
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming

18-213/18-613: Introduction to Computer Systems
22nd Lecture, November 19th, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Concurrent Programming Basics

 Process-based Servers CSAPP 12.1

 Event-based Servers CSAPP 12.2

 Thread-based Servers CSAPP 12.3

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What is Concurrency?

 The sharing of resource that allows the possibility for
interference

▪ Interference can be within individual resource(s) or in the
coordination among resource usage

 Can arise by either scheduler interleaving or true
parallelism

▪ The key is the resource use isn’t contiguous and is exposed to
inconsistency

 Not all concurrent uses are problematic. We are all looking
at the same screen at the same time, right?

▪ Too many cooks in the kitchen vs

▪ We are all looking at the same screen right now.

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock

 No individual (e.g., process) caught in a
deadlock can make forward progress

 All individuals wait indefinitely

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock

 Example from signal handlers.

 Why don’t we use printf in handlers?

 Printf code:
▪ Acquire lock

▪ Do something

▪ Release lock

 What if signal handler interrupts call to printf?

void catch_child(int signo) {

 printf("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
 while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

Icurr
Inext

Acquire
lock

(Try to)
acquire
lock

Receive
signal

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Printf Deadlock
void catch_child(int signo) {

 printf("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
 while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

int main(int argc, char** argv) {

 char buf[MAXLINE];

 int i;

 if (signal(SIGCHLD, catch_child) == SIG_ERR)

 unix_error(“signal error”);

 for (i = 0; i < 1000000; i++) {

 if (fork() == 0) {

 exit(0); // in child, exit immediately

 }

 // in parent

 sprintf(buf, "Child #%d started\n", i);

 printf("%s", buf);

 }

 return 0;

}

Child #0 started

Child #1 started

Child #2 started

Child #3 started

Child exited!

Child #4 started

Child exited!

Child #5 started

 .

 .

 .

Child #5888 started

Child #5889 started

handler-deadlock.c

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Does Printf require Locks?

 Printf (and fprintf, sprintf) implement buffered I/O

 Require locks to access to shared buffers

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Starvation

 Yellow must yield to
green

 Continuous stream
of green cars

 Overall system
makes progress, but
some individuals
wait indefinitely

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Race

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

▪ Deadlock: improper resource allocation prevents forward progress

▪ Example: traffic gridlock

▪ Starvation / Fairness: external events and/or system scheduling
decisions can prevent sub-task progress

▪ Example: people always jump in front of you in line

▪ Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

▪ Example: who gets the last seat on the airplane?

 Many aspects of concurrent programming are beyond the
scope of our course…

▪ but, not all ☺

▪ We’ll cover some of these aspects in the next few lectures.

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

It may be hard, but …

 it can be useful and sometimes necessary!

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Reminder: Iterative Echo Server
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one connection at a time

Client 1 Server

connect

accept

write read

call read

close close

writeret read

read

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one request at a time

Client 1 Server Client 2

connect

accept connect

write read

call read

close

accept
write

read

close

call read
write

ret read

writeret read

read

Logically, connect
blocks until the
second accept

(no TCP buffering)

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Where Does Second Client Actually Block?

 Second client attempts to
connect to iterative server

Due to TCP Buffering:

 Call to connect returns
▪ Even though connection not

yet accepted

▪ Server side TCP manager
queues request

 Call to rio_writen returns
▪ Server side TCP manager

buffers input data

 Call to rio_readlineb blocks!
▪ Server hasn’t written anything

for it to read yet.

Client

socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fundamental Flaw of Iterative Servers

 Solution: use concurrent servers instead
▪ Concurrent servers use multiple concurrent flows to serve multiple

clients at the same time

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to read
from server

Server blocks
waiting for
data from

Client 1

Client 1 Server Client 2

connect

accept connect

write call read

call read
write

call read
writeret read

call read

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow has its own private address space

2. Event-based
▪ Programmer manually interleaves multiple logical flows

▪ All flows share the same address space

▪ Uses technique called I/O multiplexing

3. Thread-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow shares the same address space

▪ Hybrid of process-based and event-based

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Concurrent Programming Basics

 Process-based Servers CSAPP 12.1

 Event-based Servers CSAPP 12.2

 Thread-based Servers CSAPP 12.3

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers

 Spawn separate process for each client

client 1 server

call connect
call accept

call read

ret accept

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks

waiting for
user to type

in data

call accept

Child blocks
waiting for
data from

Client 1

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers

 Spawn separate process for each client

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks

waiting for
user to type

in data

call accept

ret accept

call fgets

writefork

call

read

child 2

write

call read

ret read

close
close

...

Child blocks
waiting for
data from

Client 1

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

echo(connfd);

Close(connfd);

 }

 exit(0);

}

Iterative Echo Server

echoserverp.c

▪Accept a connection request

▪Handle echo requests until client terminates

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Making a Concurrent Echo Server

echoserverp.c

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Making a Concurrent Echo Server

echoserverp.c
Why?

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Making a Concurrent Echo Server

echoserverp.c

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Process-Based Concurrent Echo Server

echoserverp.c

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process-Based Concurrent Echo Server (cont)

void sigchld_handler(int sig)

{

 while (waitpid(-1, 0, WNOHANG) > 0)

 ;

return;

}

▪ Reap all zombie children

echoserverp.c

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept,
waiting for connection
request on listening
descriptor listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd from
accept. Forks child to handle
client. Connection is now
established between clientfd
and connfd

Server
Child

connfd(4)

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client 2 data

Process-based Server Execution Model

▪ Each client handled by independent child process

▪ No shared state between them

▪ Both parent & child have copies of listenfd and connfd
▪ Parent must close connfd

▪ Child should close listenfd

Client 1
server

process

Client 2
server

process

Listening
server

process

Connection requests

Client 1 data

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues with Process-based Servers

 Listening server process must reap zombie children

▪ to avoid fatal memory leak

 Parent process must close its copy of connfd

▪ Kernel keeps reference count for each socket/open file

▪ After fork, refcnt(connfd) = 2

▪ Connection will not be closed until refcnt(connfd) = 0

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Process-based Servers

+ Handle multiple connections concurrently.

+ Clean sharing model.
▪ descriptors (no)

▪ file tables (yes)

▪ global variables (no)

+ Simple and straightforward.

– Additional overhead for process control.

– Nontrivial to share data between processes.
▪ (This example too simple to demonstrate)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Concurrent Programming Basics

 Process-based Servers CSAPP 12.1

 Event-based Servers CSAPP 12.2

 Thread-based Servers CSAPP 12.3

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #2: Event-based Servers

 Server maintains set of active connections
▪ Array of connfd’s

 Repeat:
▪ Determine which descriptors (connfd’s or listenfd) have pending inputs

▪ e.g., using select function

▪ arrival of pending input is an event

▪ If listenfd has input, then accept connection

▪ and add new connfd to array

▪ Service all connfd’s with pending inputs

 Details for select-based server in book

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Multiplexed Event Processing

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3

Active Descriptors

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3

Pending Inputs

Read and service

Anything
happened?

Read and
service

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Event-based Servers

+ One logical control flow and address space.

+ Can single-step with a debugger.

+ No process or thread control overhead.
▪ Design of choice for high-performance Web servers and search engines.

e.g., Node.js, nginx, Tornado

– Significantly more complex to code than process-based
 or thread-based designs.

– Hard to provide fine-grained concurrency.
▪ E.g., how to deal with partial HTTP request headers

– Cannot take advantage of multi-core.
▪ Single thread of control

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Concurrent Programming Basics

 Process-based Servers CSAPP 12.1

 Event-based Servers CSAPP 12.2

 Thread-based Servers CSAPP 12.3

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #3: Thread-based Servers

 Very similar to approach #1 (process-based)

▪ …but using threads instead of processes

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

 Process = process context + code, data, and stack

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

 Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:

 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own logical control flow
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

 Data registers
 Condition codes
 SP1

 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

 VM structures
 Descriptor table
 brk pointer

Thread 2 context:

 Data registers
 Condition codes
 SP2

 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Threads

 Two threads are concurrent if their flows overlap in time

 Otherwise, they are sequential

 Examples:

▪ Concurrent: A & B, A&C

▪ Sequential: B & C

Time

Thread A Thread B Thread C

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Thread Execution

 Single Core Processor

▪ Simulate parallelism by
time slicing

 Multi-Core Processor

▪ Can have true
parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Processes

 How threads and processes are similar

▪ Each has its own logical control flow

▪ Each can run concurrently with others (possibly on different cores)

▪ Each is context switched

 How threads and processes are different

▪ Threads share all code and data (except (unprotected) local stacks)

▪ Processes (typically) do not

▪ Threads are somewhat less expensive than processes

▪ Process control (creating and reaping) twice as expensive as thread
control

▪ Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Signals

 Signal handler shares state with regular program

▪ Including stack

 Signal handler interrupts normal program execution
▪ Unexpected procedure call

▪ Returns to regular execution stream

▪ Not a peer

 Limited forms of synchronization
▪ Main program can block / unblock signals

▪ Main program can pause for signal

Icurr
Inext

Handler

Receive
signal

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs
▪ Creating and reaping threads

▪ pthread_create()

▪ pthread_join()

▪ Determining your thread ID

▪ pthread_self()

▪ Terminating threads

▪ pthread_cancel()

▪ pthread_exit()

▪ exit() [terminates all threads]

▪ return [terminates current thread]

▪ Synchronizing access to shared variables

▪ pthread_mutex_init

▪ pthread_mutex_[un]lock

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

return NULL;

}

The Pthreads "hello, world" Program

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main(int argc, char** argv)

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

return 0;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()

Terminates
main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join()returns

printf()

Peer thread
terminates

Pthread_create()returns

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Echo Server
int main(int argc, char **argv)

{

 int listenfd, *connfdp;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

 pthread_t tid;

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen=sizeof(struct sockaddr_storage);

connfdp = Malloc(sizeof(int));

*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);

Pthread_create(&tid, NULL, thread, connfdp);

}

return 0;

} echoservert.c

▪ Spawn new thread for each client

▪ Pass it copy of connection file descriptor

▪ Note use of Malloc()! [but not Free()]

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{

int connfd = *((int *)vargp);

 Pthread_detach(pthread_self());

 Free(vargp);

 echo(connfd);

 Close(connfd);

 return NULL;

}

▪ Run thread in “detached” mode.

▪ Runs independently of other threads

▪ Reaped automatically (by kernel) when it terminates

▪ Free storage allocated to hold connfd.

▪ Close connfd (important!)

echoservert.c

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-based Server Execution Model

▪ Each client handled by individual peer thread

▪ Threads share all process state except TID

▪ Each thread has a separate stack for local variables

Client 1
server

peer
thread

Client 2
server
peer

thread

Listening
server

main thread

Connection requests

Client 1 data Client 2 data

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues With Thread-Based Servers

 Run “detached” to automatically reap/cleanup threads
▪ At any point in time, a thread is either joinable or detached

▪ Joinable thread can be reaped and killed by other threads

▪ must be reaped (with pthread_join) to free memory resources

▪ Detached thread cannot be reaped or killed by other threads

▪ resources are automatically reaped on termination

▪ Default state is joinable

▪ use pthread_detach(pthread_self()) to make detached

 Must be careful to avoid unintended sharing
▪ For example, passing pointer to main thread’s stack

▪ Pthread_create(&tid, NULL, thread, (void *)&connfd);

 All functions called by a thread must be thread-safe
▪ (next lecture)

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Potential Form of Unintended Sharing

main thread

peer1

while (1) {

 int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

Pthread_create(&tid, NULL, thread, &connfd);

 }

connfd

Main thread stack

vargp

Peer1 stack

connfd = connfd1

connfd = *vargp

peer2

connfd = connfd2

connfd = *vargp

Race!

Why would both copies of vargp point to same location?

Peer2 stack

vargp

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Could this race occur?

int i;

for (i = 0; i < 100; i++) {

 Pthread_create(&tid, NULL,

 thread, &i);

}

 Race Test
▪ If no race, then each thread would get different value of i

▪ Set of saved values would consist of one copy each of 0 through 99

Main

void *thread(void *vargp)

{

 int i = *((int *)vargp);

 Pthread_detach(pthread_self());

 save_value(i);

 return NULL;

}

Thread

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experimental Results
No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

For each “0” there is some later “2” here

And here, values are all over the place:

Some bins get 0, some get 2 or more

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct passing of thread arguments

/* Main routine */

int *connfdp;

connfdp = Malloc(sizeof(int));

*connfdp = Accept(. . .);

Pthread_create(&tid, NULL, thread, connfdp);

 Producer-Consumer Model
▪ Allocate in main

▪ Free in thread routine

/* Thread routine */

void *thread(void *vargp)

{

int connfd = *((int *)vargp);

 . . .

 Free(vargp);

 . . .

 return NULL;

}

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

▪ e.g., logging information, file cache

+ Threads are more efficient than processes

– Unintentional sharing can introduce subtle and
 hard-to-reproduce errors!

▪ The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

▪ Hard to know which data shared & which private

▪ Hard to detect by testing

▪ Probability of bad race outcome often very low

▪ But nonzero!

▪ Future lectures

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Approaches to Concurrency

 Process-based
▪ Hard to share resources: Easy to avoid unintended sharing

▪ High overhead in adding/removing clients

 Event-based
▪ Tedious and low level

▪ Total control over scheduling

▪ Very low overhead

▪ Cannot create as fine grained a level of concurrency

▪ Does not make use of multi-core

 Thread-based
▪ Easy to share resources: Perhaps too easy ☺

▪ Medium overhead

▪ Not much control over scheduling policies

▪ Difficult to debug: Event orderings not repeatable

	Slide 1
	Slide 2: Concurrent Programming 18-213/18-613: Introduction to Computer Systems 22nd Lecture, November 19th, 2024
	Slide 3: Today
	Slide 4: What is Concurrency?
	Slide 5: Concurrent Programming is Hard!
	Slide 6: Deadlock
	Slide 7: Deadlock
	Slide 8: Testing Printf Deadlock
	Slide 9: Why Does Printf require Locks?
	Slide 10: Starvation
	Slide 11: Data Race
	Slide 12: Concurrent Programming is Hard!
	Slide 13: Concurrent Programming is Hard!
	Slide 14: Reminder: Iterative Echo Server
	Slide 15: Iterative Servers
	Slide 16: Iterative Servers
	Slide 17: Where Does Second Client Actually Block?
	Slide 18: Fundamental Flaw of Iterative Servers
	Slide 19: Approaches for Writing Concurrent Servers
	Slide 20: Today
	Slide 21: Approach #1: Process-based Servers
	Slide 22: Approach #1: Process-based Servers
	Slide 23: Iterative Echo Server
	Slide 24: Making a Concurrent Echo Server
	Slide 25: Making a Concurrent Echo Server
	Slide 26: Making a Concurrent Echo Server
	Slide 27: Process-Based Concurrent Echo Server
	Slide 28: Process-Based Concurrent Echo Server (cont)
	Slide 29: Concurrent Server: accept Illustrated
	Slide 30: Process-based Server Execution Model
	Slide 31: Issues with Process-based Servers
	Slide 32: Pros and Cons of Process-based Servers
	Slide 33: Today
	Slide 34: Approach #2: Event-based Servers
	Slide 35: I/O Multiplexed Event Processing
	Slide 36: Pros and Cons of Event-based Servers
	Slide 37: Today
	Slide 38: Approach #3: Thread-based Servers
	Slide 39: Traditional View of a Process
	Slide 40: Alternate View of a Process
	Slide 41: A Process With Multiple Threads
	Slide 42: Concurrent Threads
	Slide 43: Concurrent Thread Execution
	Slide 44: Threads vs. Processes
	Slide 45: Threads vs. Signals
	Slide 46: Posix Threads (Pthreads) Interface
	Slide 47: The Pthreads "hello, world" Program
	Slide 48: Execution of Threaded “hello, world”
	Slide 49: Thread-Based Concurrent Echo Server
	Slide 50: Thread-Based Concurrent Server (cont)
	Slide 51: Thread-based Server Execution Model
	Slide 52: Issues With Thread-Based Servers
	Slide 53: Potential Form of Unintended Sharing
	Slide 54: Could this race occur?
	Slide 55: Experimental Results
	Slide 56: Correct passing of thread arguments
	Slide 57: Pros and Cons of Thread-Based Designs
	Slide 58: Summary: Approaches to Concurrency

