Carnegie Mellon

o ——

IS=213"
el saies i,

<« AN g i taniai

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Cache Memories

18-213/18-613: Introduction to Computer Systems
10th Lecture, September 25th, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Re m i N d e r . A I V PO I i Cy http:/lwww.cs.cmu.edu/~18213/academicintegrity.html

m No unauthorized use of information
= Borrowing code: by copying, retyping, looking at a file
= Describing: verbal description of code from one person to another
= Searching the Web for solutions
= Copying code from a previous course or online solution
= Reusing your code from a previous semester (here or elsewhere)

m No unauthorized supplying of information
® Providing copy: Giving a copy of a file to someone
" Providing access:
= Putting material in unprotected directory
= Putting material in unprotected code repository (e.g., Github)

m No collaborations beyond high-level, strategic advice
= Anything more than block diagram or a few words

Start early. Make frequent github commits. Plan for stumbling blocks. Use available help.
Don’t panic: Far better to turn in 25% correct solution than get an AlV.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html

Carnegie Mellon

Today

m Cache memory organization and operation CSAPP 6.4-6.5
m Performance impact of caches

®= The memory mountain CSAPP 6.6.1

= Rearranging loops to improve spatial locality CSAPP 6.6.2

= Using blocking to improve temporal locality CSAPP 6.6.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Recall: General Cache Concepts

Smaller, faster, more expensive
Cache 4 9 14 3 memory caches a subset of
the blocks

Data is copied in block-sized

4 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0 0000000000000 0O0O0CO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 7 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0COCOGEOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Working Set, Locality, and Caches

m Working Set: The set of data a program is currently “working on”
= Definition of “currently” depends on context, e.g., in this loop
" |ncludes accesses to data and instructions

m Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently
"= Nearby addresses: Spatial Locality
® Equal addresses: Temporal locality

m Caches take advantage of temporal locality by storing recently
used data, and spatial locality by copying data in block-sized
transfer units

" |ocality reduces working set sizes
= Caches are most effective when the working set fits in the cache

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recall: 3 Types of Cache Misses

m Cold (compulsory) miss

" Cold misses occur because the cache starts empty and this is the first
reference to the block.

m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

® QOccurs when the cache is large enough, but too many data objects all
map (by the placement policy) to the same limited set of blocks

= E.g., if the placement policy maps both 0 and 8 to the same block,
then referencing 0, 8, 0, 8, 0, 8, ... would miss every time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

CPU Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip
Register file
Cache <—> /l /| ALU
memory

l E System bus Memory bus
Bus interface < > I./O <:> ain
bridge memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

What it Really Looks Like

CPU chip

Memory Controller

Register file
Cache <—> |:> ALU
memory (]

|2 ;Shérled L3 Caché: 3 :i: : Bus interface

Core i7- 3960X :

Queue, Uncore &
& I/0

ol WS

HyperTransport™ Ph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edltlon 11

Carnegie Mellon

it it Really Loo Like (Cont)

Wh

o .
(@)
=
)
[~
(=]
=
=t
&
=)
(@)
()
-
=g
=
g..

Mémory,
Control

rSystem Agent

GNA3.0.

SIMﬁ 1%

v

Wi -

Golden Cove :

i-CPU Core

. ;: - (P

"Golden Cove
CPU Core

T iy

e !

-LI- x-:r

FPU/,
SIMD

e T

o hL!L s
"Golden Cove' -

=.CPU.Core
552 e

Eracemont
SEICPU CoreMis="

P

o

| =L2$/MLC

is 8 ees .

1/25MiB

- 1‘25M|B 3
-L2$/MLC~. =

1.25MiB;;
\L2$/MLC

PR e TR

-L2$/MLC o

{(jra'c'emo'nt A

:gfcpulicorer) &

- v ey

“ 3MiB .

. 3MiB’
L3$/LLC

3M|B
L3$/LLC o]

> —

-

3MiB
-L3$/LLC

3MiB
L3$/LLC

L3$/LLC _
S

: 2X e
Ring;Agent

2Xx

; RingAéent _

-

'2x

Ring.Agent
o e ——— A

e 2Xx

Ring{Agent

p3%
Rlng Agent

3MiB

3MiB

3MiB

3MiB

3M|B "

_;LJ.'

46 N
‘\

GPU Front/‘Backend'

.GPU L3$; -

i Otherilogices

'L3$/'LLc L3$/LLC

“1 25M|B - = “1 25MIB ~|.
L2$/MLC L2$/MLC

L3$/LLC L3$/ LLC
*‘1 25M|B = ‘*1 25M|B =
L2$/MLC L2$/MLC

L3$/LLC

. I8X'TMUS,
JL17Texs;

'Gracemont K Gracemont]
"cpu Core

'_-,;_/

= Golden Cove! Golden Cove. “~Golden/Cove! Golden Cove~
: CPU_C:)re_ CPU Cgre.. CPU Core . CPU Coreo._
b e - are o 173 e
PT % 0 z Bt 17 . 3
FPU/ Il FPUY/ : FPU/
‘SIMD Th P -"*SIMD‘ ISIMD

ET %1 3 2 < r = _‘g g 1
10nm ESF/Intel 7 Alder Lake dle shot (~209mm2) from Intel via Andreas Schilling on Twitter:
https:/ /twitter.com/aschilling/status/1453391035577495553

e T s

;;EPU/ N - :
-} 1SIMD; f2M|BL2$/MLC - it

.r‘-dd‘

e

AR ol
Y -

v (128- C(;res) "

Die shot interpretation by Locuza, October 2021

L1 caches per P-core: 32KB Instruction & 48KB Data
L1 caches per E-core: 64KB Instruction & 32KB Data

Intel Alder Lake (2021)

8 P-cores + 8 E-cores
L3 cache: 30MB shared among all cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd Y
4 «—
TR e N
eooe
S=ZSSEtS< TR

\.
Cache size
=S x E x B data bytes
v tag 01112 cccce- B-1
T — —
- v
valid bit B = 2* bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

caChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
e A ~ * Locate data starting
4 at offset
o000

Address of word:

t bits s bits | b bits
~ 9s ~—~—" "

S = 25 sets < eoooe tag set block

index offset

data begins at this offset

Vv tag 0 1 z B-1

N— 7

valid bit B = 2b bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

4 n Tilalalal=lclo Address of int:
i a8 tbits | 0..01 | 100

\'} ta 0111213415167 -
g find set

S$=25 sets<

v tag 0][1]12]3|4]|5]|6]7

'} tag 0]1|2]|3|4]|5]|6]|7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 01112]|314|5]|6]7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0|1]2|3]14|5]6]7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Direct-Mapped Cache Simulation

t=1 s=2 b=l 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss (cold)
1 [0001,], hit
7 [0111,], miss (cold)
8 [1000,], miss (cold)
0 [0000,] miss (conflict)
v Tag Block

Set0 | 1 0 M[0-1]

Setl1| O

Set2 | O

Set3 | 1 0 M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

2 lines per set t bits 0..01 | 100
_A
' N\
(
vl [tag | [o[2[2[3Talse[7]|l [[v] [tag | [o]2[2]3]a[5][6]7
vl [tag | [o[2][2[3Talsle[7 1 I[v] [tag | [o[2][2]3]a[5[6[7]] — find set
< vl [tag | [o[1[2]3Tals]6[7]| [[v] [tag | [o[z[2]3]a[5[6]7
O 0000000000 0000000000000 00000 OCOOCO®O®O®EOOLOLOEOEOOOOOIOO
vl [tag | [o[1[2]3Tals]6[7]| [[v] [tag | [o[z[2]3]a[5[6]7
\.
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1|2]|3]14]|5|6]|7 v tag 0|1|2|314]|5|6]|7]|| —

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1|2|3)4]5]|6]|7 v tag 0|1|2|314]|5|6]|7]|| —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

seto L1 00 | M[O-1]
1 10 | M[8-9]
Set 1 (1) 01 | M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

What about writes?

m Multiple copies of data exist: LVT ‘; tag | 10]1f2] " 5
= |1, L2, L3, Main Memory, Disk L ~ ~ —
y valid bit dirty bit B = 2 bytes

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
" Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/Standard Method: \
Middle bits indexing
4 Address of int:
v | tee | [0f1]2]3]4]5]6]7 tbits | 0..01 | 100
v tag 0][1]12])3|4]|5]|6]7 -
find set /
S=2s sets<
V tag 0j1]2]3]45]e}7 /Alternative Method: \
High bits indexing
OO0 0000000000 00OCOCEOGOEOOSOOVNO
Address of int:
'} tag 011]12]13|4)5]|6]7 1...11 t bits 100
\ .
find set

N\ /

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

lllustration of Indexing 0000xx
Approaches Don
0010xx

m 64-byte memory 001 Lxcx
" 6-bit addresses 0100xx

m 16 byte, direct-mapped cache 010 Lscx
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Middle Bits Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
= BB Offset bits

m Makes good use of spatial locality

SetO

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

26

Carnegie Mellon

High Bits Indexing

m Addresses of form SSTTBB

= SS Set index bits
= TT Tag bits
= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

SetO

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

27

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
oo Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Example: Core i7 L1 Data Cache

N
>
& 0
L. E = 2¢ lines per set \2\0.‘. 000\6\(\@
32 KB 8-way set associative e A S 0 [0 [0000
64 bytes/block | | eee e ; ; 88%
47 bit address range | | Jeeee [1] 2 2 8%(1)
s=2sets{ | || Jeeee [] 5 | 5 | 0101
B= 6 | 6 | 0110
_ s_ [E NN NN NN NN NN NNENN NN N NNNNNNNN] !7 !7 0111
= eoo o 8 | 8 1000
= ,e=s B | J I 9 |9 1001
A |10 1010
C= Cache size: B |11 1011
" — T C =S x E x B data bytes C [12 | 1100
[v] [tee] [os]2]] o] > TI3 1101
I_Jb_t ~— E |14 | 1110
valiebr F [15] 1111
Address of word:
| thits | sbits | b bits |
—
tag set block
. . 27
index offset Stack Address: BIocEk offset: 0x?"
0x00007£f7262ale010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Example: Core i7 L1 Data Cache

N
RN
E = 2° lines per set \2\0.‘. 000\6\6@
32 kB 8-way set associative e S 0 70 10000
64 bytes/block | | CEERY I ; é 88%
47 bit address range | I |+« - B 2 2 8%(13
_ S=2setsq | | Jeeee [1] 5 |5 | 0101
B=64 6 | 6 | 0110
S=64’S=6 CC G B B B B B B B BN B B B BN B O B B N N N) L NN v7 7 0111
8 | 8 | 1000
E=8,e=3 9) (g — 9 [9 [1001
A [10] 1010
C - 64 X 64 X 8 = 32,768 Cache size: B 11 1011
m [Twe | [o]1]2] —]81] C =S x E x B data bytes g 1% iigg
valicll bit H_/ E 14 | 1110
F [15] 1111
Address of word:
| thits | sbits | b bits |
—
tag set block
index offset Stack Address: Block offset: 0x??
0x00007£7262ale010 Set index: 0x??
Block offset: 6 bits Tag: 0x??

Set index: 6 bits
Tag: 35 bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Example: Core i7 L1 Data Cache

N
&
E = 2¢ lines per set Q\d‘. 000\6\(\@
32 kB 8-way set associative e S 0 T0 10000
64 bytes/block | | CEERY I ; ; 88%
47 bit address range | I |+« - B 2 2 8%(13
_ S=2tses | Jeeee [1] 5 [5 [o101
B =64 6 | 6 | 0110
S=64,5s=6 cecscscscescscacacsanas 7T o111
8 | 8 | 1000
E=8,e=3 9) (g — 9 [9 [1001
C=64x64x8=32,768 S R ELERT I
m [Tae | [o]1]z]—]51] C =S x E x B data bytes C |12 | 1100
| D [13[1101
valid bit H_/ E 14 | 1110
F |15 1111
Address of word:
| thits | sbits | b bits |
S e
£ i:de:x :1!?52; Stack Address: Block offset: 0x10
0x00007£7262ale010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory accesses not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (as %):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a cached block to the processor
= includes time to determine whether line is in cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

How Bad Can a Few Cache Misses Be?

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 10 — Cache Memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Today

m Performance impact of caches

= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array '"data" with stride of "stride", Call test () with many
* using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO = 0, acel = 0, ace2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */
for (1 = 0; i < limit; i += sx4) {

1. Call test() onceto

el = feal 4 debafiad - warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read

: throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + datal[i];

}

return ((accO0 + accl) + (acc2 + acc3));

} mountain/mountain.c

38

The Memory Mountain

Aggressive

prefetching
16000

Read throughput (MB/s)

Slopes
of spatial
locality

128k

512k
2m

+*
s9

Stride (x8 bytes) 39m Size (bytes)
s11

128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Core i7 Haswell
2.1 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
54 B block size

Ridges
of temporal
locality

39

Carnegie Mellon

Closer Look at Stride Effects

Throughput for size = 128K M
35000 /,\\\\\\\\\
30000 &

wiss rate = stride/8
\ Miss rate = 1.0
k

N

25000

8 20000

=(=|\]easured

MB/s

15000

10000

5000 8 elems per
cache block

sl s2 s3 s4 s5 s6 s/ s8 s9 s10 s11 s12
stride

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Matrix Multiplication Example

Variable sum

= Description: /* i3k */ held in register
= Multiply N x N matrices for (i=0; i<n; i++) ¢
= Matrix elements are for (j=0; Jj<n; Jj++) {

doubles (8 bytes) sum = 0.0; <
for (k=0; k<n; k++)

sum += a[i][k] * b[k][Jj];
c[i] []J] = sum;

= O(N3) total operations

= N reads per source
element

= N values summed per
destination

matmult/mm.c

= but may be able to
hold in register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1i++)
sum += a[0] [i];
" accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[i][0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *
sum = 0.0; L;;;J - (&D
for (k=0; k<n; k++) (%)
A B

C

Inner loop:

sum += a[i][k] * b[k][7j];

c[i] [§] = sum; ‘ ‘ ‘
}

} matmult/mm. c

Row-wise Column- Fixed
wise

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * i
sum = 0.0; L;;;} (&n
HEE
for (k=0; k<n; k++) (i,%)
A B

sum += a[i] [k] * b[k][]]’ C

c[i][§] = sum \ ‘ ‘
}

Inner loop:

matmult/mm.c Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B C
0.25 1.0 0.0
Same analysis as ijk Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i.k) E(k'*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][3J] += r * Db[k][]]’ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B C
0.0 0.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*,j)
for (k=0; k<n; k++) { (k,j)

r = b[k][j]; ” n [

for (i=0; i<n; i++) A B C

c[i][j] += alil[k] * r; ‘ ‘
M=t e Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (jJ=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i] [k] * b[k][]j];

c[i][J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)

c[i][]j] += r * b[k][]];

}
}

for (3=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][]3]’
for (i=0; i<n; i++)

c[i]l[]] += al[il[k] * r;

ijk (& jik):
e 2 loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
* avg misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
* avg misses/iter = 2.0

49

Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration
100

jki /kji (2.0)

ki
~-kji
——ijk
—7jik

ijk/jik (1.25)

10

_——r———
kij/ikj (0.5)
1 I I I I I I I I I I I I 1

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration: r ~N
" n/8+n=9n/8 misses

I
X

= Afterwards in cache:
(schematic) . S

Il
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _
- X
8 wide

m Total misses:
= 9n/8 n*=(9/8) n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=L)

for (J = 0; j < n; j+=L)
for (k = 0; k < n; k+=L)
/* L x L mini matrix multiplications */
for (il = i; il < i+L; il++)
for (31 = j; jl1 < Jj+L; Jjl++)
for (k1 = k; k1l < k+L; kl++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm. c

jl
C a b C
= X +
] il

Block size L x L 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Carnegie Mellon

Cache Miss Analysis

m Assume:
® Cacheline = 8 doubles. Blocking size L> 8
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L2< C

m First (block) iteration: ~ Z/kL bk::ks
= Misses per block: L2/8 L] HEEEEER B
= Blocks per Iteration: 2n/L — X =
(omitting matrix c)]
= Misses per lteration: T

2/Q —
2n/Lx L?/8 =nL/4 Block size L x L

= Afterwards in cache
(schematic)

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Cache Miss Analysis

m Assume:
® Cacheline = 8 doubles. Blocking size L> 8

= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L2< C

. . n/L blocks
m Second (block) iteration: A

r N\
" Same misses as L] BEREE

first iteration
= 2n/Lx L2%/8 =nlL/4

Block size L x L
m Total misses:

" nlL/4 misses per iteration x (n/L)? iterations = n3/(4L) misses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Blocking Summary

m No blocking: (9/8) n3® misses
m Blocking: (1/(4L)) n® misses

m Use largest block size L, such that L satisfies 3L2< C

" Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

The Memory Mountain

Carnegie Mellon

Core i5 Haswell
3.1 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Ridges

Aggressive
prefetching
32000
28000 — | 4 ‘
B[24000 A N
<
£ 20000 k
Q
L
2 16000 -
2 -
£ 12000
§ _
S 8000
4000 %
Slopes /
of spatial 128k Sk
locality s5 ~ 512k
_ s7 2m
Stride (x8 bytes) s9 Size (bytes)

$1126m

of temporal
/ locality
y -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

61

Cache Capacity Effects from Core i7 Haswell

3.1 GHz

Memory Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size
25000 ||
Q
m ||
2 20000
H Main
S 15000 13 L2 L1
S = LZ]
o Memory Slice through
e
= memor
® 10000 y .
8 mountain with
stride=8
5000
0 a
S T o T
< q‘,bé\ @v*(\ qu’& \@0 & W& oS \qu (0,{1, qﬁgo RO A RN,

Working set size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Modeling Block Size Effects Core i7 Haswell

2.26 GHz
from Memory Mountain 32KB L1 d-cache
8 MB L3 cache
Throughput for size = 128K 64 B block size

35000

6
30000 /\\ Throughput 10
25000 / 8.0s+24.3

9 20000
g =¢=Measured
= 15000 ==Model
10000
5000
0

s1 s2 s3 s4& s5 s6 s7 s8 s9 s10 s11 s12 Strides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

2008 Memory Mountain
No
20000 prefetching —
\
18000 ’—
= 16000 - -
E
S 14000
2 12000 /
-
(o2}
3 10000 —
S ’
©
& 6000 '
4000
2000
° 32k
ST 128k
<5 512k
s7 2m
Stride (x8 bytes) o 39m Size (bytes)
128m

Carnegie Mellon

Core 2 Duo

2.4 GHz

32 KB L1 d-cache
6MB L2 cache
64 B block size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

64

Carnegie Mellon

Matrix Multiplication (ikj)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) E(k’*)g
r = a[i] [k]; O (i,*)
B C

for (j=0; j<n; j++) A
c[i][]J] += r * b[k][]]; ‘ ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *
r = b[k][j]; (k,j)
for (i=0; i<n; i++) -

c[il[§]1 += al[i][k] * r; A B C

Inner loop:

matmult/mm.c ‘ ‘ ‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Recap: Stack and instruction pointers

Shared
m The stack pointer (%rsp) QLS
points to the top of the stack Stack — rsp
m The instruction pointer (%rip)
points to the next instruction
to be executed
m They are independent
= But linked by call and ret
instructions
Heap
Data
Text +«— rip

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Recap: stack operations

m push %rax =

more stuff

\ 4 rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

a4
AL

rax

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

a4
AL

m call func=

rax

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

a4
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
_AL

rip

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

a4
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
_AL

m ret=
rip

~ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

a4
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

. jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

a4
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

. jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Recap: stack operations

m push %rax = i)
= sub %rsp, 8 more stuff
" mov %rax, (%rsp)
m call func=) < P

= sub %rsp, 8
" mov %rip, (%rsp)
= jmp func

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =
" mov (%rsp), %rax
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

	Slide 1
	Slide 2: Cache Memories 18-213/18-613: Introduction to Computer Systems 10th Lecture, September 25th, 2025
	Slide 3: Reminder: AIV Policy
	Slide 4: Today
	Slide 5: Recall: General Cache Concepts
	Slide 6: General Cache Concepts: Hit
	Slide 7: General Cache Concepts: Miss
	Slide 8: Working Set, Locality, and Caches
	Slide 9: Recall: 3 Types of Cache Misses
	Slide 10: CPU Cache Memories
	Slide 11: What it Really Looks Like
	Slide 12: What it Really Looks Like (Cont.)
	Slide 13: General Cache Organization (S, E, B)
	Slide 14: Cache Read
	Slide 15: Example: Direct Mapped Cache (E = 1)
	Slide 16: Example: Direct Mapped Cache (E = 1)
	Slide 17: Example: Direct Mapped Cache (E = 1)
	Slide 18: Direct-Mapped Cache Simulation
	Slide 19: E-way Set Associative Cache (Here: E = 2)
	Slide 20: E-way Set Associative Cache (Here: E = 2)
	Slide 21: E-way Set Associative Cache (Here: E = 2)
	Slide 22: 2-Way Set Associative Cache Simulation
	Slide 23: What about writes?
	Slide 24: Why Index Using Middle Bits?
	Slide 25: Illustration of Indexing Approaches
	Slide 26: Middle Bits Indexing
	Slide 27: High Bits Indexing
	Slide 28: Intel Core i7 Cache Hierarchy
	Slide 29: Example: Core i7 L1 Data Cache
	Slide 30: Example: Core i7 L1 Data Cache
	Slide 31: Example: Core i7 L1 Data Cache
	Slide 32: Cache Performance Metrics
	Slide 33: How Bad Can a Few Cache Misses Be?
	Slide 34: Writing Cache Friendly Code
	Slide 35: Quiz Time!
	Slide 36: Today
	Slide 37: The Memory Mountain
	Slide 38: Memory Mountain Test Function
	Slide 39: The Memory Mountain
	Slide 40: Closer Look at Stride Effects
	Slide 41: Today
	Slide 42: Matrix Multiplication Example
	Slide 43: Miss Rate Analysis for Matrix Multiply
	Slide 44: Layout of C Arrays in Memory (review)
	Slide 45: Matrix Multiplication (ijk)
	Slide 46: Matrix Multiplication (jik)
	Slide 47: Matrix Multiplication (kij)
	Slide 48: Matrix Multiplication (jki)
	Slide 49: Summary of Matrix Multiplication
	Slide 50: Core i7 Matrix Multiply Performance
	Slide 51: Today
	Slide 52: Example: Matrix Multiplication
	Slide 53: Cache Miss Analysis
	Slide 54: Cache Miss Analysis
	Slide 55: Blocked Matrix Multiplication
	Slide 56: Cache Miss Analysis
	Slide 57: Cache Miss Analysis
	Slide 58: Blocking Summary
	Slide 59: Cache Summary
	Slide 60: Supplemental slides
	Slide 61: The Memory Mountain
	Slide 62: Cache Capacity Effects from Memory Mountain
	Slide 63: Modeling Block Size Effects from Memory Mountain
	Slide 64: 2008 Memory Mountain
	Slide 65: Matrix Multiplication (ikj)
	Slide 66: Matrix Multiplication (kji)
	Slide 67: Recap: Stack and instruction pointers
	Slide 68: Recap: stack operations
	Slide 69: Recap: stack operations
	Slide 70: Recap: stack operations
	Slide 71: Recap: stack operations
	Slide 72: Recap: stack operations
	Slide 73: Recap: stack operations
	Slide 74: Recap: stack operations
	Slide 75: Recap: stack operations

