of the process virtual address space

= QOpen files and installed handlers

Thread 1 Thread 2
(private) (private) Shared code and data
stack 1 stack 2
shared libraries
Thread 1 context: Thread 2 context: .
Data registers Data registers run-time heap
Condition codes Condition codes read/write data
SP, SP, read-only code/data
PC, PC,
15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Threads Memory Model: Actual

m Separation of data is not strictly enforced:
= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

Virtual Address Space

o
stack 1 KK > stack 2

R
\ B Shared code and data
Thread 1 hread 2
(private) (pri shared libraries
Thread 1 context: Thread 2 context: ‘\

_ _ __run-time heap
Data registers Data registers %% read /write data
Condition codes Condition codes
read-only code/data
SP, SP,
PC, PC,

The mismatch between the conceptual and operation model
is a source of confusion and errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Example Program to lllustrate Sharing

char **ptr; /* global var */ void *thread(void *vargp)
{
int main(int argc, char *argv][]) long myid = (long)vargp:;
{ static #nt cnt = 0;
long 1i;
pthread t tid; printf ('J[%$1d]: %s (cnt=%d)\n",
char *msgs[2] = { myid, ptr[myid], ++cnt);
"Hello from foo", return NULL;
"Hello from bar" } \\
}; \
Peer threads reference main thread’s stack
ptr = msgs; indirectly through global ptr variable
for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i) ; €= A common, but inelegant way to
Pthread exit (NULL) ; = pass a single argument to a
} sharing.c thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables

= Def: Variable declared outside of a function
= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute

= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])

/

char **ptr; /* global var *
int main(int main,

long 1i;

pthread t tid;

char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};

ptr = msgs;
for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i) ;
Pthread exit (NULL) ;

Notation:
«—— instance of

Local vars: 1 instance (i .m, msgs.m) msgs in main

Local var: 2 instances (
myid.pO [peerthread 0’s stack],
myid.pl [peerthread 1’s stack]

void *threAd (void *wvargp)

{
long myid = (long)vargp:;
static int cnt = 0;
printf\{"[%1d]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NNLL;

}

} sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

\
Local static var: 1 instance (cnt [data))

19

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO0 no yes no
myid.pl no no yes

char **ptr; /* global var */ | : _
int main(int main, char *argv[]) ({ void *thread(void *vargp)

long i; pthread t tid; { .
char *msgs[2] = {"Hello from foo", long myid = (long)vargp;
"Hello from bar" }’. static int cnt = O,'
ptr = msgs;

printf (" [%$1d]: %s (cnt=%d)\n",
myid, ptr[myid], ++cnt);
return NULL;

for (1 = 0; i < 2; i++)
Pthread create(&tid,
NULL, thread, (void *)1i);
Pthread exit (NULL) ;} }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?7

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO0 no yes no
myid.pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr, cnt, and msgs are shared
m i andmyid are not shared

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Synchronizing Threads

m Shared variables are handy...

m ..but introduce the possibility of nasty synchronization
errors.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

badcnt. c: Improper Synchronization

/* Global shared wvariable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;

pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */

if (cnt !'= (2 * niters))
printf ("BOOM! cnt=%1d\n", cnt);
else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;
} badcnt.c

/* Thread routine */
void *thread(void *vargp)
{
long j, niters =
*((long *)vargp);

for (J = 0;
cnt++;

jJ < niters; j++)

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

23

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (j = 0; j < niters; j++)
cnt++;
Asm code for thread i
movqg (%rdi), Srcx
1_:estq 3rcx,srcx } H.: Head
jle .L2
movl $0, %eax
L3
movqg cnt(%rip) ,%rdx L; : Load cnt
addg $1, %rdx U; : Update cnt
movqg %rdx, cnt(%rip) |/ S;:Storecnt
[addg $1, %rax]
cmpg S%rcx, 3rax .
jne .L3 } T+ Tail
.L2:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24

Carnegie Mellon

Concurrent Execution

m Key idea: In general, any sequentially consistent™
interleaving is possible, but some give an unexpected result!
= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt
Note: One of many

possible interleavings

[TRY
L
=

=

=Y

0
1 -
1

e

N

N

N)
'
NININ|E=|

N

NININR|IRIRIRIO|IO|O

= IINININININ | = - -
—I—IMC\I,—IU’CF
1

1 - OK

*For now. In reality, on x86 even non-sequentially consistent interleavings are possible

Y

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt

[TRY
L
=

Thread 1
critical section

=)

=Y

0
1 -
1

Thread 2
critical section

=)

N

N

N
'
NIN(N (=]

N

NININRIRIRROO|O

= IINININININ (= - -
—I—IMC\I,—IU’CF
1

=y
=
1

OK

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %rdx, %rdx, cnt

1 H, - - 0
1 L, 0 - 0
1 u, 1 - 0
2 H, - - 0
2 L, - 0 0
1 S, 1 - 1
1 T, 1 - 1
2 u, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

(badcnt will print “BOOM!”)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %rdx, %rdx, cnt

[WY
L
=

o

0

=

N

N

N

=Y

=)

Y

= =

NRIRERERININNIN|=
—|-H|wclw clir T
[T
=

N

Oops again!

m We can analyze the behavior using a progress graph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution

o o o o o O state space of concurrent

T threads.
2 (L, S,)

i ° ¢ ¢ ¢ ® Each axis corresponds to
S, the sequential order of

¢ ® ® ° ° ° instructions in a thread.
U,

Each point corresponds to

T ® ® ® ¢ ¢ a possible execution state
L, (Inst,, Inst,).
o o o o o o
H E.g., (L, S,) denotes state
2 where thread 1 has

¢ ° ® ® * *— Thread1 completed L, and thread
2 has completed S,.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
® ° ® ° ° ® state transitions that describes one
T, possible concurrent execution of the
threads.
[) ® [) o o
S, x Example:
i ¢ ° ¢ ¢ H1, L1, U1, H2, L2, S1, T1, U2, S2, T2
U,
® [) o ’—”—»
L,
[) [] o x o o
H,

H, L, U, S Ty

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal

® ° ® ° e state transitions that describes one

T, x possible concurrent execution of the
threads.

[) ® [) o o
S, x Example:

i ¢ ° ¢ ¢ H1, L1, U1, H2, L2, S1,T1, U2, S2, T2
U,

® [) o ’—”—»
L,

[) [] o x o o
H,

H, L, U, S Ty

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
it o o o o o section Wlt.h respect to the
shared variable cnt
T,
9 ¢ o o o ® Instructions in critical
S, sections (wrt some shared
critical ! o . . o o variable) should not be
section . interleaved
wrt 3 U2 Unsafe region
cnt 7 ® ° ® ° ® Sets of states where such
L, interleaving occurs form
. unsdfe regions
H,
¢ ¢ ¢ ° ¢ *— Thread 1
H, L, U, S, L
N\ J
"

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2

not enter any unsafe region

e o —0 >)
T T Def: A trajectory is safe iff it does
2
9 ® @ A
S, ‘ Claim: A trajectory is correct (wrt
critical cnt) iff it is safe

section

wrt < U, Unsafe region
cnt x o o x_”_’.

L, unsafe

K x o o x o o
H,
— > 2 - o— Thread 1
H, L, U, S, 1
N /
~~

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

badcnt. c: Improper Synchronization

/* Global shared wvariable */

{

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

long niters;
pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%1d\n", cnt);
else

/* Thread routine */
void *thread(void *vargp)

{
long j, niters =
*((long *)vargp)

for (j = 0; j < niters; j++)
cnt++;

return NULL;

Noristie | main | thresdt | tresd2 |
cnt yes* yes yes

printf ("OK cnt=%1d\n", cnt);
exit(0) ;

} badcnt.c

niters.m yes yes yes
tidl.m yes no no
j.1 no yes no
j.2 no no yes
niters.1 no yes no
niters.2 no no yes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Threads review
Sharing

N
N
m Mutual exclusion
m Semaphores

L]

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.

= j.e., need to guarantee mutually exclusive access for each critical
section.

m Classic solution:
= Mutex (pthreads)
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Condition variables (pthreads)
= Monitors (Java)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable
m enum {locked = 0, unlocked = 1}

m lock(m)

= |f the mutex is currently not locked, lock it and return
= Otherwise, wait (spinning, yielding, etc) and retry

m unlock(m)

= Update the mutex state to unlocked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

MUTual EXclusion (mutex)

m Mutex: boolean synchronization variable *

m Swap(*a, b)
[t = *a; *a =Db; return t;]
// Notation: what's inside the brackets [] is indivisible (a.k.a. atomic)
// by the magic of hardware / OS

m Lock(m):

while (swap(&m->state, locked) == locked) ;

m Unlock(m):

m->state = unlocked;

*For now. In reality, many other implementations and design choices (c.f., 15-410, 418, etc).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

badcnt. c: Improper Synchronization

/* Global shared wvariable */
volatile long cnt = 0; /* Counter */

{

}

int main(int argc,

char **argv)

long niters;
pthread t tidl, tid2;

niters = atoi(argv[l]);
Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL) ;

/* Check result */
if (cnt !'= (2 * niters))
printf ("BOOM! cnt=%1d\n", cnt);
else
printf ("OK cnt=%1d\n", cnt);
exit (0) ;
badcnt.c

/* Thread routine */
void *thread(void *wvargp)

{
long j, niters =
*((long *)vargp)

for (j = 0;
cnt++;

jJ < niters; j++)

return NULL;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How can we fix this using
synchronization?

39

Carnegie Mellon

goodmecnt. c: Mutex Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
pthread mutex t mutex;
pthread mutex init(&mutex, NULL); // No special attributes

m Surround critical section with lock and unlock:

for (1 = 0; i < niters; i++) { linux> ./goodmcnt 10000
pthread mutex lock (&mutex) ; OK cnt=20000
cnt++; linux> ./goodmcnt 10000
pthread mutex unlock (&mutex) ; OK cnt=20000
}
| Function | badcnt | goodment
Time (ms) 12.0 214.0
niters = 10°

Slowdown 1.0 17.8

Bryant and O’Hallaron, Compt 40

Why Mutexes Work

Thread 2
Provide mutually exclusive
' ° ° y y * * g access to shared variable by
T, surrounding critical section
' with lock and unlock
un(m) operations
SZ
U, Unsafe region
I'2
lo(m)
H, 1 0 0
po > > . . Thread 1
7’ H, lo(m) L, U, S; un(m) T,
Initially

Bryantc'a‘nd_o%allaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Why Mutexes Work

Thread 2
Provide mutually exclusive
' * ° * g * * g access to shared variable by
T, surrounding critical section
' with lock and unlock
un(m) operations
S, Mutex invariant creates a
X forbidden region that encloses
u, Unsafe region unsafe region and tha.t cannot
' be entered by any trajectory.
I'2
lo(m)
H, 1 0 0
po > > . . . Thread 1
0 H, lo(m) L, U, S; un(m) T,
Initially: m=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Why Mutexes Work

Thread 2
Provide mutually exclusive
' * ° * g * * g access to shared variable by
T, surrounding critical section
' with lock and unlock
un(m) operations
S, Mutex invariant creates a
X forbidden region that encloses
U unsafe region and that cannot
2 ' be entered by any trajectory.
lo(m) o 0 1
) [] [] [] [) ’ []
H, 1 0 0]
po > > . . . Thread 1
0 H, lo(m) L, U, S; un(m) T,
Initially: m=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Why Mutexes Work

Thread 2
, 1 0 0 0 0 , 1 Provide mutually exFIuswe
i ° y access to shared variable by
T, surrounding critical section
1 L o0 O with lock and unlock
un(m) . . Forbidden region . . operations
S, Mutex invariant creates a
[0 Lo . . A JO 0 forbidden region that encloses
unsafe region and that cannot
Uz .
0 LU . . . LI, be entered by any trajectory.
L
2 lo [0 [[[[] [] 0 [0
lo(m) 1 1 0 0 0 0 1 1
HZ
11 T Thread 1
B H, lo(m) L, U, S; un(m) T,
Initially
m=1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Today

Threads review
Sharing

|
|
m Mutual exclusion
m Semaphores

|

Producer-Consumer Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

m P(s)
"= |f sis nonzero, then decrement s by 1 and return immediately.
= Test and decrement operations occur atomically (indivisibly)

If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

After restarting, the P operation decrements s and returns control to the
caller.

m V(s):
" Increments by 1.
= Increment operation occurs atomically

= |f there are any threads blocked in a P operation waiting for s to become non-
zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

m Semaphore invariant: s 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for “Proberen” (test)
= V(s): [s++;]
= Dutch for “Verhogen” (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly/atomically

= Only one P or V operation at a time can modify s.
= Whenwhile loop in P terminates, only that P can decrement s

m Semaphore invariant: s 20

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *s, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Using Semaphores to Coordinate

Access to Shared Resources

m Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
= Use counting semaphores to keep track of resource state.
= Use binary semaphores to notify other threads.

m The Producer-Consumer Problem

" Mediating interactions between processes that generate
information and that then make use of that information

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Producer-Consumer Problem

| shared _{ consumer
buffer thread

producer
thread

m Common synchronization pattern:
" Producer waits for empty slot, inserts item in buffer, and notifies consumer
= Consumer waits for item, removes it from buffer, and notifies producer

m Examples
= Multimedia processing:
= Producer creates video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

= Consumer retrieves events from buffer and paints the display

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Producer-Consumer on 1-element Buffer

m Maintain two semaphores: full + empty

full
0
J| empty .
empty buffer
1
full
1
[ful .
empty buffer
0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Producer-Consumer on 1-element Buffer

#include "csapp.h int main(int argc, char** argv) ({

pthread t tid producer;

#define NITERS 5 pthread t tid consumer;

void *producer (void *argqg) ;

: : /* Initialize the semaphores */ |nitial
void *consumer (void *argqg) ;

Sem init (&shared.empty, O, 1y7 value

Sem init (&shared.full, 0, 0);
struct { -

int buf; /* shared var */
sem t full; /* sems */
sem t empty;

} shared;

/* Create threads and wait */
Pthread create(&tid producer, NULL,
producer, NULL) ;
Pthread create(&tid consumer, NULL,
consumer, NULL) ;
Pthread join(tid producer, NULL) ;
Pthread join(tid consumer, NULL) ;

return 0;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Producer-Consumer on 1-element Buffer

Initially: empty==1, full==0

Producer Thread Consumer Thread
void *producer (void *arg) ({ void *consumer (void *arg) ({
int i, item; int i, item;
for (i=0; i<NITERS; i++) { for (i=0; i<NITERS; i++) {
/* Produce item */ /* Read item from buf */
item = i; P (&shared. full) ;
printf ("produced %d\n", item = shared.buf;
item) ; V(&shared.empty) ;
/* Write item to buf */ /* Consume item */
P (&shared.empty) ; printf ("consumed %d\n“, item);
shared.buf = item; }
V(&shared. full) ; return NULL;
} }
return NULL;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Why 2 Semaphores for 1-Entry Buffer?

m Consider multiple producers & multiple consumers

e

e ———] shared -~
. buffer

m Producers will contend with each other to get empty
m Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P (&shared. full) ;
shared.buf = item; item = shared.buf;

V(&shared. full) ; V (&shared.empty) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements @
° / °

m Implemented using a shared buffer package called sbuf.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Circular Buffer (n = 10)

m Store elements in array of size n
m items: number of elements in buffer
m Empty buffer:

= front =rear

m Nonempty buffer
® rear: index of most recently inserted element
" front: (index of next element to remove — 1) mod n

m Initially:

rear
items 0

o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Circular Buffer Operation (n = 10)

m Insert 7 elements

front| O o 1 2 3 4 5 6 7 8 9
rear 7
items 7

m Remove 5 elements
front| 5 o 1 2 3 4 5 6 7 8 9
rear 7
items 2

m Insert 6 elements
front 5 o 1 2 3 4 5 6 7 8 9
rear 3
items 8

m Remove 8 elements
front| 3 o 1 2 3 4 5 6 7 8 9
rear 3

items 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Sequential Circular Buffer Code

init(int v)

{

items = front = rear = 0;

}

insert(int v)
{
if (items >= n)
error () ;
if (++rear >= n) rear = 0;
buf[rear] = v;
items++;

}

int remove ()
{
if (items == 0)
error () ;
if (++front >= n) front = 0;
int v = buf[front];
items--;
return v;

}

Bryant and O’ HamaroT, COMpPUTET SYSTENTST A PTORTATTITIET S PETSPECTIVE, TTITU EOTIOTT 58

Carnegie Mellon

Producer-Consumer on an n-element Buffer

en 0 and n elements @
° / °
[]

e YY) -

o ~©

m Requires a mutex and two counting semaphores:
" mutex:enforces mutually exclusive access to the buffer and counters

" s]ots: counts the available slots in the buffer
" jtems: counts the available items in the buffer

m Makes use of general semaphores

= Will range in value from 0 to n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

sbuf Package - Declarations

#include "csapp.h”

typedef struct {

int *buf; /* Buffer array */
int n; /* Maximum number of slots *x/
int front; /* buf[front+l (mod n)] is first item */
int rear; /* buf[rear] is last item * /
sem t mutex; /* Protects accesses to buf */
sem t slots; /* Counts available slots *x/
sem t items; /* Counts available items *x/
} sbuf t;

void sbuf init(sbuf t *sp, int n);
void sbuf deinit(sbuf t *sp);

void sbuf insert(sbuf t *sp, int item);
int sbuf remove (sbuf t *sp);

sbuf.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

sbuf Package - Implementation

Initializing and deinitializing a shared buffer:

/* Create an empty, bounded, shared FIFO buffer with n slots */

void sbuf init(sbuf t *sp, int n)

{
sp->buf = Calloc(n, sizeof (int))
sp->n = n; /* Buffer holds max of n items */
sp->front = sp->rear = 0; /* Empty buffer iff front == rear */
Sem init (&sp->mutex, 0, 1); /* Binary semaphore for locking */
Sem init (&sp->slots, 0, n); /* Initially, buf has n empty slots */
Sem init(&sp->items, 0, 0); /* Initially, buf has zero items */

}

/* Clean up buffer sp */
void sbuf deinit(sbuf t *sp)
{

Free (sp->buf) ;
}

sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

sbuf Package - Implementation

Inserting an item into a shared buffer:

/* Insert item onto the rear of shared buffer sp */
void sbuf insert(sbuf t *sp, int item)

{

P (&sp->slots) ; /* Wait for available slot */

P (&sp->mutex) ; /* Lock the buffer *x /

if (++sp->rear >= sp->n) /* Increment index (mod n) */
sp->rear = 0;

sp->buf [sp->rear] = item; /* Insert the item */

V (&sp->mutex) ; /* Unlock the buffer *x /

V(&sp->items) ; /* Announce available item */

sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

sbuf Package - Implementation

Removing an item from a shared buffer:

/* Remove and return the first item from buffer sp */
int sbuf remove (sbuf t *sp)

{

int item;

P (&sp->items) ; /* Wait for available item */
P (&sp->mutex) ; /* Lock the buffer *x /
if (++sp->front >= sp->n) /* Increment index (mod n) */

sp->front = 0;

item = sp->buf[sp->front]; /* Remove the item */
V (&sp->mutex) ; /* Unlock the buffer *x /
V (&sp->slots) ; /* Announce available slot */

return item;

} sbuf.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access
= E.g., using mutex lock and unlock, semaphore P and V

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion

= And can also support producer-consumer synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

	Slide 1
	Slide 2: Synchronization: Basic 18-213/18-613: Introduction to Computer Systems 23rd Lecture, November 21, 2024
	Slide 3: Today
	Slide 4: Traditional View of a Process
	Slide 5: Alternate View of a Process
	Slide 6: A Process With Multiple Threads
	Slide 7: Race conditions
	Slide 8: Race condition example
	Slide 9: Race condition example
	Slide 10: Race condition example
	Slide 11: More race condition examples
	Slide 12: Deadlock
	Slide 13: Today
	Slide 14: Shared Variables in Threaded C Programs
	Slide 15: Threads Memory Model: Conceptual
	Slide 16: Threads Memory Model: Actual
	Slide 17: Example Program to Illustrate Sharing
	Slide 18: Mapping Variable Instances to Memory
	Slide 19: Mapping Variable Instances to Memory
	Slide 20: Shared Variable Analysis
	Slide 21: Shared Variable Analysis
	Slide 22: Synchronizing Threads
	Slide 23: badcnt.c: Improper Synchronization
	Slide 24: Assembly Code for Counter Loop
	Slide 25: Concurrent Execution
	Slide 26: Concurrent Execution
	Slide 27: Concurrent Execution (cont)
	Slide 28: Concurrent Execution (cont)
	Slide 29: Progress Graphs
	Slide 30: Trajectories in Progress Graphs
	Slide 31: Trajectories in Progress Graphs
	Slide 32: Critical Sections and Unsafe Regions
	Slide 33: Critical Sections and Unsafe Regions
	Slide 34: badcnt.c: Improper Synchronization
	Slide 35: Today
	Slide 36: Enforcing Mutual Exclusion
	Slide 37: MUTual EXclusion (mutex)
	Slide 38: MUTual EXclusion (mutex)
	Slide 39: badcnt.c: Improper Synchronization
	Slide 40: goodmcnt.c: Mutex Synchronization
	Slide 41: Why Mutexes Work
	Slide 42: Why Mutexes Work
	Slide 43: Why Mutexes Work
	Slide 44: Why Mutexes Work
	Slide 45: Today
	Slide 46: Semaphores
	Slide 47: Semaphores
	Slide 48: C Semaphore Operations
	Slide 49: Using Semaphores to Coordinate Access to Shared Resources
	Slide 50: Producer-Consumer Problem
	Slide 51: Producer-Consumer on 1-element Buffer
	Slide 52: Producer-Consumer on 1-element Buffer
	Slide 53: Producer-Consumer on 1-element Buffer
	Slide 54: Why 2 Semaphores for 1-Entry Buffer?
	Slide 55: Producer-Consumer on an n-element Buffer
	Slide 56: Circular Buffer (n = 10)
	Slide 57: Circular Buffer Operation (n = 10)
	Slide 58: Sequential Circular Buffer Code
	Slide 59: Producer-Consumer on an n-element Buffer
	Slide 60: sbuf Package - Declarations
	Slide 61: sbuf Package - Implementation
	Slide 62: sbuf Package - Implementation
	Slide 63: sbuf Package - Implementation
	Slide 64: Summary

