Carnegie Mellon

T —

PR
el s sine

<« AN it s

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

System-Level 1/0

18-213/18-613: Introduction to Computer Systems
19t Lecture, November 7th, 2024

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today

m Unix1/0 CSAPP 10.1-10.4
m Metadata, sharing, and redirection CSAPP 10.6-10.9

m Standard 1/O CSAPP 10.10

m RIO (robust 1/0) package CSAPP 10.5

m Closing remarks CSAPP 10.11-10.12

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Today: Unix I/O and C Standard 1/0

m Two sets: system-level and C level

m Robust I/0 (RIO): 15-213 special wrappers
good coding practice: handles error checking, signals, and
“short counts”

fopen fdopen
fread fwrite
fscanf fprintf

sscanf sprintf |» C application program
fgets fputs S rio readn
£flush fseek rio writen
fclose | Standard 1/0 RIO —-s rio readinitb
functions functions rio readlineb
d io
open rea Unix I/0 functions e

write 1lseek |«----

stat 2ileee (accessed via system calls)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Unix I/O Overview

m A Linux file is a sequence of m bytes:
= B, B,,...,B,..,B

m-1

m Cool fact: All 1/0O devices are represented as files:
= /dev/sda2 (/usr disk partition)
= /dev/tty2 (terminal)

m Even the kernel is represented as a file:
= /boot/vmlinuz-3.13.0-55-generic (kernelimage)
= /proc (kernel data structures)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Unix 1/O Overview

m Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O:
" QOpening and closing files
= open()and close()
= Reading and writing a file
= read () and write ()
= Changing the current file position (seek)

» indicates next offset into file to read or write
» 1seek ()

By |B; [®°° By.1| Bk |Bxia| ®®®

t

Current file position = k

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

File Types

m Each file has a type indicating its role in the system
= Regqular file: Contains arbitrary data
= Directory: Index for a related group of files
= Socket: For communicating with a process on another machine

m Other file types beyond our scope
= Named pipes (FIFOs)
= Symbolic links
= Character and block devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Regular Files

m A regular file contains arbitrary data
m Applications often distinguish between text files and binary
files
= Text files are regular files with only ASCII or Unicode characters
= Binary files are everything else
= e.g., object files, JPEG images
= Kernel doesn’t know the difference!
m Text file is sequence of text lines
= Text line is sequence of chars terminated by newline char (‘\n’)
= Newline is 0xa, same as ASCII line feed character (LF)
m End of line (EOL) indicators in other systems _.ig‘e“‘ 4
" Linux and Mac OS: ‘\n’ (0xa) o - -
= line feed (LF)
= Windows and Internet protocols: ‘\r\n’ (0xd Oxa)
= Carriage return (CR) followed by line feed (LF)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Directories

m Directory consists of an array of links

= Each link maps a filename to a file

m Each directory contains at least two entries
= _ (dot)is alink to itself

= .. (dotdot)is alink to the parent directory in the directory

hierarchy (next slide)

m Commands for manipulating directories
" mkdir: create empty directory
= 1s:view directory contents
" rmdir: delete empty directory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Directory Hierarchy

m All files are organized as a hierarchy anchored by root directory
named / (slash)

/
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd droh/ bryant/ include/ bin/
hello.c stdio.h sys/ vim
unistd.h

m Kernel maintains current working directory (cwd) for each process
= Modified using the ed command

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Pathnames

m Locations of files in the hierarchy denoted by pathnames
= Absolute pathname starts with ‘/’ and denotes path from root
= /home/droh/hello.c
= Relative pathname denotes path from current working directory
= ../home/droh/hello.c

/ cwd: /home/bryant
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd droh/ bryant/ include/ bin/

N\

hello.c stdio.h sys/ vim

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition unistd.h 11

Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit(1l);

m Returns a small identifying integer file descriptor
= fd == -1 indicates that an error occurred

m Each process created by a Linux shell begins life with three
open files associated with a terminal:

= (:standard input (stdin)
= 1:standard output (stdout)
= 2:standard error (stderr)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Closing Files

m Closing a file informs the kernel that you are finished
accessing that file

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit (1) ;

m Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

m Moral: Always check return codes, even for seemingly
benign functions such as close ()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Reading Files

m Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];
int £d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit(1l);

m Returns number of bytes read from file £d into buf
" Returntype ssize tissigned integer
" nbytes < 0 indicates that an error occurred

= Short counts (nbytes < sizeof (buf)) are possible and are not
errors!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Writing Files

m Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];
int £d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit (1),

m Returns number of bytes written from buf to file £d
" nbytes < 0 indicates that an error occurred

" As with reads, short counts are possible and are not errors!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Simple Unix I/0 example

m Copying file to stdout, one byte at a time

#include "csapp.h"
int main(int argc, char *argv|[])
{
char c;
int infd = STDIN_FILENO;
if (argc == 2) {
infd = Open(argv[1l], O _RDONLY, O0);
}
while (Read(infd, &c, 1) '= 0)
Write(STDOUT_FILENO, &, 1);
exit (0);
} showfilel_nobuf.c
m Demo:

linux> strace ./showfilel nobuf names.txt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

On Short Counts

m Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets

m Short counts never occur in these situations:
= Reading from disk files (except for EOF)
= Writing to disk files

m Best practice is to always allow for short counts.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Home-grown buffered 1/0O code
m Copying file to stdout, BUFSIZE bytes at a time

#include "csapp.h"
#define BUFSIZE 64

int main(int argc, char *argv([])
{
char buf [BUFSIZE];
int infd = STDIN FILENO;
if (argc == 2) {
infd = Open(argv[1l], O RDONLY, O0);
}

while ((nread = Read(infd, buf, BUFSIZE)) != 0)
Write (STDOUT FILENO, buf, nread);
exit (0);
} showfile2_buf.c
m Demo:

linux> strace ./showfile2 buf names. txt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Today

m Unixl1/0
m Metadata, sharing, and redirection
m Standard 1/O

m RIO (robust 1/0) package

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

File Metadata

m Metadata is data about data, in this case file data

m Per-file metadata maintained by kernel
= accessed by users with the stat and £stat functions

/* Metadata returned by the stat and fstat functions */

struct stat {
dev t st dev; /* Device */
ino_t st _ino; /* inode */
mode t st mode; /* Protection and file type */
nlink t st nlink; /* Number of hard links */
uid t st uid; /* User ID of owner */
gid t st gid; /* Group ID of owner */
dev t st rdev; /* Device type (if inode device) */
off t st size; /* Total size, in bytes */
unsigned long st blksize; /* Blocksize for filesystem I/O */
unsigned long st blocks; /* Number of blocks allocated */
time t st _atime; /* Time of last access */
time t st mtime; /* Time of last modification */
time t st ctime; /* Time of last change */

};

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

How the Unix Kernel Represents Open Files

fd = Open(argv[1l], O RDONLY, 0); /*Suppose fd ==3, say */

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdo File access
stdout fd1 = File pos File size Info in
stderr fd2 Fil stat
refcnt=1 lle type
fd 3 _ .yp struct
fd4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

How the Unix Kernel Represents Open Files

m Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdoO File access
stdout fd1 = File pos File size Info in
stderr fd2
fd 3 refcnt=1 File type stat
: struct
fda ~ : :
\File B (disk)
i File access
. File size
File pos
refcnt=1 File type
File pos is maintained per open file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

File Sharing

m Two distinct descriptors sharing the same disk file through
two distinct open file table entries

= E.g., Calling open twice with the same £ilename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (disk)
stdin fdoO File access
stdout fd1 . : :
File size
stderr fd2 File pos :
fd 3 refcnt=1 File type
fd 4 : :
\File B (disk)
/
File pos
refcnt=1
Different logical but same physical file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

How Processes Share Files: fork

m A child process inherits its parent’s open files

= Note: situation unchanged by exec functions (use £ecntl to change)

m Before fork call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdo File access
stdout fd1 — . . .
File size
stderr fd2 File pos !
fd 3 refcnt=1 File type
fd4 SN : :
\F“e B (disk)
. File access
. File size
File pos
refcnt=1 File type

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

How Processes Share Files: fork

m A child process inherits its parent’s open files
m After fork:

® Child’s table same as parent’s, and +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent File A (terminal)
fd 0 / File access
:: : — File pos File size
fd 3 refcnt=2 File type
fd4 ~ : .

child File B (disk)

- File access

fdo — =
fd 1 File pos File size
:: ; refcnt=2 File type
fd 4

File is shared between processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

/O Redirection

m Question: How does a shell implement 1/0 redirection?
linux> 1ls > foo.txt

m Answer: By calling the dup2 (oldfd, newfd) function
= Copies (per-process) descriptor table entry oldfd to entry newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2 (4,1)
fd O fd 0

fdi|a fdl|b

fd 2 fd 2

fd 3 fd 3

fd4 |b fd4a | b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

/0O Redirection Example

m Step #1: open file to which stdout should be redirected
= Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A
stdin fdo File access
stdout fd1 — . . .
File size
stderr fd2 File pos !
fd 3 refcnt=1 File type
fd4 SN : :
. File access
. File size
File pos
refcnt=1 File type

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

/0 Redirection Example (cont.)
m Step #2: calldup2 (4,1)

= cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A
stdin fdoO File access
stdout fd1 N . File si
ile size
stderr fd?2 N File pos :
fd 3 refent=0 File type
fd 4 ~ : :
File B
N File access
- File size
File pos
refcnt=2 File type
Two descriptors point to the same file ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Warm-Up: I/0 and Redirection Example

#include "csapp.h"
int main(int argc, char *argv|[])
{
int £d1, £d4d2, £d3;
char cl, c2, c3;
char *fname = argv[l];
fdl = Open(fname, O RDONLY, O0);
fd2 = Open(fname, O RDONLY, O0);
fd3 = Open(fname, O RDONLY, O0);
Dup2 (fd2, £d3);
Read (fdl, &cl, 1);
Read (£fd2, &c2, 1);
Read (£d3, &c3, 1);
printf("cl = %c, c2 = %c, c¢3 = %c\n", cl, c2, c3);
return O;
} ffilesl.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Warm-Up: I/0 and Redirection Example

#include "csapp.h"

int main(int argc, char *argv|[]) cl =a, c2 =a. c3 =0b
14 14

{

int £d1, £d4d2, £d3;

char cl, c2, c3;

char *fname = argv[l];

fdl = Open(fname, O RDONLY, O0);
fd2 = Open(fname, O RDONLY, O0);
fd3 = Open(fname, O RDONLY, O0);
Dup2 (£d2, £d3); < dup2 (oldfd, newfd)
Read (£fdl, é&cl, 1);
Read (fd2, &c2, 1);
Read (£d3, &c3, 1);
printf("cl = %c, c2
return O;

} ffilesl.c

c3 = %c\n", cl, c2, c3);

]
o°
Q

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Master Class: Process Control and 1/O

#include "csapp.h"
int main(int argc, char *argv][])

{

int £di;
int s = getpid() & O0x1;
char cl, c2;
char *fname = argv[l];
fdl = Open(fname, O RDONLY, O0);
Read (fdl, é&cl, 1);
if (fork()) { /* Parent */
sleep(s) ;
Read (£fdl, &c2, 1);
printf ("Parent: cl = %c, ¢2 = %c\n", cl, c2);
} else { /* Child */
sleep(1l-s);
Read (fdl, &c2, 1);
printf ("Child: cl = %c, ¢2 = %c\n", cl, c2);
}

return 0;
} ffiles2.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Master Class: Process Control and 1/O

#include "csapp.h" |

int main(int argc, char *argv[]) Child: cl = a, c2 = Db
{ Parent: cl = a, c2 = ¢
int £d4d1;
int s = getpid() & Ox1;
char cl, c2; Parent: cl = a, c2 =Db
* = . -
SNEE SENEmD = eyl Child: cl = a, c2 = ¢
fdl = Open(fname, O RDONLY, O0);

Read (£fdl, é&cl, 1);
if (fork()) { /* Parent */

sleep(s) ;

Read (fdl, &c2, 1);

printf ("Parent: cl = %c, ¢2 = %c\n", cl, c2);
} else { /* Child */

sleep(1l-s);

Read (£d1l, &c2, 1);

printf ("Child: cl = %c, ¢2 = %c\n", cl, c2);
}

return 0;
} ffiles2.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Today

m Unixl1/0
m Metadata, sharing, and redirection
m Standard 1/O

m RIO (robust 1/0) package

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Standard 1/O Functions

m The Cstandard library (Libc. so) contains a collection of
higher-level standard I/0 functions
= Documented in Appendix B of K&R

m Examples of standard 1/0 functions:
= QOpening and closing files (fEopen and £close)
= Reading and writing bytes (fread and fwrite)
= Reading and writing text lines (fgets and fputs)
= Formatted reading and writing (Escanf and fprintf)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Standard 1/O Streams

m Standard I/O models open files as streams

= Abstraction for a file descriptor and a buffer in memory

m C programs begin life with three open streams
(defined in stdio.h)
" stdin (standard input)
=" stdout (standard output)
" stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Buffered 1/0O: Motivation

m Applications often read/write one character at a time
" getc, putc, ungetc
" gets, fgets
= Read line of text one character at a time, stopping at newline
m Implementing as Unix 1/O calls expensive
" readand write require Unix kernel calls
= > 10,000 clock cycles

m Solution: Buffered read
= Use Unix read to grab block of bytes
= User input functions take one byte at a time from buffer
= Refill buffer when empty

Buffer | already read unread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Buffering in Standard 1/O

m Standard 1/0O functions use buffered 1/O

printf ("h") ;

printf ("e") ;

printf ("1") ;

printf ("1") ;
printf("o") ;

buf | printf ("\n") ;

\ 4 \ 4 \ 4 A l

hlelllllo]\n

fflush (stdout) ;

v

write(l, buf, 6);

m Buffer flushed to output fd on “\n”, call to ££1lush or
exit, orreturnfrommain.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Standard 1/0 Buffering in Action

m You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

#include <stdio.h> linux> strace ./hello
execve ("./hello", ["hello"], [/* ... */1).
int main () ...
{ write(l, "hello\n", 6) = 6
printf ("h") ; ...
printf ("e") ; exit group(0) = ?

printf ("1");
printf ("1") ;
printf ("o") ;
printf ("\n") ;
fflush (stdout) ;
exit (0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Standard I/O Example

m Copying file to stdout, line-by-line with stdio

#include "csapp.h"
#define MLINE 1024
int main(int argc, char *argv([])
{
char buf [MLINE];
FILE *infile = stdin;
if (argc == 2) {
infile = fopen(argv[1l], "r");
if ('infile) exit(1l);
}
while (fgets (buf, MLINE, infile) != NULL)
fprintf (stdout, buf) ;
exit (0);
} showfile3_stdio.c
m Demo:

linux> strace ./showfile3 stdio names. txt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Today

m Unixl1/0
m Metadata, sharing, and redirection
m Standard 1/O

m RIO (robust 1/0) package

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Today: Unix I/0O, C Standard 1/0, and RIO

m Two incompatible libraries building on Unix 1/0

m Robust I/0 (RIO): 15-213 special wrappers
good coding practice: handles error checking, signals, and
“short counts”

fopen fdopen
fread fwrite
fscanf fprintf

sscanf sprintf |» C application program
fgets fputs S rio readn
£flush fseek rio writen
fclose | Standard 1/0 RIO —-s rio readinitb
functions functions rio readlineb
d io
open rea Unix I/0 functions e

write 1lseek |«----

stat 2ileee (accessed via system calls)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Unix I/O Recap

/* Read at most max count bytes from file into buffer.
Return number bytes read, or error value */
ssize t read(int £fd, void *buffer, size t max count);

/* Write at most max count bytes from buffer to file.
Return number bytes written, or error value */
ssize_t write(int fd, void *buffer, size t max count);

m Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets
m Short counts never occur in these situations:
= Reading from disk files (except for EOF)
= Writing to disk files

m Best practice is to always allow for short counts.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

The RIO Package (15-213/CS:APP Package)

m RIO is a set of wrappers that provide efficient and robust 1/0
in apps, such as network programs that are subject to short
counts

m RIO provides two different kinds of functions
= Unbuffered input and output of binary data
* rio readnandrio writen
= Buffered input of text lines and binary data
* rio readlinebandrio readnb

= Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

m Download from http://csapp.cs.cmu.edu/3e/code.html
- src/csapp.c and include/csapp.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

http://csapp.cs.cmu.edu/public/code.html

Unbuffered RIO Input and Output

m Same interface as Unix read and write
m Especially useful for transferring data on network sockets

#include "csapp.h"

ssize t rio readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_ readn only), -1 on error

" rio readn returnsshort countonly if it encounters EOF
= Only use it when you know how many bytes to read
" rio writen never returnsa short count

" Callstorio readnand rio_ writen can be interleaved arbitrarily on
the same descriptor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Implementation of rio readn

/*
<3

{

}

* rio readn - Robustly read n bytes (unbuffered)

ssize t rio readn(int fd, void *usrbuf, size t n)

size_t nleft n;
ssize_t nread;

char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* Interrupted by sig handler return */
nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;
}

return (n - nleft); /* Return >= 0 */
csapp.c

Bl’yar CdTTU U TTdintarurt, COTTTPULET SYSIETTIS. A TTUBTATTITET S TETSPTLUVE, TTTHTU TUTLIOTT

Carnegie Mellon

Buffered RIO Input Functions

m Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include "csapp.h"
void rio readinitb(rio t *rp, int £d);

ssize t rio readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readlineb reads a text /ine of up to maxlen bytes from
file £d and stores the line in usrbuf
= Especially useful for reading text lines from network sockets
= Stopping conditions
= maxlen bytes read
= EOF encountered
= Newline (‘\n’) encountered

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Buffered RIO Input Functions (cont)

#include "csapp.h"
void rio readinitb(rio_t *rp, int £d);

ssize t rio_readlineb(rio_t *rp, void *usrbuf, size_ t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio readnb reads up to n bytes from file £d

= Stopping conditions
= maxlen bytes read
= EOF encountered

" Callstorio readlineb and rio readnb can be interleaved
arbitrarily on 1 the same descriptor

= Warning: Don’t interleave with callsto rio readn

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Buffered 1/0: Implementation

m For reading from file

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

-— rio_cnt —

Buffer | already read unread

rio buf '/ j
- rio bufptr

m Layered on Unix file:

\ 4

A

Buffered Portion

no longer in buffer already read unread unseen

J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Current File Position

Carnegie Mellon

Buffered 1/0O: Declaration
m All information contained in struct

-— rio_cnt —

Buffer | already read unread

rio buf —’/’ _//f
- rio bufptr

typedef struct {

int rio fd; /* descriptor for this internal buf */
int rio cnt; /* unread bytes in internal buf */
char *rio bufptr; /* next unread byte in internal buf */

char rio buf[RIO BUFSIZE]; /* internal buffer */
} rio t;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Standard I/O Example

m Copying file to stdout, line-by-line with rio

#include "csapp.h"
#define MLINE 1024
int main(int argc, char *argv([])
{
rio t rio;
char buf [MLINE];
int infd = STDIN FILENO;
ssize t nread = 0;
if (argc == 2) {
infd = Open(argv[1l], O RDONLY, O0);
}
Rio readinitb(&rio, infd);
while ((nread = Rio readlineb (&rio, buf, MLINE)) !'= 0)
Rio writen (STDOUT FILENO, buf, nread);
exit (0);
} showfile4_stdio.c
m Demo:

linux> strace ./showfile4 rio names. txt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today

m Unixl1/0
m Metadata, sharing, and redirection
m Standard 1/O

m RIO (robust 1/0) package

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Standard I/O Example

m Copying file to stdout, loading entire file with mmap
#include "csapp.h"

int main(int argc, char **argv)
{

struct stat stat;

if (argc '= 2) exit(1l);

int infd = Open(argv[1l], O RDONLY, O0);

Fstat (infd, &stat);

size t size = stat.st_size;

char *bufp = Mmap (NULL, size, PROT READ,

MAP PRIVATE, infd, 0);

Write (1, bufp, size);

exit (0);
} showfile5_mmap.c

m Demo:
linux> strace ./showfile5 mmap names.txt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Unix 1/0 vs. Standard 1/0O vs. RIO

m Standard I/O and RIO are implemented using low-level Unix 1/0

fopen fdopen
fread fwrite
fscanf fprintf

sscanf sprintf | C application program
fgets fputs S rio readn
fflush fseek rio writen
fclose | Standard 1/O RIO --» rio readinitb
functions functions . =)
rio_readlineb
open read :
P Unix 1/O functions rio_readnb

write 1lseek |«----
stat close

(accessed via system calls)

m Which ones should you use in your programs?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Pros and Cons of Unix 1/0

m Pros
= Unix I/Ois the most general and lowest overhead form of I/0
= All other I/O packages are implemented using Unix I/O functions
= Unix I/O provides functions for accessing file metadata

= Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

m Cons
= Dealing with short counts is tricky and error prone

= Efficient reading of text lines requires some form of buffering, also tricky
and error prone

= Both of these issues are addressed by the standard 1/0 and RIO packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Pros and Cons of Standard 1/O

m Pros:
= Buffering increases efficiency by decreasing the number of read and
write system calls

= Short counts are handled automatically

m Cons:
= Provides no function for accessing file metadata
= Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers
= Standard I/O is not appropriate for input and output on network sockets

= There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Choosing 1/0 Functions

m General rule: use the highest-level 1/0 functions you can

= Many C programmers are able to do all of their work using the standard
|/0 functions

= But, be sure to understand the functions you use!

m When to use standard 1/0

= When working with disk or terminal files

m When to use raw Unix 1/0
" Inside signal handlers, because Unix I/0 is async-signal-safe
" |n rare cases when you need absolute highest performance

m When to use RIO

= When you are reading and writing network sockets
= Avoid using standard 1/O on sockets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Aside: Working with Binary Files

m Binary File
= Sequence of arbitrary bytes
" Including byte value 0x00

m Functions you should never use on binary files

= Text-oriented I/O: such as fgets, scanf, rio readlineb

= Interpret EOL characters.
= Use functions like rio_readnor rio readnb instead

= String functions

» strlen, strcpy, strcat

= |nterprets byte value O (end of string) as special

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Extra Slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Fun with File Descriptors (3)

#include "csapp.h"
int main(int argc, char *argv][])

{

int £d1l, £d4d2, £d3;

char *fname = argv|[l];

fdl = Open(fname, O CREAT|O _TRUNC|O RDWR, S IRUSR|S IWUSR) ;
Write (fdl, "pqrs", 4);

fd3 = Open(fname, O APPEND|O WRONLY, O);

Write (£d3, "jklmn", 5);

fd2 = dup(fdl); /* Allocates descriptor */

Write (£d2, "wxyz", 4);

Write (£d4d3, "ef", 2);

return 0;
} ffiles3.c

m What would be the contents of the resulting file?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Accessing Directories

m Only recommended operation on a directory: read its entries
" dirent structure contains information about a directory entry

= DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

if (! (directory = opendir (dir name)))
error ("Failed to open directory") ;

while (0 '= (de = readdir (directory))) {

printf ("Found file: %s\n", de->d name);
}

closedir (directory) ;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Example of Accessing File Metadata

linux> ./statcheck statcheck.c

int main (int argc, char **argv) type: regular, read: yes
{ linux> chmod 000 statcheck.c
struct stat stat; linux> ./statcheck statcheck.c
char *type, *readok; type: regular, read: no
linux> ./statcheck
Stat(argv[l], &stat); type: directory, read: yes
if (S_ISREG(stat.st mode)) /* Determine tile type */
type = '"regular";
else if (S_ISDIR(stat.st mode))
type = '"directory";
else
type = "other";
if ((stat.st mode & S IRUSR)) /* Check read access */
readok = "yes";
else
readok = "no";
printf ("type: %s, read: %$s\n", type, readok);
exit (0) ;
} statcheck.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

For Further Information

m The Unix bible:

= W. Richard Stevens & Stephen A. Rago, Advanced Programming in the
Unix Environment, 37 Edition, Addison Wesley, 2013

= Updated from Stevens’s 1993 classic text

m The Linux bible:

= Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010
= Encyclopedic and authoritative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

	Slide 1
	Slide 2: System-Level I/O 18-213/18-613: Introduction to Computer Systems 19th Lecture, November 7th, 2024
	Slide 3: Today
	Slide 4: Today: Unix I/O and C Standard I/O
	Slide 5: Unix I/O Overview
	Slide 6: Unix I/O Overview
	Slide 7: File Types
	Slide 8: Regular Files
	Slide 9: Directories
	Slide 10: Directory Hierarchy
	Slide 11: Pathnames
	Slide 12: Opening Files
	Slide 13: Closing Files
	Slide 14: Reading Files
	Slide 15: Writing Files
	Slide 16: Simple Unix I/O example
	Slide 17: On Short Counts
	Slide 18: Home-grown buffered I/O code
	Slide 19: Today
	Slide 20: File Metadata
	Slide 21: How the Unix Kernel Represents Open Files
	Slide 22: How the Unix Kernel Represents Open Files
	Slide 23: File Sharing
	Slide 24: How Processes Share Files: fork
	Slide 25: How Processes Share Files: fork
	Slide 26: I/O Redirection
	Slide 27: I/O Redirection Example
	Slide 28: I/O Redirection Example (cont.)
	Slide 29: Warm-Up: I/O and Redirection Example
	Slide 30: Warm-Up: I/O and Redirection Example
	Slide 31: Master Class: Process Control and I/O
	Slide 32: Master Class: Process Control and I/O
	Slide 33: Today
	Slide 34: Standard I/O Functions
	Slide 35: Standard I/O Streams
	Slide 36: Buffered I/O: Motivation
	Slide 37: Buffering in Standard I/O
	Slide 38: Standard I/O Buffering in Action
	Slide 39: Standard I/O Example
	Slide 40: Today
	Slide 41: Today: Unix I/O, C Standard I/O, and RIO
	Slide 42: Unix I/O Recap
	Slide 43: The RIO Package (15-213/CS:APP Package)
	Slide 44: Unbuffered RIO Input and Output
	Slide 45: Implementation of rio_readn
	Slide 46: Buffered RIO Input Functions
	Slide 47: Buffered RIO Input Functions (cont)
	Slide 48: Buffered I/O: Implementation
	Slide 49: Buffered I/O: Declaration
	Slide 50: Standard I/O Example
	Slide 51: Today
	Slide 52: Standard I/O Example
	Slide 53: Unix I/O vs. Standard I/O vs. RIO
	Slide 54: Pros and Cons of Unix I/O
	Slide 55: Pros and Cons of Standard I/O
	Slide 56: Choosing I/O Functions
	Slide 57: Aside: Working with Binary Files
	Slide 58: Extra Slides
	Slide 59: Fun with File Descriptors (3)
	Slide 60: Accessing Directories
	Slide 61: Example of Accessing File Metadata
	Slide 62: For Further Information

