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Virtual Memory

m Address spaces CSAPP 9.1-9.2
m VM as a tool for caching CSAPP 9.3
m VM as a tool for memory management CSAPP 9.4
m VM as a tool for memory protection CSAPP 9.5
m Address translation CSAPP 9.6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3



Carnegie Mellon

Blank Slide for Intro Sketching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4



Carnegie Mellon

A System Using Physical Addressing

Main memory
0:
1:
Physical address 2:

(PA)
CPU >

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like elevators and digital picture frames
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A System Using Virtual Addressing

Main memory

0:
CPUC%#J 1:
Virtual address Physical address :
(VA) (PA) '
CPU > MMU 7 > 4.
4100 5:
A
6:
7:
8:
M-1
Data word

m Used in all modern servers, laptops, and smart phones
m One of the great ideas in computer science
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Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3 ...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1, 2,3, .., N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,.. M-1}
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Why Virtual Memory (VM)?

m Uses main memory efficiently
= Use DRAM as a cache for parts of a virtual address space

m Simplifies memory management
= Each process gets the same uniform linear address space

m Isolates address spaces

" One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code
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Today

Address spaces
VM as a tool for caching

M
M
m VM as a tool for memory management
m VM as a tool for memory protection

M

Address translation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9



Carnegie Mellon

VM as a Tool for Caching

m Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

m The contents of the array on disk are cached in physical
memory (DRAM cache)

= These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0
VP 0 | Unallocated
0

VP 1 | Cached \ Empty PPO
Uncached PP1

Unallocated Empty

Cached
Uncached >< Empty
Cached PP 2m-p.1

o M-1
VP 2n-P-1 | Uncached N
Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM
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DRAM Cache Organization

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM
" Time to load block from disk > 1ms (> 1 million clock cycles)
= CPU can do a lot of computation during that time

m Consequences
= large page (block) size: typically 4 KB
= Linux “huge pages” are 2 MB (default) to 1 GB
= Fully associative. Why?
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms. Why?
= Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through. Why?
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Enabling Data Structure: Page Table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM
Physical memory

Physical page (DRAM)
number or
VP1 PPO

Valid disk address /
VP 2

VP4 PP3

—— VP 7
o//

=|o|lo|R|O|R |~

null e Virtual memory
o« ~ (disk)
~
PTE 7 o« "~ | 7P 1
. ~ S ~
Memory resident N Se VP 2
age table S ~a
pag RN VP 3
(DRAM) ..
N VP4
VP 6
, , , RN VP 7
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Page Hit

m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

Physical memory

Virtual address Physical page (DRAM)
number or T
Valid disk address PP O
PTEO| 0 null - .
VP4 PP3
> 1 0””-‘=
0 N
1 o/"\t/
0 null P« Virtual memory
0 ..\/ \\\ (diSk)
PrETL '/’\\‘\ TN VP 1
Memory resident \\ \\ VP 2
page table Sso ~a
(DRAM) NN vP3
S.o VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13



Page Fault

m Page fault: reference to VM word that is not in physical

memory (DRAM cache miss)

Carnegie Mellon

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address / x:: ; PPO
L ./4 VP4 PP 3
1
> 0 e
1 0’. !\\
0 null P« Virtual memory
0 ..\/ \\\ (diSk)
PTE 7 1 / S &~ - ~ < - VP 1
Memory resident ~~_ VP 2
page table ~a
(DRAM) AZE
- VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Triggering a Page Fault

m User writes to memory location

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
m That portion (page) of user’'s memory int a[1000];
is currently on disk main ()
{

m MMU triggers page fault exception

a[500] = 13;
= (More details in later lecture) }

= Raise privilege level to supervisor mode

® Causes procedure call to software page fault handler

User code Kernel code

l Exception: page fault

movl

| Execute page fault
handler

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15



Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or T
id disk add
VaI(l)d isk a IIress /: o5
nu
e VP 7
1
0 o
1 o/"\t/
0 null P« Virtual memory
0 ..\/ \\\ (diSk)
1 — s l N =T
Memory resident ~~_ VP 2
page table ~a
(DRAM) vP3
. VP4
VP 6
VP 7
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PP 3
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or T op 0
id disk add
VaI(l)d isk a IIress /: VP 2
nu
 — VP 7
! e VP4 PP 3
1
0 N
1 o/"\t/
0 null P« Virtual memory
0 ..\/ \\\ (diSk)
- / — RS ) S VP 1
Memory resident ~~_ VP 2
page table ~a
(DRAM) vP3
- VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or T
id disk add
VaI(l)d isk a IIress /: VP 2
nu
e VP 7
1 T — VP 3
1
1 o/_
0 ..
0 null Virtual memory
0 / \ (disk)
1 / I N VP 1
Memory re;lident N ol S VP2
page table VU
(DRAM) Sso s vP3
‘\\ VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Handling Page Fault

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!
Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address / x:; ; PPO
PTEO] 0 null / %
1 L VP 3 PP 3
1 —
0 ¢
0 null Virtual memory
0 / X (disk)
PTE7| 1 ./ s . VP 1
Memory re;lident s ol s VP 2
page table Sso s
(DRAM) Sso s vP3
) .. ) ) NS VP 4
Key point: Waiting until the miss to copy the page to N Y
DRAM is known as demand paging
VP 7
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Completing page fault

int a[1000];

m Page fault handler executes return from main ()
interrupt (iret) instruction {

= Like ret instruction, but also restores privilege level }

a[500] = 13;

®  Return to instruction that caused fault
= But, this time there is no page fault

80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10

User code Kernel code

Exception: page fault

mov!| % >
\l COpy page_from
Return and disk to memory

reexecute movl

v
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Allocating Pages

Carnegie Mellon

m Allocating a new page (VP 5) of virtual memory.

Valid disk address

PTEO

PTE 7

Physical page
number or

0

null

— |
— |

R lololo]k |k |-

*\
/\\‘

Memory resident ~ _
page table
(DRAM)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Physical memory

(DRAM)
VP 1 PP O
VP 2
VP 7
VP 3 PP3

Virtual memory
(disk)

VP1

VP 2

VP 3

VP 4

VP 5

VP 6

VP 7
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Allocating Pages

m Allocating a new page (VP 5) of virtual memory.

Physical memory

Physical page (DRAM)
number or T
Valid disk address PPO
PTEO| 0 null Vb2
"/,,‘=: VP 7
1 ~—— VP3 PP 3
1
1 — |
0 Y
0 . ~_ Virtual memory
0 o < (disk)
PTE7[ 1 ./\\\\\\ VP 1
Memory re;lident\\ R VP2
page table ool O
(DRAM) VNN vP3
RV VP4
ST VP 5
m Subsequent miss will bring it into memory VP 6
VP 7
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Locality to the Rescue Again!

m Virtual memory seems terribly inefficient, but it works
because of locality.

m At any point in time, programs tend to access a set of active
virtual pages called the working set

" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
= Good performance for one process (after cold misses)

m If (working set size > main memory size)

" Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

= |f multiple processes run at the same time, thrashing occurs if
their total working set size > main memory size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23
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Today

Address spaces
VM as a tool for caching

H
H
m VM as a tool for memory management
m VM as a tool for memory protection

H

Address translation
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VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" |t can view memory as a simple linear array
= Mapping function scatters addresses through physical memory
= Well-chosen mappings can improve locality

Address )
Virtual 0 lati 0 Physical
Address VP 1 translation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
) 0
Virtual > PPS
Address VP 1
Space for VP 2
Process 2:
N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25
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VM as a Tool for Memory Management

m Simplifying memory allocation
= Each virtual page can be mapped to any physical page

= A virtual page can be stored in different physical pages at different times
= Can allocate the same virtual addresses on the heap for multiple processes

Address )
Virtual 0 lati 0 Physical
Address VP 1 translation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
) 0
Virtual > PPS
Address VP 1
Space for VP 2
Process 2: oo
N-1 M-1
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VM as a Tool for Memory Management

m Sharing code and data among processes
= Map virtual pages to the same physical page (here: PP 6)

Address )
Virtual 0 lati 0 Physical
Address VP 1 translation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP 6 library code)
) 0
Virtual > PPS§
Address VP 1
Space for VP 2
Process 2: oo
N-1 M-1
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Simplifying Linking and Loading

Memory
e _I,° . invisible to
] Llnklng Kernel virtual memory user code
= Each program has similar virtual User stack
address space (created at runtime) srsp
= Code, data, and heap always start v (stack
at the same addresses. 4 pointer)
Memory-mapped region for
] Loading shared libraries
= execve allocates virtual pages
for .text and .data sections & T
creates PTEs marked as invalid < brk
_ Run-time heap
" The .text and .data sections (created by malloc)
are copied, page by page, on \
demand by the virtual memory Read/write segment :c.oaded
rom
system (.data, .bss) | the
Read-only segment executable
m Discussed later in lecture (-init, .text, .rodata) || file
on Linking and Loading Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0 28
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Today

Address spaces
VM as a tool for caching

H
H
m VM as a tool for memory management
m VM as a tool for memory protection

H

Address translation
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VM as a Tool for Memory Protection

m Extend page table entries (PTEs) with permission bits
m MMU checks these bits on each access

Physical
Processi: SUP READ WRITE EXEC Address Address Space
VP O: No Yes No Yes PP 6
VP 1: No Yes Yes Yes PP 4
VP 2: Yes Yes Yes No PP 2 it
[ J
° PP4
o
PP 6
Process j: SUP READ WRITE EXEC Address PP 8
VP 0: No Yes No Yes PP9 PP 9
VP1l:| Yes Yes Yes Yes PP 6
VP2:| No Yes Yes Yes PP 11 —> PP11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Today

Address spaces
VM as a tool for caching

M
M
m VM as a tool for memory management
m VM as a tool for memory protection

M

Address translation
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VM Address Translation

m Virtual Address Space
= Vv={0 1, .. N-1}
m Physical Address Space
= P={0, 1, .. M-1}
m Address Translation
= MAP: V—> P U {&}
= For virtual address a:
= MAP(a) = a’ if data at virtual address a is at physical address a’in P

= MAP(a) = if data at virtual address a is not in physical memory
— Either invalid or stored on disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Summary of Address Translation Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space
= M=2": Number of addresses in physical address space
= P=2P :Pagesize (bytes)
m Components of the virtual address (VA)
= VPO: Virtual page offset
= VPN: Virtual page number
m Components of the physical address (PA)

= PPO: Physical page offset (same as VPO)
= PPN: Physical page number

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



Address Translation With a Page Table

Virtual address

p p-1

Virtual page offset (VPO)

Page table n-1
base register (PTBR) Virtual page number (VPN)
(CR3 in x86)
Page table
)Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:

Page not in memory €
(page fault)

Valid bit = 1

m-1 v

p p-1 \

0

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Address Translation: Page Hit
(2

CPU Chip PTEA R
o e
—>
WU 0| cacher
PA > Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Carnegie Mellon

Address Translation: Page Fault

Exception
j———————— === > Page fault handler
| 4
I
I
| (2 Jvt
CPU Chlp o I PTEA > Victim page >
CPU VA 5 Mmu  e—PT Cache/ _
Disk
o e Memory

New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim to page out (if dirty, writes pages to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36
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Integrating VM and Cache

PTE
H \ 4
CPU Chip pe— PTE
hit
PTEA prea|  PTEA
> miss
CPU VA | MmuU Memory
A PA PAl PA
miss|
PA . Data
hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37
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Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word
"= PTEs may be evicted by other data references
® PTE hit still requires a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)
= Small set-associative hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38
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Summary of Address Translation Symbols

m Basic Parameters
= N =2": Number of addresses in virtual address space
= M=2": Number of addresses in physical address space
= P=2P :Pagesize (bytes)
m Components of the virtual address (VA)
" TLBI: TLB index
" TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number
m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
= PPN: Physical page number

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39
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Accessing the TLB

m MMU uses the VPN portion of the virtual address to
access the TLB:

T =2'sets
VPN
TLBT matchestag  — — —
of line withinset N1 p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) VPO

Set O v tdg PTE v tag PTE
! TLBI selects the set
Set1l v tag_l PTE v tag_l PTE <€
[ ]
]
[ ]
SetT-1 v tag PTE v tag PTE

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40
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TLB Hit

CPU Chip
TLB
Q PTE
VPN e
VA PA
> >
CPU MMU ° Cache/
Memory
Data

A TLB hit eliminates a cache/memory access

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41
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TLB Miss

CPU Chip

TLB 0

a PTE
VPN

VA PTEA
> >
CPU MMU Cache/
3 s| Memory

Data

A TLB miss incurs an additional cache/memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42
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Multi-Level Page Tables

m Suppose: Level 2
= AKB (21?) page size, 48-bit address space, 8-byte PTE Tables

m Problem:

Level 1
"= Would need a 512 GB page table! Table
. 248 % 2-12 % 23 = 239 yytes -l —

m Common solution: Multi-level page table

m Example: 2-level page table

= |level 1 table: each PTE points to a page table (always
memory resident)

= Level 2 table: each PTE points to a page
(paged in and out like any other data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual Here, addresses
page table page tables memory increase from
0
"y N top to bottom
ro |— PO
VP 1023 > 2K allocated VM pages
PTE 1 VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null)
vP2047 |
PTE 4 (null) PTE 0 N
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
(1K - 9) PTEs )
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
VP 9215 1 allocated VM page
for the stack

64 bit addresses, 8KB pages, 8-byte PTEs

[ ]
[ ]
[ ]
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44
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Translating with a k-level Page Table

Page table
base register
(PTBR)
VIRTUAL ADDRESS
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
—
the Level 1 a Level 2 a Level k
page table page table page table
> > > oo >
] » PPN |}—
m-1 ! p-1} 0
PPN PPO
PHYSICAL ADDRESS

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45
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Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

m Implemented via combination of hardware & software
= MMU, TLB, exception handling mechanisms part of hardware
= Page fault handlers, TLB management performed in software

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46
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