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 Thread-based Servers         CSAPP 12.3
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What is Concurrency?

 The sharing of resource that allows the possibility for 
interference

▪ Interference can be within individual resource(s) or in the 
coordination among resource usage

 Can arise by either scheduler interleaving or true 
parallelism

▪ The key is the resource use isn’t contiguous and is exposed to 
inconsistency

 Not all concurrent uses are problematic. We are all looking 
at the same screen at the same time, right?  

▪ Too many cooks in the kitchen vs

▪ We are all looking at the same screen right now. 
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Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a 
computer system is at least error prone and 
frequently impossible
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Deadlock

 No individual (e.g., process) caught in a 
deadlock can make forward progress

 All individuals wait indefinitely
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Deadlock

 Example from signal handlers.

 Why don’t we use printf in handlers?

 Printf code:
▪ Acquire lock

▪ Do something

▪ Release lock

 What if signal handler interrupts call to printf?

void catch_child(int signo) {

   printf("Child exited!\n"); // this call may reenter printf/puts! BAD!  DEADLOCK!
   while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

Icurr
Inext

Acquire
lock

(Try to)
acquire
lock

Receive
signal



Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Printf Deadlock
void catch_child(int signo) {

   printf("Child exited!\n"); // this call may reenter printf/puts! BAD!  DEADLOCK!
   while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

int main(int argc, char** argv) {

  char buf[MAXLINE];

  int i;

  if (signal(SIGCHLD, catch_child) == SIG_ERR)

    unix_error(“signal error”);

  for (i = 0; i < 1000000; i++) {

    if (fork() == 0) {

      exit(0); // in child, exit immediately

    }

    // in parent

    sprintf(buf, "Child #%d started\n", i);

    printf("%s", buf);

  }

  return 0;

}

Child #0 started

Child #1 started

Child #2 started

Child #3 started

Child exited!

Child #4 started

Child exited!

Child #5 started

  .

  .

  .

Child #5888 started

Child #5889 started

handler-deadlock.c
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Why Does Printf require Locks?

 Printf (and fprintf, sprintf) implement buffered I/O

 Require locks to access to shared buffers

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion
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Starvation

 Yellow must yield to 
green

 Continuous stream 
of green cars

 Overall system 
makes progress, but 
some individuals 
wait indefinitely
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Data Race



Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

▪ Deadlock: improper resource allocation prevents forward progress

▪ Example: traffic gridlock

▪ Starvation / Fairness: external events and/or system scheduling 
decisions can prevent sub-task progress

▪ Example: people always jump in front of you in line

▪ Races: outcome depends on arbitrary scheduling decisions 
elsewhere in the system

▪ Example: who gets the last seat on the airplane?

 Many aspects of concurrent programming are beyond the 
scope of our course…

▪ but, not all ☺

▪ We’ll cover some of these aspects in the next few lectures. 
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Concurrent Programming is Hard!

It may be hard, but …

 it can be useful and sometimes necessary!
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Client / 
Server
Session

Reminder: Iterative Echo Server
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect
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Iterative Servers

 Iterative servers process one connection at a time

Client 1 Server

connect

accept

write read

call read

close close

writeret read

read
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Iterative Servers

 Iterative servers process one request at a time

Client 1 Server Client 2

connect

accept connect

write read

call read

close

accept
write

read

close

call read
write

ret read

writeret read

read

Logically, connect
blocks until the
second accept

(no TCP buffering)
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Where Does Second Client Actually Block?

 Second client attempts to 
connect to iterative server

Due to TCP Buffering:

 Call to connect returns
▪ Even though connection not 

yet accepted

▪ Server side TCP manager 
queues request

 Call to rio_writen returns
▪ Server side TCP manager 

buffers input data

 Call to rio_readlineb blocks!
▪ Server hasn’t written anything 

for it to read yet.

Client

socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect
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Fundamental Flaw of Iterative Servers

 Solution: use concurrent servers instead
▪ Concurrent servers use multiple concurrent flows to serve multiple 

clients at the same time

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to read 
from server

Server blocks
waiting for
data from

Client 1

Client 1 Server Client 2

connect

accept connect

write call read

call read
write

call read
writeret read

call read
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Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow has its own private address space

2. Event-based
▪ Programmer manually interleaves multiple logical flows

▪ All flows share the same address space

▪ Uses technique called I/O multiplexing

3. Thread-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow shares the same address space

▪ Hybrid of process-based and event-based
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Today

 Concurrent Programming Basics        

 Process-based Servers         CSAPP 12.1

 Event-based Servers         CSAPP 12.2

 Thread-based Servers         CSAPP 12.3
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Approach #1: Process-based Servers

 Spawn separate process for each client

client 1 server

call connect
call accept

call read

ret accept

call fgets
forkchild 1

User goes 
out to lunch

Client 1 
blocks

waiting for 
user to type 

in data

call accept

Child blocks 
waiting for 
data from 

Client 1
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Approach #1: Process-based Servers

 Spawn separate process for each client

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
forkchild 1

User goes 
out to lunch

Client 1 
blocks

waiting for 
user to type 

in data

call accept

ret accept

call fgets

writefork

call 

read

child 2

write

call read

ret read

close
close

...

Child blocks 
waiting for 
data from 

Client 1
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int main(int argc, char **argv)

{

    int listenfd, connfd;

    socklen_t clientlen;

    struct sockaddr_storage clientaddr;

listenfd = Open_listenfd(argv[1]);

    while (1) {

        clientlen = sizeof(struct sockaddr_storage);

        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

echo(connfd); 

Close(connfd); 

     }

     exit(0);

}

Iterative Echo Server

echoserverp.c

▪Accept a connection request

▪Handle echo requests until client terminates
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int main(int argc, char **argv)

{

    int listenfd, connfd;

    socklen_t clientlen;

    struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

    while (1) {

        clientlen = sizeof(struct sockaddr_storage);

        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

        if (Fork() == 0) {

            Close(listenfd); /* Child closes its listening socket */

echo(connfd);    /* Child services client */

Close(connfd);   /* Child closes connection with client */

            exit(0);         /* Child exits */

        }

        Close(connfd); /* Parent closes connected socket (important!) */

    }

}

Making a Concurrent Echo Server

echoserverp.c
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int main(int argc, char **argv)

{

    int listenfd, connfd;

    socklen_t clientlen;

    struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

    while (1) {

        clientlen = sizeof(struct sockaddr_storage);

        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

        if (Fork() == 0) {

            Close(listenfd); /* Child closes its listening socket */

echo(connfd);    /* Child services client */

Close(connfd);   /* Child closes connection with client */

            exit(0);         /* Child exits */

        }

        Close(connfd); /* Parent closes connected socket (important!) */

    }

}

Making a Concurrent Echo Server

echoserverp.c
Why?
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int main(int argc, char **argv)

{

    int listenfd, connfd;

    socklen_t clientlen;

    struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

    while (1) {

        clientlen = sizeof(struct sockaddr_storage);

        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

        if (Fork() == 0) {

            Close(listenfd); /* Child closes its listening socket */

echo(connfd);    /* Child services client */

Close(connfd);   /* Child closes connection with client */

            exit(0);         /* Child exits */

        }

        Close(connfd); /* Parent closes connected socket (important!) */

    }

}

Making a Concurrent Echo Server

echoserverp.c
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int main(int argc, char **argv)

{

    int listenfd, connfd;

    socklen_t clientlen;

    struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

    while (1) {

        clientlen = sizeof(struct sockaddr_storage);

        connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

        if (Fork() == 0) {

            Close(listenfd); /* Child closes its listening socket */

echo(connfd);    /* Child services client */

Close(connfd);   /* Child closes connection with client */

            exit(0);         /* Child exits */

        }

        Close(connfd); /* Parent closes connected socket (important!) */

    }

}

Process-Based Concurrent Echo Server

echoserverp.c
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Process-Based Concurrent Echo Server (cont)

void sigchld_handler(int sig)

{ 

    while (waitpid(-1, 0, WNOHANG) > 0)

        ;

return;

}

▪ Reap all zombie children

echoserverp.c
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Concurrent Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept, 
waiting for connection 
request on listening 
descriptor listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection 
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd  from 
accept. Forks child to handle 
client.  Connection is now 
established between clientfd 
and connfd

Server
Child

connfd(4)
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Client 2 data

Process-based Server Execution Model

▪ Each client handled by independent child process

▪ No shared state between them

▪ Both parent & child have copies of listenfd and connfd
▪ Parent must close connfd

▪ Child should close listenfd 

Client 1
server

process

Client 2
server

process

Listening
server

process

Connection requests

Client 1 data
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Issues with Process-based Servers

 Listening server process must reap zombie children

▪ to avoid fatal memory leak

 Parent process must close its copy of connfd

▪ Kernel keeps reference count for each socket/open file

▪ After fork, refcnt(connfd) = 2

▪ Connection will not be closed until refcnt(connfd) = 0
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Pros and Cons of Process-based Servers

+ Handle multiple connections concurrently.

+ Clean sharing model.
▪ descriptors (no)

▪ file tables (yes)

▪ global variables (no)

+ Simple and straightforward.

– Additional overhead for process control.

– Nontrivial to share data between processes.
▪ (This example too simple to demonstrate)
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Today

 Concurrent Programming Basics        

 Process-based Servers         CSAPP 12.1

 Event-based Servers         CSAPP 12.2

 Thread-based Servers         CSAPP 12.3
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Approach #2: Event-based Servers

 Server maintains set of active connections
▪ Array of connfd’s

 Repeat:
▪ Determine which descriptors (connfd’s or listenfd) have pending inputs

▪ e.g., using select function

▪ arrival of pending input is an event

▪ If  listenfd has input, then accept connection

▪ and add new connfd to array

▪ Service all connfd’s with pending inputs

 Details for select-based server in book
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I/O Multiplexed Event Processing

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3 

Active Descriptors

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3 

Pending Inputs

Read and service

Anything
happened?

Read and
service
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Pros and Cons of Event-based Servers

+ One logical control flow and address space.

+ Can single-step with a debugger.

+ No process or thread control overhead.
▪ Design of choice for high-performance Web servers and search engines. 

e.g., Node.js, nginx, Tornado

– Significantly more complex to code than process-based
       or thread-based designs.

– Hard to provide fine-grained concurrency.
▪ E.g., how to deal with partial HTTP request headers

– Cannot take advantage of multi-core.
▪ Single thread of control
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Approach #3: Thread-based Servers

 Very similar to approach #1 (process-based)

▪  …but using threads instead of processes
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Traditional View of a Process

 Process = process context + code, data, and stack

Program context:
    Data registers
    Condition codes
    Stack pointer (SP)
    Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Process context

Kernel context:
    VM structures
    Descriptor table
    brk pointer
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Alternate View of a Process

 Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:

    Data registers
    Condition codes
    Stack pointer (SP)
    Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
    VM structures
    Descriptor table
    brk pointer
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A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own logical control flow 
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables 

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

    Data registers
    Condition codes
    SP1

    PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

   VM structures
   Descriptor table
   brk pointer

Thread 2 context:

    Data registers
    Condition codes
    SP2

    PC2

stack 2

Thread 2 (peer thread)
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Concurrent Threads

 Two threads are concurrent if their flows overlap in time

 Otherwise, they are sequential

 Examples:

▪ Concurrent: A & B, A&C

▪ Sequential: B & C

Time

Thread A Thread B Thread C
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Concurrent Thread Execution

 Single Core Processor

▪ Simulate parallelism by 
time slicing

 Multi-Core Processor

▪ Can have true 
parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores
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Threads vs. Processes

 How threads and processes are similar

▪ Each has its own logical control flow

▪ Each can run concurrently with others (possibly on different cores)

▪ Each is context switched

 How threads and processes are different

▪ Threads share all code and data (except (unprotected) local stacks)

▪ Processes (typically) do not

▪ Threads are somewhat less expensive than processes

▪ Process control (creating and reaping) twice as expensive as thread 
control

▪ Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread
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Threads vs. Signals

 Signal handler shares state with regular program

▪ Including stack

 Signal handler interrupts normal program execution
▪ Unexpected procedure call

▪ Returns to regular execution stream

▪ Not a peer

 Limited forms of synchronization
▪ Main program can block / unblock signals

▪ Main program can pause for signal

Icurr
Inext

Handler

Receive
signal



Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that 

manipulate threads from C programs
▪ Creating and reaping threads

▪ pthread_create()

▪ pthread_join()

▪ Determining your thread ID

▪ pthread_self()

▪ Terminating threads

▪ pthread_cancel()

▪ pthread_exit()

▪ exit() [terminates all threads] 

▪ return [terminates current thread]

▪ Synchronizing access to shared variables

▪ pthread_mutex_init

▪ pthread_mutex_[un]lock
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void *thread(void *vargp) /* thread routine */

{

    printf("Hello, world!\n");

return NULL;                 

} 

The Pthreads "hello, world" Program

/*                                                                                                               

 * hello.c - Pthreads "hello, world" program                                                                     

 */

#include "csapp.h"

void *thread(void *vargp);                    

int main(int argc, char** argv)

{

    pthread_t tid;                            

    Pthread_create(&tid, NULL, thread, NULL); 

    Pthread_join(tid, NULL);                  

return 0;                                  

}

Thread attributes 
(usually NULL)

Thread arguments
(void *p) 

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c
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Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for 
peer  thread to terminate

exit() 

Terminates 
main thread and 
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join()returns

printf()

Peer thread
terminates

Pthread_create()returns
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Thread-Based Concurrent Echo Server
int main(int argc, char **argv)

{

    int listenfd, *connfdp;

    socklen_t clientlen;

    struct sockaddr_storage clientaddr;

    pthread_t tid;

listenfd = Open_listenfd(argv[1]);

    while (1) {

 clientlen=sizeof(struct sockaddr_storage);

connfdp = Malloc(sizeof(int)); 

*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen); 

Pthread_create(&tid, NULL, thread, connfdp);

}

return 0;

} echoservert.c

▪ Spawn new thread for each client

▪ Pass it copy of connection file descriptor

▪ Note use of Malloc()! [but not Free()]
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Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{

int connfd = *((int *)vargp);

    Pthread_detach(pthread_self()); 

    Free(vargp);                    

    echo(connfd);

    Close(connfd);

    return NULL;

}

▪ Run thread in “detached” mode.

▪ Runs independently of other threads

▪ Reaped automatically (by kernel) when it terminates

▪ Free storage allocated to hold connfd.

▪ Close connfd (important!)

echoservert.c
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Thread-based Server Execution Model

▪ Each client handled by individual peer thread

▪ Threads share all process state except TID

▪ Each thread has a separate stack for local variables

Client 1
server 

peer
thread

Client 2
server
peer

thread

Listening
server

main thread

Connection requests

Client 1 data Client 2 data
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Issues With Thread-Based Servers

 Run “detached” to automatically reap/cleanup threads
▪ At any point in time, a thread is either joinable or detached

▪ Joinable thread can be reaped and killed by other threads

▪ must be reaped (with pthread_join) to free memory resources

▪ Detached thread cannot be reaped or killed by other threads

▪ resources are automatically reaped on termination

▪ Default state is joinable

▪ use pthread_detach(pthread_self()) to make detached

 Must be careful to avoid unintended sharing
▪ For example, passing pointer to main thread’s stack

▪ Pthread_create(&tid, NULL, thread, (void *)&connfd);

 All functions called by a thread must be thread-safe
▪ (next lecture)
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Potential Form of Unintended Sharing

main thread

peer1

while (1) {

 int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 

Pthread_create(&tid, NULL, thread, &connfd);

    }

connfd

Main thread stack

vargp

Peer1 stack

connfd = connfd1

connfd = *vargp

peer2

connfd = connfd2

connfd = *vargp

Race!

Why would both copies of vargp point to same location?

Peer2 stack

vargp
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Could this race occur?

int i;

for (i = 0; i < 100; i++) {

  Pthread_create(&tid, NULL,

                 thread, &i);

}

 Race Test
▪ If no race, then each thread would get different value of i

▪ Set of saved values would consist of one copy each of 0 through 99

Main

void *thread(void *vargp) 

{  

  int i = *((int *)vargp);

  Pthread_detach(pthread_self());

  save_value(i);

  return NULL;

}

Thread
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Experimental Results
No Race

Multicore server
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Single core laptop
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For each “0” there is some later “2” here

And here, values are all over the place:

Some bins get 0, some get 2 or more
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Correct passing of thread arguments

/* Main routine */

int *connfdp;

connfdp = Malloc(sizeof(int)); 

*connfdp = Accept( . . . ); 

Pthread_create(&tid, NULL, thread, connfdp);

 Producer-Consumer Model
▪ Allocate in main

▪ Free in thread routine

/* Thread routine */

void *thread(void *vargp)

{

int connfd = *((int *)vargp);

 . . .

    Free(vargp);                    

    . . .

    return NULL;

}
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Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

▪ e.g., logging information, file cache

+ Threads are more efficient than processes

– Unintentional sharing can introduce subtle and 
   hard-to-reproduce errors!

▪ The ease with which data can be shared is both the greatest 
strength and the greatest weakness of threads

▪ Hard to know which data shared & which private

▪ Hard to detect by testing

▪ Probability of bad race outcome often very low

▪ But nonzero!

▪ Future lectures
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Summary: Approaches to Concurrency

 Process-based
▪ Hard to share resources: Easy to avoid unintended sharing

▪ High overhead in adding/removing clients

 Event-based
▪ Tedious and low level

▪ Total control over scheduling

▪ Very low overhead

▪ Cannot create as fine grained a level of concurrency

▪ Does not make use of multi-core

 Thread-based
▪ Easy to share resources: Perhaps too easy ☺

▪ Medium overhead

▪ Not much control over scheduling policies

▪ Difficult to debug: Event orderings not repeatable
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