

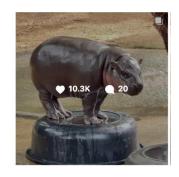
Network Programming: Part I

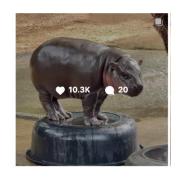
18-213/18-613: Introduction to Computer Systems 20th Lecture, November 12, 2024

Today

- Networking Overview
- Global IP Internet CSAPP 11.3
- Sockets Interface CSAPP 11.4

This lecture may be boring, let me check IG for cool reelz!





Wait, how does the "Internet" actually work to watch reelz?

How does my app/browser know?

- "Stream" from IG?

•••

A First Thought Experiment for Design: "Internet is a Series of (Dedicated) Tubes"

Series of Tubes Doesn't Work ©

Deployment

Every "App" needs to install "copper" "fiber" end to end to its users

Heterogeneity of Users

IG needs to worry about "pipe" inside CMU, my home, airport, SBUX, ...

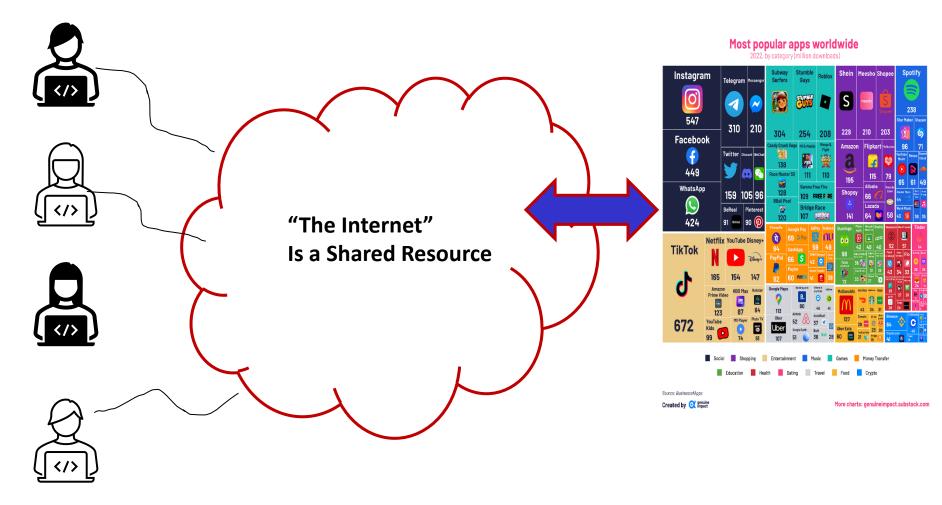
Geography/Society/Politics

What about users in India, China, UK, how do I get pipes?

Scale/Cost

More users come in? More devices come in?

Efficiency

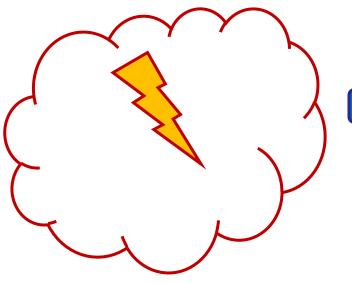

I paused to listen to lecture, but pipe is still costing me!

Fault Tolerance

What if pipe bursts © insta fails

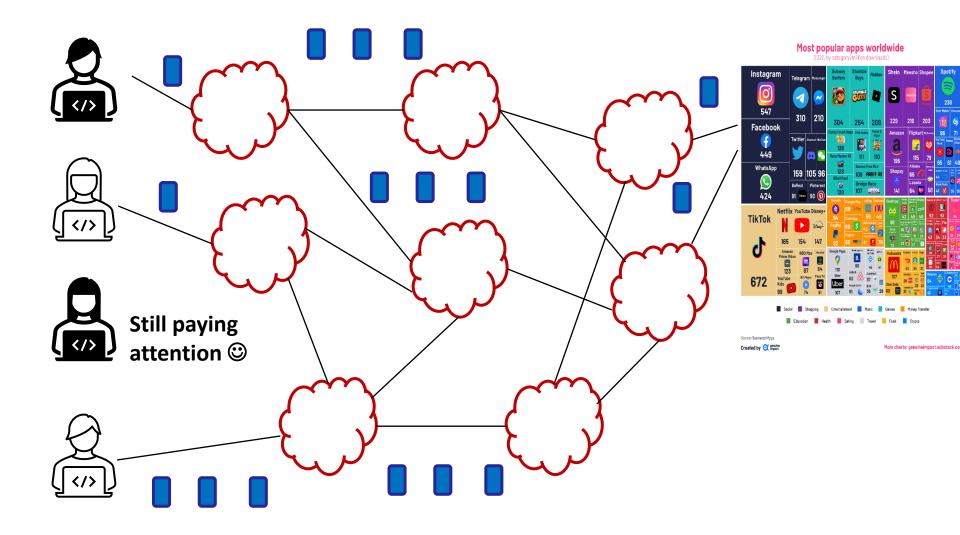
••••

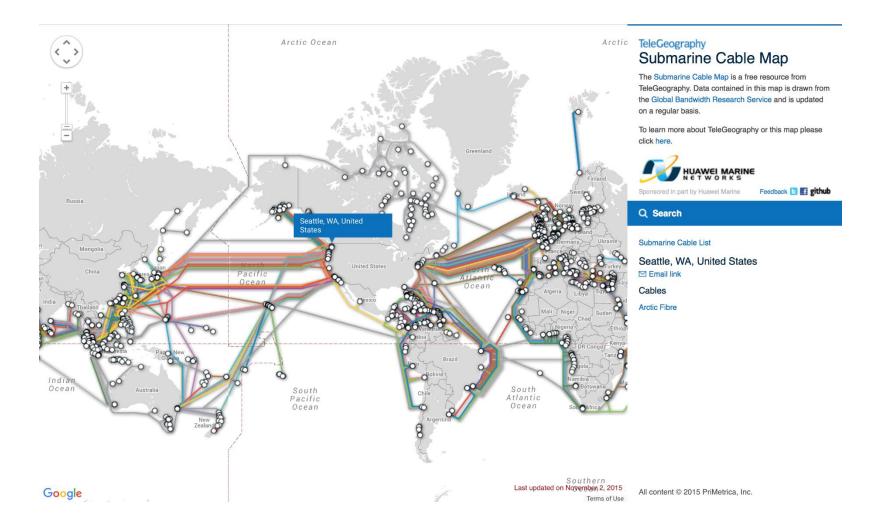
Great Ideas in Networking: Statistical Multiplexing not Dedicated Tubes

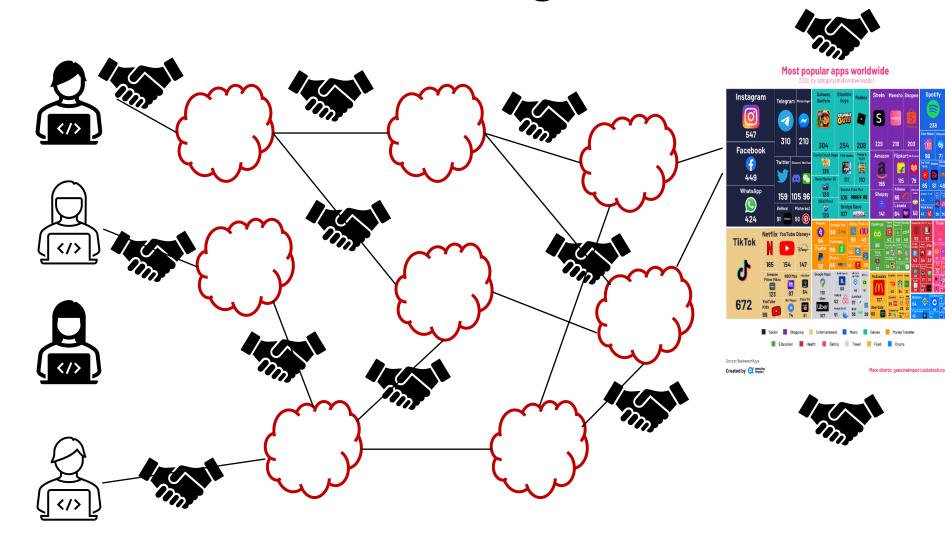


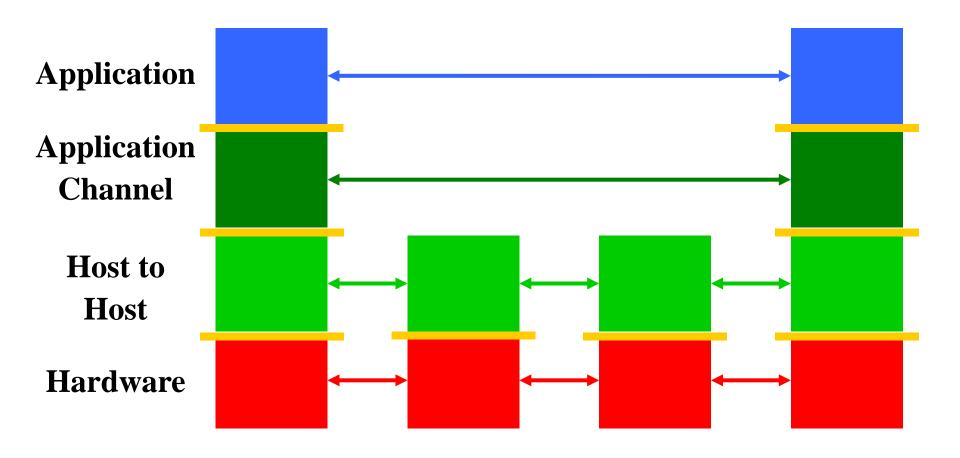
Great Ideas in Networking:

Datagrams/Packet-Switched Networks






Great Ideas in Networking: Federation


Well, the Internet does actually have tubes at physical level ©

Great Ideas in Networking: Protocols

Great Ideas in Networking: Layering

Physical Layer: Establishes the Channel

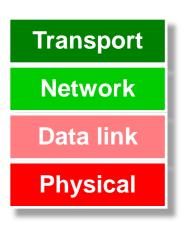
- Medium? Light? Radio frequency? Electrical signals?
 - What color(s) of light? How bright?
 - What RF frequencies? How powerful?
 - What signals represent what values?
 - What shape are the connectors?
 - How far can cables run?
 - Etc.
- We have a functioning <u>physical layer</u> once we can send and receive signals.

Physical Layer: Bandwidth vs. Latency

- Bandwidth = bits/second
 - Improved with parallelism or faster clock rate
- Latency = Function of signal propagation speed
 - Limited by speed of light
 - Major paradigm shift would be needed to make traffic to India or China less latent
- Latency tends to be limiting at a global scale
 - Speed of light over long distances
- Bandwidth may be limited at local scale, e.g. data center
 - How to divide up and recombine messages to utilize parallelism?
 - How to clock faster without losing signal to noise.

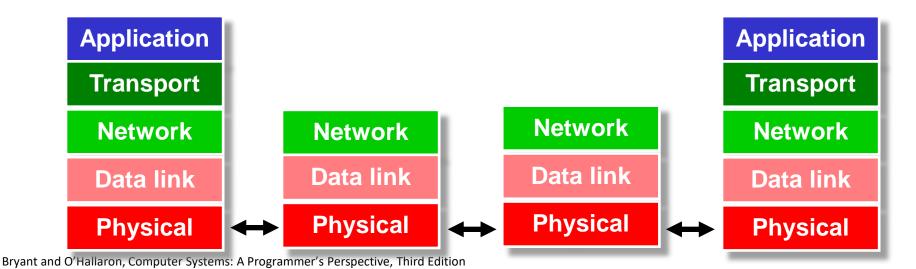
Link Layer: Manages the Channel

- When do we start transmitting? When do we stop?
- When do we start receiving? When do we stop?
- Who is sending? Who is receiving?
- How do we know if it is correct?
- What happens if there is contention for, or collision in, a shared channel?
- Key contributions: Framing, among others
- We have a functioning <u>link layer</u> once we can build a functioning local area network (LAN) of at least two stations.


Network layer: Scaling up

- Passing messages among multiple networks
 - For scale
 - Of different types (wired, wireless, fiber, infrared, etc)
 - Managed by different domains, etc.
- Globally meaningful addressing: IPv4, IPv6
- Ability to choose paths among multiple options
- We have a functioning <u>network layer</u> once we can connect multiple networks, identify hosts among them, and messages can find their way across networks from source to destination.

Transport Layer: Meaningful endpoints


- Hosts don't do communication various aspects of software systems do
 - Consider how many different sessions your Web browser has with servers.
 Now add for your IM sessions, upgrades-in-progress, music streaming, etc.
- Endpoints enable the establishment of sessions
 - Classic model is <IPaddress:port>:<IPaddress:port>
 - Client: Ephemeral port. Host: Well-known port
- Character of communication
 - Reliable/session-oriented, e.g. TCP
 - Unreliable/datagram, e.g. UDP
 - Etc.

■ The <u>transport layer</u> exists once we have the ability to establish communication from end-point to end-point with well-understood properties.

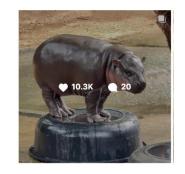
Application Layer: Purposeful Communication

- Defined by the messaging we, as programs, bake into our applications, shaped by our applications
 - e.g., client-server interactions, peer-to-peer interactions, etc.
- E.g., HTTP: PUT, GET, POST, etc.
- E.g., DNS: queries, responses, updates, etc.
- MIME, VOIP protocols, etc.
- Application protocols exist when applications can communicate

How does my app/browser know?

Who is IG?

How do I get to IG?



"Stream" from IG?

Not mix up things?

A Client-Server Transaction

- Most network applications are based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource
 - Server provides service by manipulating resource for clients
 - * Server activated by request from client (vending machine analogy)

 1. Client sends request

 Server process

 4. Client

 process

 3. Server sends response

 handles

 response

 request

Note: clients and servers are processes running on hosts (can be the same or different hosts)

What is IG really?

```
← → C % instagram.com/immoodeng/
```


vyass-mbp-2:Desktop vsekar\$ sudo tcpdump -nn > insta_pcap

```
10:44:5/.903130 1P 192.108.0.144.58340 > 15/.240.229.1/4.443: quic, protected
16:44:57.903264 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:57.919207 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:57.923190 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:57.951425 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:57.981071 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:57.981077 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:57.986683 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:58.023664 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:58.901194 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:58.901414 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:58.929896 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:58.933695 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:58.960606 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:58.960726 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:58.986483 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:58.998233 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:59.003068 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:59.033298 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:59.905629 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:59.905828 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:59.930582 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:59.935577 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:59.965837 IP 192.168.0.144.58340 > 157.240.229.174.443: quic, protected
16:44:59.971363 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
16:44:59.992235 IP 157.240.229.174.443 > 192.168.0.144.58340: quic, protected
```

Anything on
The Global Internet
is just an
"IP" address
e.g., 157.240.229.174

Who is IG = 157.240.229.174?

[vyass-mbp-2:Desktop vsekar\$ whois 157.240.229.174

% IANA WHOIS server

% for more information on IANA, visit http://www.iana.org

% This query returned 1 object

refer: whois.arin.net

157.0.0.0 - 157.255.255.255 inetnum:

organisation: Administered by ARIN

status: LEGACY

whois: whois.arin.net

changed: 1993-05 TANA source:

whois.arin.net

157.240.0.0 - 157.240.255.255 NetRange:

CIDR: 157.240.0.0/16

NetName: THEFA-3

NetHandle: NET-157-240-0-0-1

Parent: NET157 (NET-157-0-0-0)

NetType: Direct Allocation

OriginAS:

Organization: Facebook, Inc. (THEFA-3)

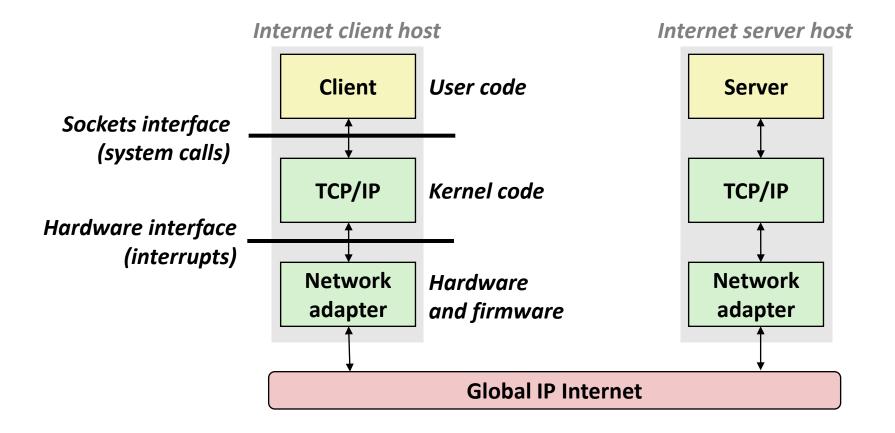
RegDate: 2015-05-14 Updated: 2021-12-14

https://rdap.arin.net/registry/ip/157.240.0.0 Ref:

Facebook, Inc. OrgName:

THEFA-3 OrgId:

Address: 1601 Willow Rd. City: Menlo Park

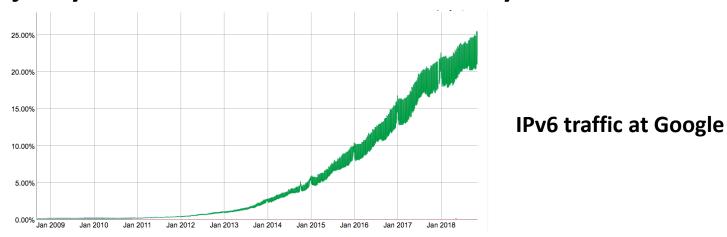

StateProv: CA

"IP" addresses **Assignment** And ownership

Global IP Internet

- Based on the TCP/IP protocol family
 - IP (Internet Protocol)
 - Provides basic naming scheme and unreliable delivery capability of packets (datagrams) from host-to-host
 - UDP (Unreliable Datagram Protocol)
 - Uses IP to provide unreliable datagram delivery from process-to-process
 - TCP (Transmission Control Protocol)
 - Uses IP to provide reliable byte streams from process-to-process over connections
- Accessed via a mix of Unix file I/O and functions from the sockets interface

Hardware and Software Organization of a Client-Server Internet Application



A Programmer's View of the Internet

- 1. Hosts are mapped to a set of 32-bit IP addresses
 - **128.2.203.179**
 - 127.0.0.1 (always localhost)
- 2. The set of IP addresses is mapped to a set of identifiers called Internet *domain names*
 - 128.2.217.3 is mapped to www.cs.cmu.edu
- 3. A process on one Internet host can communicate with a process on another Internet host over a *connection*

Aside: IPv4 and IPv6

- The original Internet Protocol, with its 32-bit addresses, is known as Internet Protocol Version 4 (IPv4)
- 1996: Internet Engineering Task Force (IETF) introduced Internet Protocol Version 6 (IPv6) with 128-bit addresses
 - Intended as the successor to IPv4
- Majority of Internet traffic still carried by IPv4

We will focus on IPv4, but will show you how to write networking code that is protocol-independent.

(1) IP Addresses

32-bit IP addresses are stored in an IP address struct

- IP addresses are always stored in memory in network byte order (big-endian byte order)
- True in general for any integer transferred in a packet header from one machine to another.
 - E.g., the port number used to identify an Internet connection.

```
/* Internet address structure */
struct in_addr {
    uint32_t s_addr; /* network byte order (big-endian) */
};
```

Dotted Decimal Notation

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: 0x8002C2F2 = 128.2.194.242
- Use getaddrinfo and getnameinfo functions (described later) to convert between IP addresses and dotted decimal format.

How do I get to some IP (e.g., IG)?

Routing Protocols

```
lvyass-mbp-2:Desktop vsekar$ traceroute 8.8.8.8
traceroute to 8.8.8.8 (8.8.8.8), 64 hops max, 52 byte packets
1 192.168.0.1 (192.168.0.1) 8.323 ms 1.644 ms 1.894 ms
2 lo0-100.pitbpa-vfttp-308.verizon-gni.net (71.182.232.1) 1.891 ms 2.504 ms 1.952 ms
3 * * *
4 * * *
5 google-com.customer.alter.net (204.148.170.134) 18.124 ms * 20.769 ms
6 * * *
7 dns.google (8.8.8.8) 16.032 ms 12.739 ms 8.139 ms
```

Why don't I need to know this IP thing?

[vyass-mbp-2:Desktop vsekar\$ nslookup www.instagram.com

Server: 192.168.0.1 Address: 192.168.0.1#53

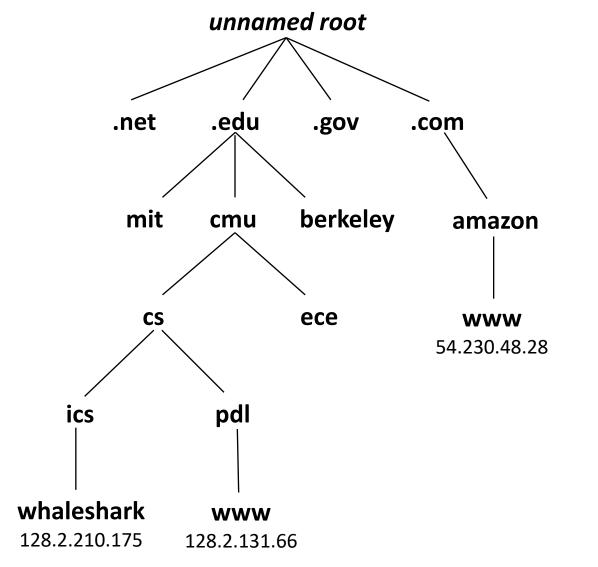
Non-authoritative answer:

www.instagram.com canonical name = z-p42-instagram.c10r.instagram.com.

Name: z-p42-instagram.c10r.instagram.com

Address: 157.240.229.174

[vyass-mbp-2:Desktop vsekar\$ nslookup www.google.com


Server: 192.168.0.1 Address: 192.168.0.1#53

Non-authoritative answer:
Name: www.google.com
Address: 142.251.179.104
Name: www.google.com
Address: 142.251.179.99
Name: www.google.com
Address: 142.251.179.147
Name: www.google.com

Address: 142.251.179.103
Name: www.google.com
Address: 142.251.179.105
Name: www.google.com
Address: 142.251.179.106

Domain Name System (DNS) Names → "IP" addresses

(2) Internet Domain Names

First-level domain names

Second-level domain names

Third-level domain names

Domain Naming System (DNS)

- The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS
- Conceptually, programmers can view the DNS database as a collection of millions of host entries.
 - Each host entry defines the mapping between a set of domain names and IP addresses.
 - In a mathematical sense, a host entry is an equivalence class of domain names and IP addresses.

Properties of DNS Mappings

- Can explore properties of DNS mappings using nslookup
 - (In our examples, the output is edited for brevity)

■ Each host has a locally defined domain name localhost which always maps to the *loopback address* 127.0.0.1

```
linux> nslookup localhost
Address: 127.0.0.1
```

Use hostname to determine real domain name of local host:

```
linux> hostname
whaleshark.ics.cs.cmu.edu
```

Properties of DNS Mappings (cont)

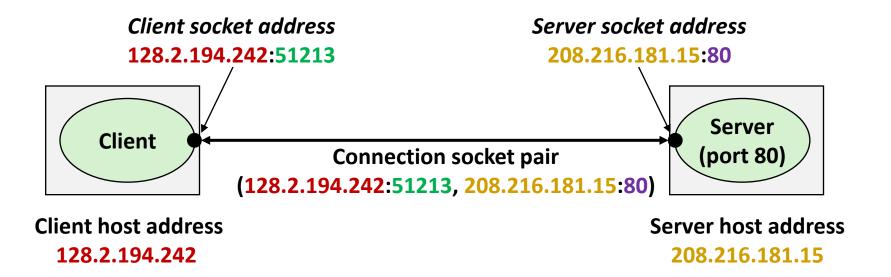
Simple case: one-to-one mapping between domain name and IP address:

```
linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175
```

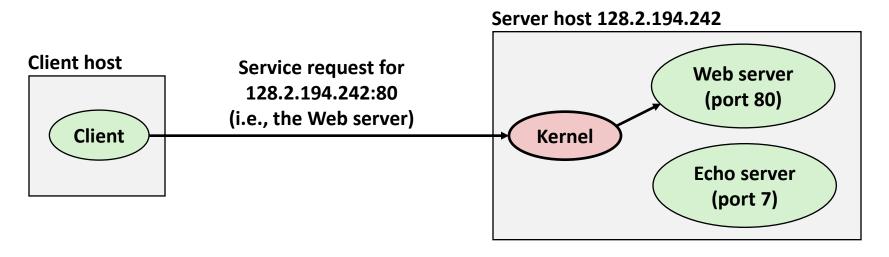
Multiple domain names mapped to the same IP address:

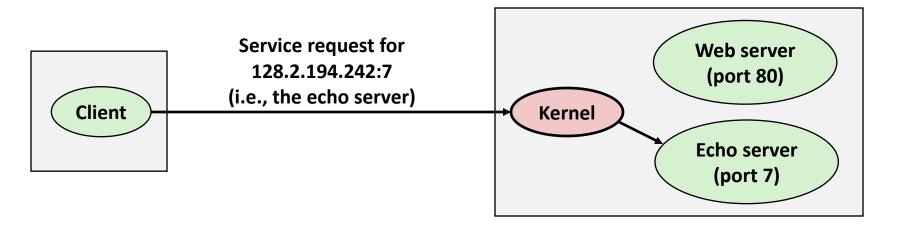
```
linux> nslookup cs.mit.edu
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6
```

(3) Internet Connections


- Clients and servers communicate by sending streams of bytes over connections. Each connection is:
 - Point-to-point: connects a pair of processes.
 - Full-duplex: data can flow in both directions at the same time,
 - Reliable: stream of bytes sent by the source is eventually received by the destination in the same order it was sent.
- A socket is an endpoint of a connection
 - Socket address is an IPaddress:port pair
- A port is a 16-bit integer that identifies a process:
 - Ephemeral port: Assigned automatically by client kernel when client makes a connection request.
 - Well-known port: Associated with some service provided by a server (e.g., port 80 is associated with Web servers)

Well-known Service Names and Ports

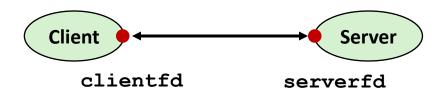

- Popular services have permanently assigned well-known ports and corresponding well-known service names:
 - echo servers: echo 7
 - ftp servers: ftp 21
 - ssh servers: ssh 22
 - email servers: smtp 25
 - Web servers: http 80
- Mappings between well-known ports and service names is contained in the file /etc/services on each Linux machine.


Anatomy of a Connection

- A connection is uniquely identified by the socket addresses of its endpoints (socket pair)
 - (cliaddr:cliport, servaddr:servport)

Using Ports to Identify Services

Today


- Network Layers: Bird's Eye View
- Global IP Internet
- Sockets Interface

Sockets Interface

- Set of system-level functions used in conjunction with Unix I/O to build network applications.
- Created in the early 80's as part of the original Berkeley distribution of Unix that contained an early version of the Internet protocols.
- Available on all modern systems
 - Unix variants, Windows, OS X, IOS, Android, ARM

Sockets

- What is a socket?
 - To the kernel, a socket is an endpoint of communication
 - To an application, a socket is a file descriptor that lets the application read/write from/to the network
 - Remember: All Unix I/O devices, including networks, are modeled as files
- Clients and servers communicate with each other by reading from and writing to socket descriptors

The main distinction between regular file I/O and socket
 I/O is how the application "opens" the socket descriptors

Socket Programming Example

- Echo server and client
- Server
 - Accepts connection request
 - Repeats back lines as they are typed

Client

- Requests connection to server
- Repeatedly:
 - Read line from terminal
 - Send to server
 - Read reply from server
 - Print line to terminal

Echo Server/Client Session Example

Client

```
bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616

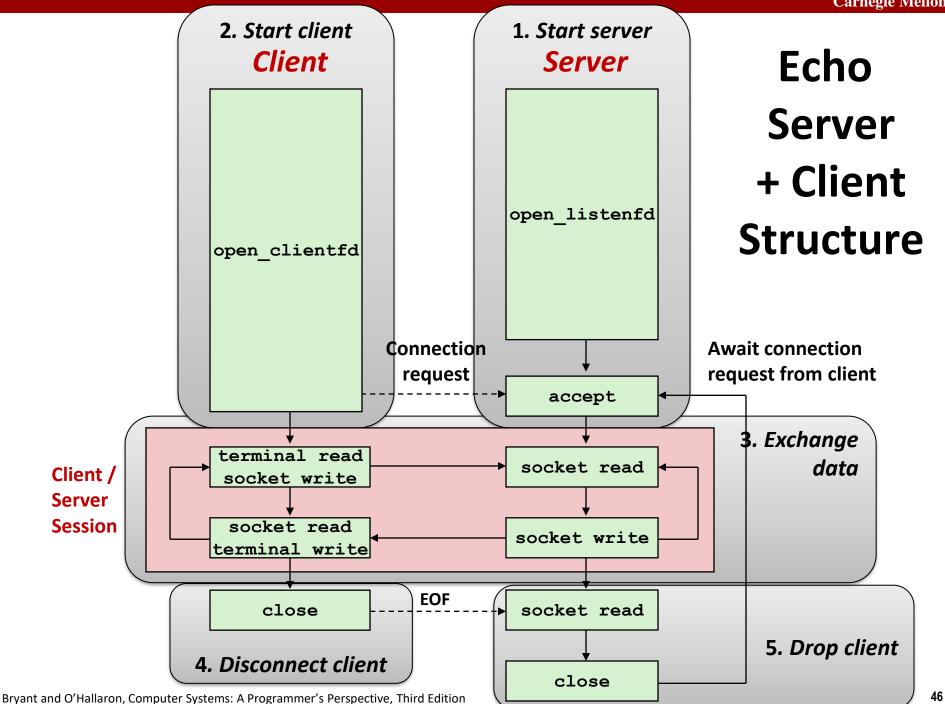
This line is being echoed

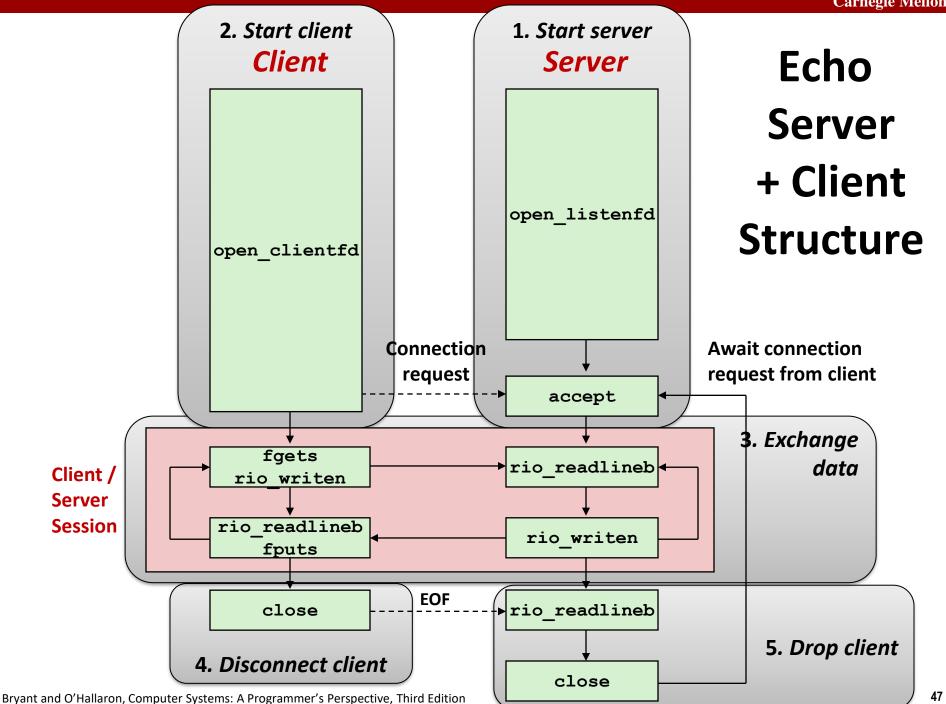
This one is, too

This one is, too

D

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616


This one is a new connection


This one is a new connection

AD
```

Server

whaleshark: ./echoserveri 6616	
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707)	(A)
server received 26 bytes	(B)
server received 17 bytes	(C)
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708)	(D)
server received 29 bytes	(E)

Recall: Unbuffered RIO Input/Output

- Same interface as Unix read and write
- Especially useful for transferring data on network sockets

```
#include "csapp.h"
ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);
Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error
```

- rio_readn returns short count only if it encounters EOF
 - Only use it when you know how many bytes to read
- rio_writen never returns a short count
- Calls to rio_readn and rio_writen can be interleaved arbitrarily on the same descriptor

Recall: Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially cached in an internal memory buffer

```
#include "csapp.h"

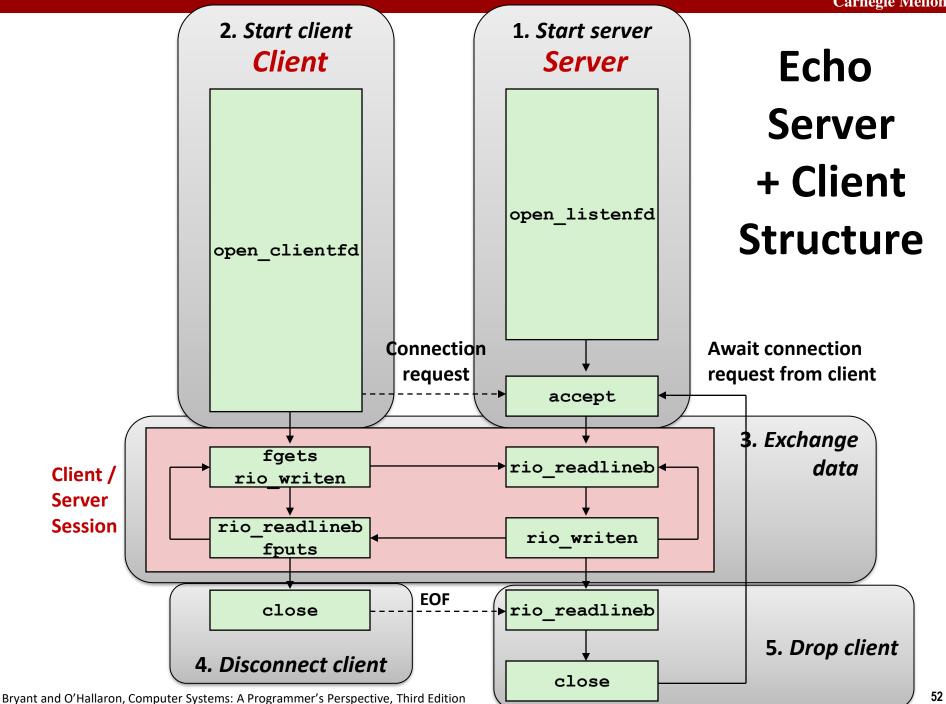
void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error
```

- rio_readlineb reads a text line of up to maxlen bytes from file
 fd and stores the line in usrbuf
 - Especially useful for reading text lines from network sockets
- Stopping conditions
 - maxlen bytes read
 - EOF encountered
 - Newline ('\n') encountered

Echo Server: echo function


- The server uses RIO to read and echo text lines until EOF (end-of-file) condition is encountered.
 - EOF condition caused by client calling close (clientfd)

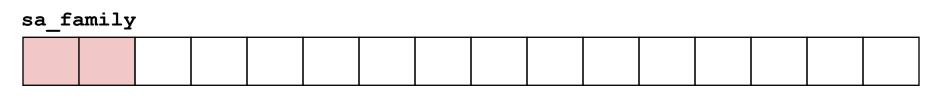
```
void echo(int connfd)
{
    size_t n;
    char buf[MAXLINE];
    rio_t rio;

    Rio_readinitb(&rio, connfd);
    while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
        printf("server received %d bytes\n", (int)n);
        Rio_writen(connfd, buf, n);
    }
}
```

Echo Client: Main Routine

```
#include "csapp.h"
int main(int argc, char **argv)
    int clientfd;
    char *host, *port, buf[MAXLINE];
    rio t rio;
   host = argv[1];
   port = arqv[2];
    clientfd = Open clientfd(host, port);
   Rio readinitb(&rio, clientfd);
    while (Fgets(buf, MAXLINE, stdin) != NULL) {
       Rio writen(clientfd, buf, strlen(buf));
       Rio readlineb(&rio, buf, MAXLINE);
       Fputs(buf, stdout);
   Close (clientfd);
   exit(0);
                                                  echoclient.c
```

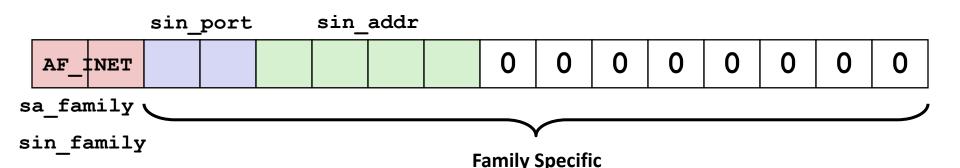

Iterative Echo Server: Main Routine


```
#include "csapp.h"
void echo(int connfd);
int main(int argc, char **argv)
    int listenfd, connfd;
    socklen t clientlen;
    struct sockaddr storage clientaddr; /* Enough room for any addr */
    char client hostname[MAXLINE], client port[MAXLINE];
    listenfd = Open listenfd(argv[1]);
    while (1) {
       clientlen = sizeof(struct sockaddr storage); /* Important! */
       connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
       Getnameinfo((SA *) &clientaddr, clientlen,
                    client hostname, MAXLINE, client port, MAXLINE, 0);
       printf("Connected to (%s, %s)\n", client hostname, client port);
       echo(connfd);
       Close (connfd);
    exit(0);
                                                               echoserveri.c
```

Socket Address Structures

Generic socket address:

- For address arguments to connect, bind, and accept (next lecture)
- Necessary only because C did not have generic (void *) pointers when the sockets interface was designed
- For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;


```
struct sockaddr {
  uint16_t sa_family; /* Protocol family */
  char sa_data[14]; /* Address data */
};
```


Family Specific

Socket Address Structures

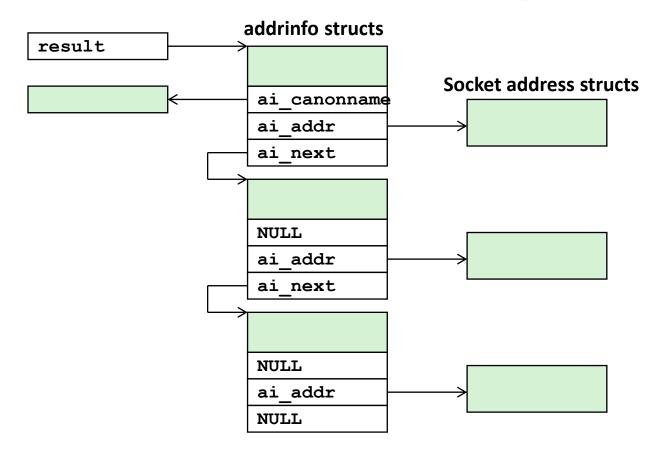
- Internet (IPv4) specific socket address:
 - Must cast (struct sockaddr_in *) to (struct sockaddr *) for functions that take socket address arguments.

Host and Service Conversion: getaddrinfo

- getaddrinfo is the modern way to convert string representations of hostnames, host addresses, ports, and service names to socket address structures.
 - Replaces obsolete gethostbyname and getservbyname funcs.

Advantages:

- Reentrant (can be safely used by threaded programs).
- Allows us to write portable protocol-independent code
 - Works with both IPv4 and IPv6


Disadvantages

- Somewhat complex
- Fortunately, a small number of usage patterns suffice in most cases.

Host and Service Conversion: getaddrinfo

- Given host and service, getaddrinfo returns result that points to a linked list of addrinfo structs, each of which points to a corresponding socket address struct, and which contains arguments for the sockets interface functions.
- Helper functions:
 - freeadderinfo frees the entire linked list.
 - gai strerror converts error code to an error message.

Linked List Returned by getaddrinfo

addrinfo Struct

- Each addrinfo struct returned by getaddrinfo contains arguments that can be passed directly to socket function.
- Also points to a socket address struct that can be passed directly to connect and bind functions.

(socket, connect, bind to be discussed next lecture)

Host and Service Conversion: getnameinfo

- getnameinfo is the inverse of getaddrinfo, converting a socket address to the corresponding host and service.
 - Replaces obsolete gethostbyaddr and getservbyport funcs.
 - Reentrant and protocol independent.

Conversion Example

```
#include "csapp.h"
int main(int argc, char **argv)
   struct addrinfo *p, *listp, hints;
   char buf[MAXLINE];
    int rc, flags;
   /* Get a list of addrinfo records */
   memset(&hints, 0, sizeof(struct addrinfo));
   // hints.ai family = AF INET; /* IPv4 only */
   hints.ai_socktype = SOCK STREAM; /* Connections only */
    if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
       fprintf(stderr, "getaddrinfo error: %s\n", gai strerror(rc));
       exit(1);
                                                              hostinfo.d
```

Conversion Example (cont)

Running hostinfo

```
whaleshark> ./hostinfo localhost
127.0.0.1
whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175
whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198
whaleshark> ./hostinfo google.com
172.217.15.110
2607:f8b0:4004:802::200e
```

Today

- Network Layers
- Global IP Internet
- Sockets Interface

Next time

- Using getaddrinfo for host and service conversion
- Writing clients and servers
- Writing Web servers!

Additional slides

Basic Internet Components

Internet backbone:

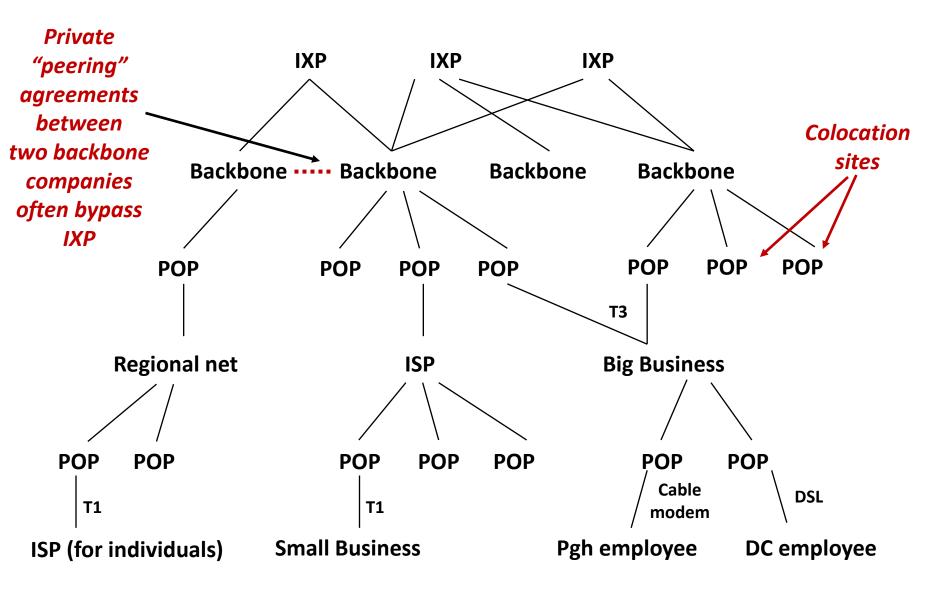
 collection of routers (nationwide or worldwide) connected by high-speed point-to-point networks

Internet Exchange Points (IXP):

- router that connects multiple backbones (often referred to as peers)
- Also called Network Access Points (NAP)

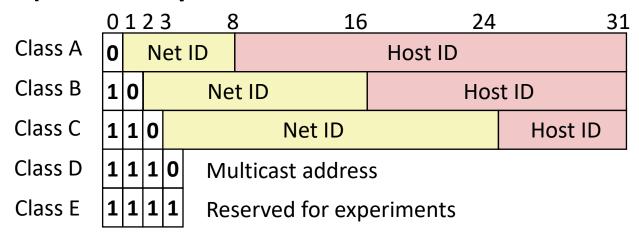
Regional networks:

 smaller backbones that cover smaller geographical areas (e.g., cities or states)


Point of presence (POP):

machine that is connected to the Internet

Internet Service Providers (ISPs):


provide dial-up or direct access to POPs

Internet Connection Hierarchy

IP Address Structure

IP (V4) Address space divided into classes:

Network ID Written in form w.x.y.z/n

- n = number of bits in host address
- E.g., CMU written as 128.2.0.0/16
 - Class B address

Unrouted (private) IP addresses:

10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Evolution of Internet

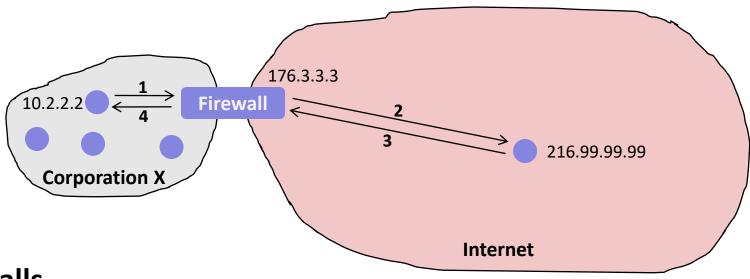
Original Idea

- Every node on Internet would have unique IP address
 - Everyone would be able to talk directly to everyone
- No secrecy or authentication
 - Messages visible to routers and hosts on same LAN
 - Possible to forge source field in packet header

Shortcomings

- There aren't enough IP addresses available
- Don't want everyone to have access or knowledge of all other hosts
- Security issues mandate secrecy & authentication

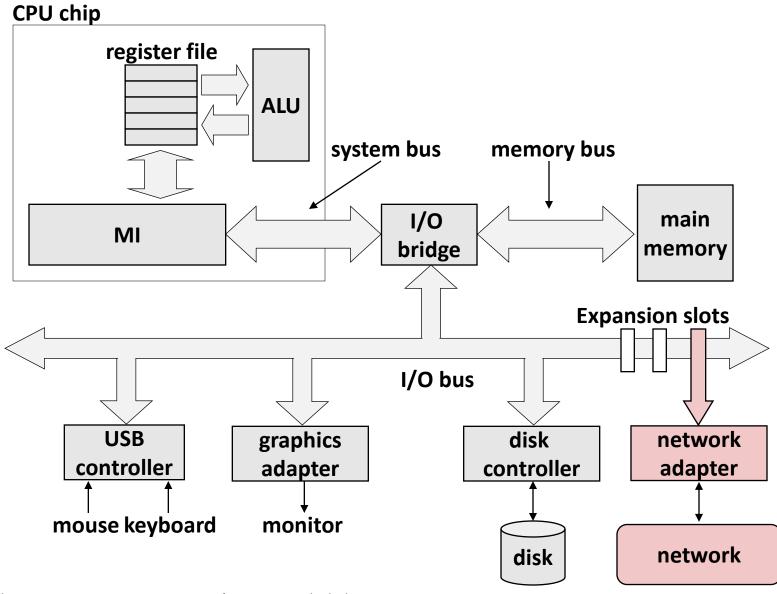
Evolution of Internet: Naming


Dynamic address assignment

- Most hosts don't need to have known address
 - Only those functioning as servers
- DHCP (Dynamic Host Configuration Protocol)
 - Local ISP assigns address for temporary use

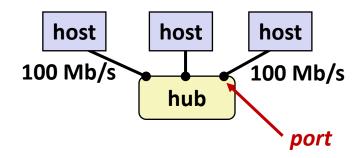
Example:

- Laptop at CMU (wired connection)
 - IP address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
 - Assigned statically
- Laptop at home
 - IP address 192.168.1.5
 - Only valid within home network


Evolution of Internet: Firewalls

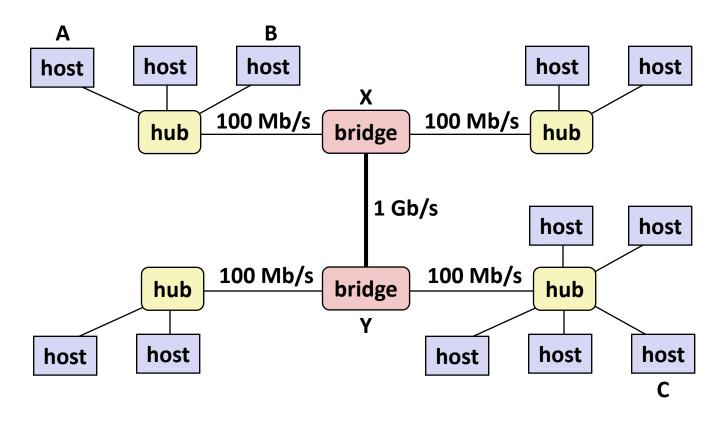
Firewalls

- Hides organizations nodes from rest of Internet
- Use local IP addresses within organization
- For external service, provides proxy service
 - 1. Client request: src=10.2.2.2, dest=216.99.99.99
 - 2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
 - 3. Server responds: src=216.99.99.99, dest=176.3.3.3
 - 4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2


Hardware Organization of a Network Host

Computer Networks

- A network is a hierarchical system of boxes and wires organized by geographical proximity
 - BAN (Body Area Network) spans devices carried / worn on body
 - SAN* (System Area Network) spans cluster or machine room
 - Switched Ethernet, Quadrics QSW, ...
 - LAN (Local Area Network) spans a building or campus
 - Ethernet is most prominent example
 - WAN (Wide Area Network) spans country or world
 - Typically high-speed point-to-point phone lines
- An internetwork (internet) is an interconnected set of networks
 - The Global IP Internet (uppercase "I") is the most famous example of an internet (lowercase "i")
- Let's see how an internet is built from the ground up

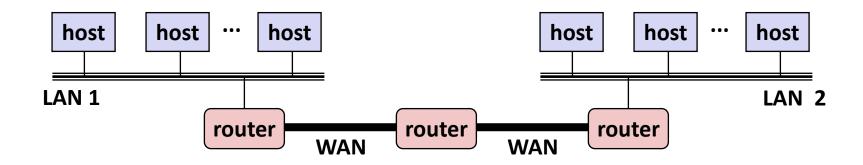

Lowest Level: Ethernet Segment

- Ethernet segment consists of a collection of hosts connected by wires (twisted pairs) to a hub
- Spans room or floor in a building
- Operation
 - Each Ethernet adapter has a unique 48-bit address (MAC address)
 - E.g., 00:16:ea:e3:54:e6
 - Hosts send bits to any other host in chunks called frames
 - Hub slavishly copies each bit from each port to every other port
 - Every host sees every bit

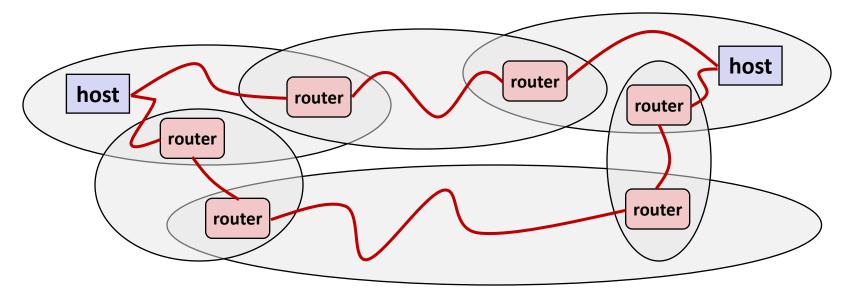
[Note: Hubs are obsolete. Bridges (switches, routers) became cheap enough to replace them]

Next Level: Bridged Ethernet Segment

- Spans building or campus
- Bridges cleverly learn which hosts are reachable from which ports and then selectively copy frames from port to port


Conceptual View of LANs

For simplicity, hubs, bridges, and wires are often shown as a collection of hosts attached to a single wire:


Next Level: internets

- Multiple incompatible LANs can be physically connected by specialized computers called routers
- The connected networks are called an internet (lower case)

LAN 1 and LAN 2 might be completely different, totally incompatible (e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, ...)

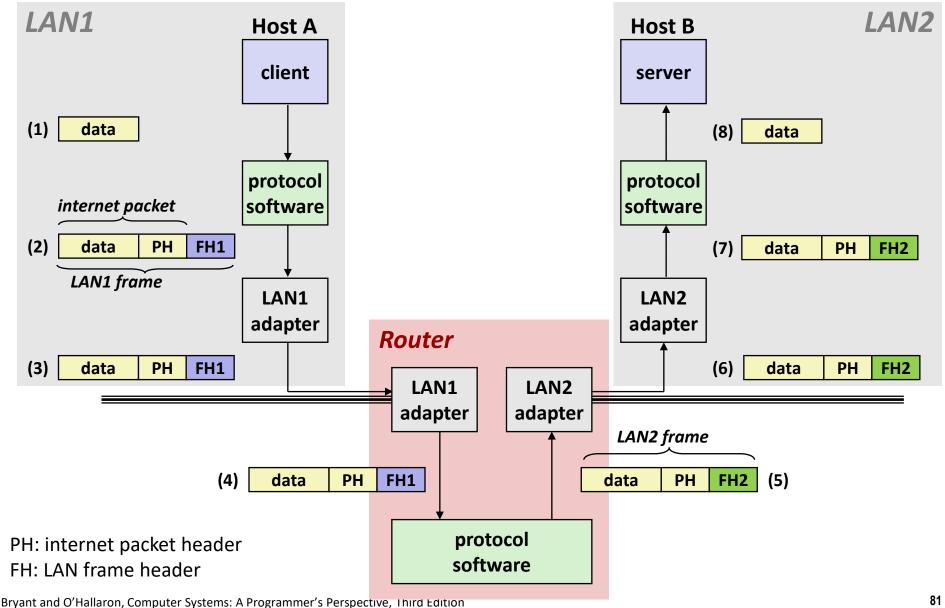
Logical Structure of an internet

- Ad hoc interconnection of networks
 - No particular topology
 - Vastly different router & link capacities
- Send packets from source to destination by hopping through networks
 - Router forms bridge from one network to another
 - Different packets may take different routes

The Notion of an internet Protocol

- How is it possible to send bits across incompatible LANs and WANs?
- Solution: protocol software running on each host and router
 - Protocol is a set of rules that governs how hosts and routers should cooperate when they transfer data from network to network.
 - Smooths out the differences between the different networks

What Does an internet Protocol Do?


Provides a naming scheme

- An internet protocol defines a uniform format for host addresses
- Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it

Provides a delivery mechanism

- An internet protocol defines a standard transfer unit (packet)
- Packet consists of header and payload
 - Header: contains info such as packet size, source and destination addresses
 - Payload: contains data bits sent from source host

Transferring internet Data Via Encapsulation

Other Issues

- We are glossing over a number of important questions:
 - What if different networks have different maximum frame sizes? (segmentation)
 - How do routers know where to forward frames?
 - How are routers informed when the network topology changes?
 - What if packets get lost?
- These (and other) questions are addressed by the area of systems known as computer networking