Carnegie Mellon

T —

PR
el s sine

<« AN it s

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Concurrent Programming

18-213/18-613: Introduction to Computer Systems
22nd Lecture, November 19t 2024

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m Concurrent Programming Basics

m Process-based Servers CSAPP 12.1
m Event-based Servers CSAPP 12.2
m Thread-based Servers CSAPP 12.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

What is Concurrency?

m The sharing of resource that allows the possibility for
interference

" |nterference can be within individual resource(s) or in the
coordination among resource usage

m Can arise by either scheduler interleaving or true
parallelism

" The key is the resource use isn’t contiguous and is exposed to
inconsistency

m Not all concurrent uses are problematic. We are all looking
at the same screen at the same time, right?

" Too many cooks in the kitchen vs
= We are all looking at the same screen right now.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Deadlock

m No individual (e.g., process) caught in a
deadlock can make forward progress

m All individuals wait indefinitely

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Deadlock

m Example from signal handlers.

m Why don’t we use printf in handlers?

void catch child(int signo) {
printf ("Child exited!\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}
Acquire Receive
m Printf code: lourr + /90K signal 11 10)
= Acquire lock R +acquire
““““““ v lock

= Do something

4-----=-=--

" Release lock

m What if signal handler interrupts call to printf?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Testing Printf Deadlock

void catch child(int signo) {
printf ("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

int main(int argc, char** argv) {
char buf [MAXLINE] ; Child #0 started

int i; Child #1 started

) i] Child #2 started
if (signal (SIGCHLD, catch_chlld) == SIG_ERR) Child #3 started

unix error (“signal error”); Child exited!

Child #4 started
Child exited!
Child #5 started

for (i = 0; i < 1000000; i++) {
if (fork() == 0) {
exit(0); // in child, exit immediately
}
// in parent
sprintf (buf, "Child #%d started\n", 1i);
printf ("%s", buf);
}

return 0;

} handler-deadlock.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Child #5888 started
Child #5889 started

Carnegie Mellon

Why Does Printf require Locks?

m Printf (and fprintf, sprintf) implement buffered 1/0

< Buffered Portion

no longer in buffer already read unread unseen

J

Current File Position

m Require locks to access to shared buffers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Starvation

m Yellow must yield to
green

Continuous stream
of green cars

Overall system
makes progress, but
some individuals
wait indefinitely

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Data Race

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:
" Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= Starvation / Fairness: external events and/or system scheduling
decisions can prevent sub-task progress

= Example: people always jump in front of you in line

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

m Many aspects of concurrent programming are beyond the
scope of our course...

= but, notall ©
= We'll cover some of these aspects in the next few lectures.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Concurrent Programming is Hard!

It may be hard, but ...

it can be useful and sometimes necessary!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Reminder: Iterative Echo Server

Client Server
[3\
socket socket
bind > open_listenfd
open clientfd < l
listen
Connection l /
request
L connect « [~""""TTToooo- P accept <
v v
Client / » rio_writen »rio readlinebf«
Server) .
. A4 y Await connection
Session rio_readlineb < rio_writen request from
next client
v v
close = f----- EQE ————— »rio readlineb
\ 4
close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Iterative Servers

m Iterative servers process one connection at a time

Client 1 Server
Connect .. >
accept
WELIEe [read
call read| " :
ret read [enmmnnnmnnmmnrnrmtt write
read
close | .c_lose
.......... R

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server Client 2
Connect .. >
accept| e connect
PITRISRRRITELL L
write f read
call read| - ’ Logically, connect
ret read ‘ ---------------------- write blocks until the
read second accept
no TCP bufferin
close | .C.:_lose ()
.......... R
4?.?-?.?83 write
read
call read
__v_v_;;ite
v I — | ret read

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Where Does Second Client Actually Block?

m Second client attempts to Due to TCP Buffering:

connect to iterative server
m Call to connect returns

Client = Even though connection not
yet accepted

socket

= Server side TCP manager
gueues request

open_clientfd < m Call to rio_writen returns

= Server side TCP manager

Connection buffers input data

request
K connect [Tttt > m Call to rio_readlineb blocks!

! = Server hasn’t written anything
S > for it to read yet.

'

rio readlineb

A

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Fundamental Flaw of Iterative Servers

Client 1 Server Client 2
connect [>
accept| e connect
write callread; o rite
call read PRPRRRRRRRRLLLLLE
.......................... — call read
ret read [“"" write
call read -
User goes . o C|I(—?‘I’?t 2 blocks;JI
out to lunch erve.r- OCKs waliting to rea
waiting for from server
Client 1 blocks data from
waiting for user |} Client 1} '

to type in data

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/O multiplexing

3. Thread-based

= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space
= Hybrid of process-based and event-based

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Today

m Concurrent Programming Basics

m Process-based Servers CSAPP 12.1
m Event-based Servers CSAPP 12.2
m Thread-based Servers CSAPP 12.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server
call connecty........... call accept
................... > ret accept
call fgets
child 1_—1 fork
User goes call read call accept
out to lunch
Child blocks
Client 1 waiting for
blocks data from
waiting for Client 1
user to type
in data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1

call connect

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

\

y

server

child 1_—

call read

Child blocks
waiting for
data from
Client 1

fork

v

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

call accept

ret accept

fork

call accept
ret accept

\\\éaﬂf

call
read

write

close

\

clie

—

\

nt 2

call connect

call fgets

write

call read

ret read

lclose

22

Carnegie Mellon

Iterative Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)
echo (connfd) ;
Close (connfd) ;

}
exit(0) ;

= Accept a connection request
"Handle echo requests until client terminates

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Process-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

Signal (SIGCHLD, sigchld handler) ;
listenfd = Open listenfd(argv[l]);
while (1) {
clientlen = sizeof(struct sockaddr storage);
connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen)

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Process-Based Concurrent Echo Server (cont)

void sigchld handler (int sig)

{
while (waitpid(-1, O, WNOHANG) > 0)
return;

} echoserverp.c

= Reap all zombie children

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Concurrent Server: accept lllustrated

listenfd (3)
Client l T Server
clientfd
Connection listenfd (3)
request
__________________ >
Client i T Server
clientfd
listenfd (3)
®
Server

Client Server
1en) . child

clientfd connfd (4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Server blocks in accept,
waiting for connection

request on listening
descriptor 1istenfd

2. Client makes connection
request by calling connect

3. Server returns connfd from
accept. Forks child to handle
client. Connection is now
established between clientfd
and connfd

29

Carnegie Mellon

Process-based Server Execution Model

Connection requests
Listening
server
process
Client 1 data | Client1 Client2 | cjient 2 data
¢ > server server < >
process process

= Each client handled by independent child process
" No shared state between them

= Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child should close 1istenfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Issues with Process-based Servers

m Listening server process must reap zombie children
" to avoid fatal memory leak
m Parent process must close its copy of connfd

= Kernel keeps reference count for each socket/open file
" After fork, refcnt (connfd) = 2
= Connection will not be closed until refcnt (connfd) = 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Pros and Cons of Process-based Servers

+ Handle multiple connections concurrently.

+ Clean sharing model.
= descriptors (no)
= file tables (yes)
= global variables (no)

+ Simple and straightforward.

— Additional overhead for process control.

— Nontrivial to share data between processes.
= (This example too simple to demonstrate)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Today

m Concurrent Programming Basics

m Process-based Servers CSAPP 12.1
m Event-based Servers CSAPP 12.2
m Thread-based Servers CSAPP 12.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Approach #2: Event-based Servers

m Server maintains set of active connections
= Array of connfd’s

m Repeat:
= Determine which descriptors (connfd’s or listenfd) have pending inputs
= e.g., using select function
= arrival of pending input is an event
= |If listenfd has input, then accept connection

= and add new connfd to array
= Service all connfd’s with pending inputs

m Details for select-based server in book

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

/O Multiplexed Event Processing

Read and service

Active Descriptors Pending Inputs
listenfd = 3 listenfd =3 ¢
connfd’s connfd’s
0 10 | 10
1 > Active Anything 7 ¢
2 4
; 2 < happened?
-1 -1
> Inactive
4 -1) -1
> 12 _ 12 |
6 [s " Active Read and 5 |
o
7 a1) service 1
8 -1 1
9 -1 Never Used -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Pros and Cons of Event-based Servers

+ One logical control flow and address space.
+ Can single-step with a debugger.

+ No process or thread control overhead.

= Design of choice for high-performance Web servers and search engines.
e.g., Node.js, nginx, Tornado

— Significantly more complex to code than process-based
or thread-based designs.

— Hard to provide fine-grained concurrency.
= E.g., how to deal with partial HTTP request headers

— Cannot take advantage of multi-core.
= Single thread of control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Today

m Concurrent Programming Basics

m Process-based Servers CSAPP 12.1
m Event-based Servers CSAPP 12.2
m Thread-based Servers CSAPP 12.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Approach #3: Thread-based Servers

m Very similar to approach #1 (process-based)

= .but using threads instead of processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Traditional View of a Process
m Process = process context + code, data, and stack

______ Izrgiefsic_o[\t_e)_(t_ - = Code, data, and stack

Program context: Sp —s Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk Run-time heap

VM structures PC —> Read-only code/data
Descriptor table

brk pointer

|
I
I
|
I
I
|
I
I
|
Kernel context: I Read/write data
I
|
I
I
|
I
I
|
I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack -
P brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

I

I |
| I
| [
I |
- :
I

: Data registers : PC — Read'only COde/data
| [
I |
| I
| [
I |
| I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
" Each thread shares the same code, data, and kernel context
= Each thread has its own stack for local variables
= but not protected from other threads
® Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Concurrent Threads

m Two threads are concurrent if their flows overlap in time
m Otherwise, they are sequential

m Examples:
" Concurrent: A & B, A&C
= Sequentia:B&C | _____ I _______________________________________

Thread A Thread B Thread C

Time I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Concurrent Thread Execution

m Single Core Processor m Multi-Core Processor
= Simulate parallelism by " Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Threads vs. Processes

m How threads and processes are similar
" Each has its own logical control flow
= Each can run concurrently with others (possibly on different cores)
= Each is context switched

m How threads and processes are different
"= Threads share all code and data (except (unprotected) local stacks)

= Processes (typically) do not
" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Threads vs. Signals

l Receive
signal
ICUI’I’ g

> Handler

#

~—-a
~—-a
-
-
-
-
-

m Signal handler shares state with regular program

" Including stack

m Signal handler interrupts normal program execution
= Unexpected procedure call
= Returns to regular execution stream
" Not a peer

m Limited forms of synchronization

= Main program can block / unblock signals
= Main program can pause for signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread create()
= pthread join()
= Determining your thread ID
= pthread self ()
" Terminating threads
= pthread cancel ()
= pthread exit()
» exit () [terminates all threads]
= return [terminates current thread]
= Synchronizing access to shared variables
= pthread mutex init

= pthread mutex [un]lock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

The Pthreads "hello, world" Program

/*

* hello.c - Pthreads "hello, world" program

*/ Thread attributes
#include "csapp.h" » Thread ID
void *thread(void *vargp) ; (usua”y NULL)

int main(int argc, char*¥* gv)

{ - Thread routine

Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL);
return 0O;

} hello.c

| Thread arguments
(void *p)

_ Return value

void *thread(void *vargp) /* thread routine */ (void **p)
{

printf ("Hello, world!\n");
return NULL;

} hello.c

ryant and O"Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Execution of Threaded “hello, world”

Main thread

call Pthread create()

Pthread_create ()returns| e Peer thread
call Pthread join() h printf ()
Main thread waits for return NULL;
peer thread to terminate | e Peer thread
......................... terminates
PR
Pthread join/()returns
exit ()
Terminates

main thread and
any peer threads

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, *connfdp;

socklen t clientlen;

struct sockaddr storage clientaddr;
pthread t tid;

listenfd = Open listenfd(argv[l]);
while (1) {
clientlen=sizeof (struct sockaddr storage) ;
connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, connfdp);
}

return 0;
echoservert.c

= Spawn new thread for each client
= Pass it copy of connection file descriptor
= Note use of Malloc () ! [but not Free ()]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{
int connfd = *((int *)wvargp):
Pthread detach (pthread self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

} echoservert.c

= Run thread in “detached” mode.

= Runs independently of other threads
= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd.
" Close connfd (important!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Thread-based Server Execution Model

Connection requests
Listening
server
] main thread .
] Client 1 Client 2)
Client 1 data S server | Client 2 data
) | peer peer |]
thread thread

= Each client handled by individual peer thread
" Threads share all process state except TID
" Each thread has a separate stack for local variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Issues With Thread-Based Servers

m Run “detached” to automatically reap/cleanup threads
= At any pointin time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread join)to free memory resources
" Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» use pthread detach (pthread self ()) to make detached
m Must be careful to avoid unintended sharing

" For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *)é&connfd);

m All functions called by a thread must be thread-safe
" (next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Potential Form of Unintended Sharing

while (1) {

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

main thread

connfd = connfd,

Main thread stack

connfd

............. o Peer, stack
...... ‘.vargp
connfd = connfd, < >]connfd = *vargp
Race!
peer,
..................... Peer, stack
\connfd =*vargp g =

v Why would both copies of vargp point to same location?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Could this race occur?

Main Thread
int i; void *thread(void *vargp)
for (i = 0; i < 100; i++) { {

Pthread create(&tid, NULL, int i = *((int *)wvargp):

thread, &i); Pthread detach(pthread self());
} save value (i) ;
return NULL;
}
m Race Test

" |f no race, then each thread would get different value of i

= Set of saved values would consist of one copy each of 0 through 99

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Experimental Results

No Race

0 2 4 6 81012141618202224262830323436384042444648505254565860626466687072747678808284868890929496098

2

1
0

Single core laptop For each “0” there is some later “2” here

3

1

1

L A A A A

0 2 4 6 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

1LVIuIticore server And here, values are all over the place:
Some bins get 0, some get 2 or more

12

10

SR

0 2 46 810121416182022242628303234363840424446485052545658606264666870727476788082848688909294 9698

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Correct passing of thread arguments

/* Main routine */
int *connfdp;
connfdp = Malloc(sizeof (int)) ;

*connfdp = Accept(. . .),
Pthread create(&tid, NULL, thread, connfdp);

/* Thread routine */
void *thread(void *vargp)

{
int connfd = *((int *)vargp):;

Free (vargp) ;

return NULL;

m Producer-Consumer Model
= Allocate in main
" Freein thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

= e.g., logging information, file cache

+ Threads are more efficient than processes

— Unintentional sharing can introduce subtle and
hard-to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

" Hard to know which data shared & which private

" Hard to detect by testing
= Probability of bad race outcome often very low

= But nonzero!

" Future lectures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Summary: Approaches to Concurrency

m Process-based

" Hard to share resources: Easy to avoid unintended sharing
" High overhead in adding/removing clients

m Event-based
" Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency
= Does not make use of multi-core

m Thread-based

= Easy to share resources: Perhaps too easy ©

" Medium overhead

" Not much control over scheduling policies

= Difficult to debug: Event orderings not repeatable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

	Slide 1
	Slide 2: Concurrent Programming 18-213/18-613: Introduction to Computer Systems 22nd Lecture, November 19th, 2024
	Slide 3: Today
	Slide 4: What is Concurrency?
	Slide 5: Concurrent Programming is Hard!
	Slide 6: Deadlock
	Slide 7: Deadlock
	Slide 8: Testing Printf Deadlock
	Slide 9: Why Does Printf require Locks?
	Slide 10: Starvation
	Slide 11: Data Race
	Slide 12: Concurrent Programming is Hard!
	Slide 13: Concurrent Programming is Hard!
	Slide 14: Reminder: Iterative Echo Server
	Slide 15: Iterative Servers
	Slide 16: Iterative Servers
	Slide 17: Where Does Second Client Actually Block?
	Slide 18: Fundamental Flaw of Iterative Servers
	Slide 19: Approaches for Writing Concurrent Servers
	Slide 20: Today
	Slide 21: Approach #1: Process-based Servers
	Slide 22: Approach #1: Process-based Servers
	Slide 23: Iterative Echo Server
	Slide 24: Making a Concurrent Echo Server
	Slide 25: Making a Concurrent Echo Server
	Slide 26: Making a Concurrent Echo Server
	Slide 27: Process-Based Concurrent Echo Server
	Slide 28: Process-Based Concurrent Echo Server (cont)
	Slide 29: Concurrent Server: accept Illustrated
	Slide 30: Process-based Server Execution Model
	Slide 31: Issues with Process-based Servers
	Slide 32: Pros and Cons of Process-based Servers
	Slide 33: Today
	Slide 34: Approach #2: Event-based Servers
	Slide 35: I/O Multiplexed Event Processing
	Slide 36: Pros and Cons of Event-based Servers
	Slide 37: Today
	Slide 38: Approach #3: Thread-based Servers
	Slide 39: Traditional View of a Process
	Slide 40: Alternate View of a Process
	Slide 41: A Process With Multiple Threads
	Slide 42: Concurrent Threads
	Slide 43: Concurrent Thread Execution
	Slide 44: Threads vs. Processes
	Slide 45: Threads vs. Signals
	Slide 46: Posix Threads (Pthreads) Interface
	Slide 47: The Pthreads "hello, world" Program
	Slide 48: Execution of Threaded “hello, world”
	Slide 49: Thread-Based Concurrent Echo Server
	Slide 50: Thread-Based Concurrent Server (cont)
	Slide 51: Thread-based Server Execution Model
	Slide 52: Issues With Thread-Based Servers
	Slide 53: Potential Form of Unintended Sharing
	Slide 54: Could this race occur?
	Slide 55: Experimental Results
	Slide 56: Correct passing of thread arguments
	Slide 57: Pros and Cons of Thread-Based Designs
	Slide 58: Summary: Approaches to Concurrency

