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The Memory Hierarchy
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Today

m The memory abstraction CSAPP 6.1.1

m RAM : main memory building block CSAPP 6.1.1

m Storage technologies and trends CSAPP 6.1.2-6.1.4
m The memory hierarchy CSAPP 6.3

m Working sets CSAPP 6.2

m Locality of reference CSAPP 6.2

|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3



Today’s Goal

Carnegie Mellon

m Make the system perform almost as if all of the memory
is the fastest type of memory, while the average cost per
byte is as if all of the memory is the cheapest kind of

memory. Example Memory

. Hierarchy

Smaller,
faster, L1:
and

LO:
Regs

L1 cache
(SRAM)

Carnegie Mellon

CPU registers hold words retrieved
from the L1 cache.

L1 cache holds cache lines retrieved

costlier from the L2 cache.
(per byte) LZ/ L(ZS;aAcl\};lc)e \
storage L2 cache holds cache lines

retrieved from L3 cache.

L3 cache holds cache lines

retrieved from main memory.

Main memory holds disk blocks

devices

L3: L3 cache

(SRAM)

Larger,
slower, L4: Main memory
and (DRAM)
cheaper
(per byte)
storage 5. Local secondary storage
devices (local disks)

retrieved from local disks.

Local disks hold files
retrieved from disks

Remote secondary storage
(e.g., Web servers)

L6:

Bryant a
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Writing & Reading Memory

m Write

" Transfer data from CPU to memory
movqg %rax, 8 (%rsp)

= “Store” operation

m Read

" Transfer data from memory to CPU
movq 8 (%rsp), S%Srax

= “Load” operation

From 4th lecture
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Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address,
data, and control signals.

m Buses are typically shared by multiple devices.

CPU chip

Register file

—\
A ALU
l System bus Memory bus

. 1/0 Main
Bus interface .
bridge memory
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Memory Read Transaction (1)

m CPU places address A on the memory bus.

CPU chip

| Register file

Load operation: movg A, $%$rax

$rax

: : ALU |
Main memory
j E 1/0 bridge 0

[P — A N

Bus interface |\17_M l\l—l/ X A
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Memory Read Transaction (2)

m Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

Register file : Load operation: movqg A, %$rax

. ALU
$rax
<14:| Main
ﬁ memory
1/0 bridge X 0

| /I—,\ | | /I—,\
Bus interface |\ /| |\ / X A
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Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register

srax.
Register file Load operation: movq A, %rax
. : ALU
srax

——
i i Main memory
I/O bridge 0
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Memory Write Transaction (1)

m CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

Register file

o : ALU
$rax v <1,:|

Main memory

j E 1/0 bridge 0
4 N A A N

Bus interface |\ /| |\ / A

Store operation: movg %$rax, A
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Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file

a ALU

y
i i Main memory
1/0 bridge 0

| L N YN

Bus interface |\ /| |\ / A

Store operation: movq %$rax, A

$rax
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Memory Write Transaction (3)

m Main memory reads data word y from the bus and stores
it at address A.

Register file

$rax

J1r

-

: ALU

Bus interface

Store operation: movqg %rax, A

Main memory
I/O bridge 0

>

="
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Today

RAM : main memory building block CSAPP 6.1.1
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Random-Access Memory (RAM)

m Key features
= RAM is traditionally packaged as a chip.
= or embedded as part of processor chip
= Basic storage unit is normally a cell (one bit per cell).
= Multiple RAM chips form a memory.

m RAM comes in two varieties:

= SRAM (Static RAM)
= DRAM (Dynamic RAM)
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RAM Technologies
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m 6 transistors / bit

m 1 Transistor + 1 m Holds state indefinitely
capacitor / bit (but will still lose data
= Capacitor oriented on power loss)
vertically

m Must refresh state
periodically
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SRAM vs DRAM Summary

Trans. Access Needs Needs
per bit time refresh? EDC? Cost Applications

SRAM 6o0r8 1x No Maybe 100x  Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
frame buffers

EDC: Error detection and correction

m Trends
= SRAM scales with semiconductor technology
= Reaching its limits
= DRAM scaling limited by need for minimum capacitance
= Aspect ratio limits how deep can make capacitor
= Also reaching its limits
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Enhanced DRAMs

m Operation of DRAM cell has not changed since its invention
= Commercialized by Intel in 1970.

m DRAM cores with better interface logic and faster 1/0 :
= Synchronous DRAM (SDRAM)
= Uses a conventional clock signal instead of asynchronous control

" Double data-rate synchronous DRAM (DDR SDRAM)
= Double edge clocking sends two bits per cycle per pin
= Different types distinguished by size of small prefetch buffer:
— DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)
= By 2010, standard for most server and desktop systems
= Intel Core i7 supports DDR3 and DDR4 SDRAM
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Conventional DRAM Organization

m dxwDRAM:

= d-w total bits organized as d supercells of size w bits

16 x 8 DRAM chip (toy example)

________________________________________

cols

! 0 1 2 3

2 bits 0

addr ! :

| 1 |

rows :

< 2 Memory ) - " supercell
controller ! ! (2,1)
(to/from CPU) ! : ’

8 bits 3

- >, :

data E |

Internal row buffer

_______________________________________

1
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Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

16x8DRAMchip

Cols

RAS = 2 0 1 2 3

2 ! :

— 0 :

addr | |

i 1 |

Memory iRows
controller : 2 — — — — :
8 i 3 |

< T H — e— ——— — — :

data | \VARVARVARVAEE

_____________________________________
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Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

Step 3: All data written back to row to provide refresh
16x8DRAMchip .
Cols
cas = 1 ! 0 1 2 3 i
addr | i
To CPU ! 1 |
 Rows :
Memory : |
controller 2
supercell
21) —— i
data ! i
SUP; tlc)ell Internal row buffer
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Memory Modules

addr (row = i, col = j)

O : supercell (i,j)

| l DRAM 0
| I m 64 VIB
[ I ml ¥ memory module
| 0 . e
DRAM 7 N | | consisting of
ol U —t eight 8Mx8 DRAMs
n -

bits  bits bits bits bits bits bits bits
56-63 48-55 40-47  32-39 24-31 16-23 8-15 | 0-7

63 56 55 4847 40 39 32 31 2423 16 15 8 7 0

Memory
controller

64-bit word main memory address A

64-bit word
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Today

|

m RAM : main memory building block CSAPP 6.1.1

m Storage technologies and trends CSAPP 6.1.2-6.1.4
m The memory hierarchy CSAPP 6.3

m Working sets CSAPP 6.2

m Locality of reference CSAPP 6.2

|
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Storage Technologies

n Magnetic Disks m Nonvolatile (Flash)

h ipwor rks J
up image of V-NAND flash array

m Store as persistent
charge

m Store on magnetic

medium
m Implemented with 3-D

structure

= 100+ levels of cells

m Electromechanical
access

= 3 bits data per cell
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What’s Inside A Disk Drive?

Arm Platters

Actuator

Electronics
(including a
processor

SCsl and memory!)

connector

Image courtesy of Seagate Technology
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Disk Geometry

m Disks consist of platters, each with two surfaces.
m Each surface consists of concentric rings called tracks.
m Each track consists of sectors separated by gaps.

Tracks
Surface

Track k Gaps

>\ /
N _/
]

Sectors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Disk Capacity

m Capacity: maximum number of bits that can be stored.

= Vendors express capacity in units of gigabytes (GB) or terabytes (TB),
where 1 GB = 10° Bytes and 1 TB = 102 Bytes

m Capacity is determined by these technology factors:
= Recording density (bits/in): number of bits that can be squeezed into
a 1 inch segment of a track.
= Track density (tracks/in): number of tracks that can be squeezed into
a 1 inch radial segment.

= Areal density (bits/in?): product of
recording and track density.

Tracks
O
8
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Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

The read/write head

is attached to the end

of the arm and flies over
the disk surface on

a thin cushion of air.

By moving radially, the arm can
position the read/write head
over any track.
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Disk Operation (Multi-Platter View)

Read/write heads
move in unison
from cylinder to
cylinder

Arm

:
T

Spindle
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Disk Access — Service Time Components

W&%@&%ﬂ

After BLUE read Seek for RED Rotational latency After RED read

]

Data transfer Seek Rotational Data transfer
latency
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Disk Access Time

[ Average time to access some target sector approximated by:
=T = Tavgseek+ T +T

access
m Seek time (T
= Time to position heads over cylinder containing target sector.
" Typical T, eex iS3—9 ms
m Rotational latency (T, rotation)
" Time waiting for first bit of target sector to pass under r/w head.

- Tavg rotation — 1/2 X 1/RPMS x 60 SEC/]_ min
= Typical rotational rate = 7,200 RPMs

m Transfer time (T, ;ranster)

= Time to read the bits in the target sector.

" T,vgtransfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min
/ t

time for one rotation (in minutes) fraction of a rotation to be read

avg rotation avg transfer

avg seek)
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Disk Access Time Example

m Given:
= Rotational rate = 7,200 RPM
= Average seek time =9 ms
= Avg # sectors/track = 400

m Derived:

" Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
" T, transter = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms
=T =9ms+4 ms+0.02ms

access

m Important points:

= Access time dominated by seek time and rotational latency.

= First bit in a sector is the most expensive, the rest are free.

= SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower than DRAM.
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/O Bus

CPU chip

Register file

: ALU

%System bus Memory bus

T —
bridge memory

l ‘ \ ‘ /0 bus \ ‘ Expansion slots for
other devices such

Bus interface

UsB Graphics Disk as network adapters.
controller adapter controller

Mouse Keyboard Monitor i
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Reading a Disk Sector (1)

CPU chip

Register file

1r

: ALU

Bus interface

Carnegie Mellon

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

K—=

T o

Main
memory

>

<

USB
controller

T

mouse keyboard

U

Graphics
adapter

'

Monitor

<

Disk
controller

\4
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Reading a Disk Sector (2)

CPUCHID. ..

| Register file Disk controller reads the sector and
C> ALU performs a direct memory access
C: (DMA) transfer into main memory.

. S % N| Main
Bus interface |\l—l/
memory

[ = L

USB Graphics Di k
controller adapter contioller

o l

Mouse Keyboard Monitor
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition m 34
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Reading a Disk Sector (3)

CPU chip

Register file

1r

: ALU

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a

special “interrupt” pin on the CPU).

Main
memory

T o

>

1

<

USB Graphics
controller adapter

Mouse Keyboard

Monitor

<

Disk
controller

A

A 4
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Nonvolatile Memories

m DRAM and SRAM are volatile memories
" Lose information if powered off.

m Nonvolatile memories retain value even if powered off
= Read-only memory (ROM): programmed during production
= Electrically eraseable PROM (EEPROM): electronic erase capability
= Flash memory: EEPROMSs, with partial (block- IeveI) erase capability
= Wears out after about 100,000 erasings EIUAN
= 3D XPoint (Intel Optane) & emerging NVMs
= New materials

m Uses for Nonvolatile Memories

® Firmware programs stored in a ROM (BIOS, controllers for disks,
network cards, graphics accelerators, security subsystems,...)

= Solid state disks (replacing rotating disks)
= Disk caches
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Carnegie Mellon

Solid State Disks (SSDs)

1/O bus
Requests to read and
ite logical disk block
Solid State Disk (SSD) N\ L
Flash — DRAM
translation layer Buffer
Flash memory 1

Page 0 Page 1 «+« | Page P-1 Page O Page 1 <+« | Page P-1

| Block 0 Block B-1

m Pages: 512B to 4KB, Blocks: 32 to 128 pages
m Data read/written in units of pages.

m Page can be written only after its block has been erased.
m A block wears out after about 100,000 repeated writes.
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SSD Performance Characteristics

m Benchmark of Samsung 940 EVO Plus
https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

Sequential read throughput 2,126 MB/s Sequential write tput 1,880 MB/s
Random read throughput 140 MB/s Random write tput 59 MB/s

m Sequential access faster than random access
®= Common theme in the memory hierarchy

m Random writes are somewhat slower
" Erasing a block takes a long time (~1 ms).

= Modifying a block page requires all other pages to be copied to
new block.

= Flash translation layer allows accumulating series of small writes
before doing block write.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38
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SSD Tradeoffs vs Rotating Disks

m Advantages
= No moving parts = faster, less power, more rugged

m Disadvantages
= Have the potential to wear out
= Mitigated by “wear leveling logic” in flash translation layer

= E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of
writes before they wear out

= Controller migrates data to minimize wear level
" |n 2022, about 2 times more expensive per byte
= 1TB SSD is 8¢/GB. 1TB HDD is 4¢/GB. 12TB HDD is 3¢/GB

m Applications

= Smartphones, laptops
" |ncreasingly common in desktops and servers
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Today

The memory hierarchy CSAPP 6.3
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Memory Hierarchies

m Some fundamental and enduring properties of hardware
and software:

= Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

" The gap between CPU and main memory speed is widening.
= Well-written programs tend to exhibit good locality.

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.
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Example Memory

Hierarchy 10/ ens
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
Costlier from the L2 cache.
(per byte] L2: L2 cache
(SRAM) _
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage |g. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)
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The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
10,000,000.0 Disk
1,000,000.0
100,000.0 55D
A
_ 10,000.0 —o—Disk seek time
4 —4—SSD access time
g 1,000.0 —-DRAM access time
= 100.0 - DRAM- —o—SRAM access time
-+ CPU cycle time
10.0 M -O—Effective CPU cycle time
1.0
CPU
- \04(:7 Effective CPU cycle time:
0.0 accounts for parallelism

1985

1990

1995 2000 2003 2005 2010 2015 within CPU (e.g., multiple
Year cores per CPU)
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Today

Working sets CSAPP 6.2
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Working Sets

m Think about working on the bomb lab. Maybe you have the
write-up open in one window, the debugger open in another
window, and an assembly reference in yet another window.

m Think about eating a meal. You need room on the table for
your fork, your knife, your plate, your napkin, and your glass.

m The set of resources actively needed for a task are called the
working set for the task.
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Working Sets

m If we can keep the working set for the active task in the fastest
memory, the task will perform at the speed of the fastest
memory.

m Thisis true even if the working sets for inactive tasks that we
are in slower memory.

m If we don’t have the enough fast memory to hold the whole
working set of the active task, we end up repeatedly paying the
price to swap what we’ll need soon for we’ll need right now.

m The cost of the initial, likely incremental, movement of the
working set from slower memory to faster memory may be
expensive, but it is often amortized to something negligible
over the lifetime of the task.
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Determining the Working Set

m If the system can determine the working set, and it has
enough fast memory, it can arrange to bring it into the
fast memory or keep it there once it gets there.

= Sort of like setting the table

= QOr leaving everything set up on the workbench at night to be ready
for morning.

m But, the processors doesn’t understand the task. It can’t
see (much of) the future. It just does what it is told. It
can’t know the working set.

= And the task, and therefore the associated working set, can change
at any time.

m But it can use heuristics to estimate or approximate it.
= Let’s talk about Locality: Spatial locality and Temporal locality.
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Today

Locality of reference CSAPP 6.2
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Locality:
A Heuristic for Approximating the Working Set

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49
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Temporal
sum = 0; : E

for (i = 0; i < n; i++) Spatial
sum += a[i];
return sum;

Locality Example

n~

Spatial or Temporal
m Data references Locality?

= Reference array elements in succession

(stride-1 reference pattern). spatial
= Reference variable sum each iteration. temporal
m Instruction references
= Reference instructions in sequence. spatial

= Cycle through loop repeatedly. temporal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50
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Qualitative Estimates of Locality

m Claim: Being able to look at code and get a qualitative sense
of its locality is a key skill for a professional programmer.

m Question: Does this function have good locality with respect

to array a?
int sum array rows(int a[M] [N])
{
Hint: array layout int i, j, sum = 0;
is row-major order , , _
for (i = 0; i < M; i++)
. for (j = 0; j < N; Jj++)
:L\nswer. yes s = e 2] .
Stride-1 reference return sum;
pattern }
a a a a a a
[0] e o o [0] [1] e o o [1] . . . [M_]_] e o o [M-l]

[0] [N-1]f [O] [N-1] [0] [N-1]
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Locality Example

m Question: Does this function have good locality with
respect to array a?

; 1s (i M] [N
J{.nt sum array cols(int a[M] [N]) Answer: no

int i, j, sum = 0; .

Stride N reference
for (j = 0; j < N; j++) pattern
for (1 = 0; i < M; i++)
sum += a[i] [j];

return sum; Note: If M is very small
} then good locality. Why?
a a a a a a
[0] e o o [0] [1] e o o [1] . . . [M-l] e o o [M_]_]
[0] [N-1]| [0] [N-1] [0] [N-1]
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Locality Example

m Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern

(and thus has good spatial locality)?

int sum array 3d(int a[M] [N] [N]) $ time ./loopijk
{ real Om2.765s
int i, j, k, sum = 0; user Om2.328s

sys Om0.422s

for (i = 0; 1 < N; i++)

for (J = 0; J < N: j++) $ time ./loopkij
for (k = 0; k < M; k++) real Oml.651s

— 0 C o user Oml.234s

D 57 a[k] [l] [J] ’ sys Om0.422s

return sum;

Answer: make j the inner loop
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What Makes Locality A Good Heuristic?

m Remember that we care about spatial and temporal locality
because they allow us to estimate the working set.

m But, what makes them a particularly good way of doing
that?

m They are simple enough to implement efficiently in
hardware without slowing things down too much

= Temporal locality can be managed by keeping the most recently
used objects and letting go of the least recently used objects.

= Spatial locality is natural to model by maintaining blocks of nearby
objects vs individual objects

" They can be learned quickly enough to be of value in the future
"= They don’t require prior knowledge or understanding of the task.
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Is Locality Always a Good Heursitic?

m Spatial and temporal locality are heuristics. They are not
necessarily applicable to all workloads.

m As one example, consider streaming data to preprocess it
enroute to an Al algorithm or other application.

= Spatial locality still applies: If we access one piece of data, we’re
likely to access the next piece of data next.

= But, temporal locality no longer applies: Once we’ve seen it and
processed it, we won’t look back

= The working set is a dynamically moving window.

m In this situation, we might want to a heuristic that suggests,
“After N sequential accesses, beginning prefetching ahead
of the current accesses to overlap 1/0 and processing.”

= Future attraction: We see this in the OS paging system, for example.
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Caches CSAPP 6.4-6.5
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Caches

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:
" For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

" Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

m Big Idea (Ideal): The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.
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General Cache Concepts

Cache

Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
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General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 7 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0COCOGEOOO
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General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

Impact of spatial locality
on number of misses?
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General Caching Concepts:

3 Types of Cache Misses

m Compulsory miss
= Compulsory misses occur because the cache starts empty and this is the
first reference to the block.
m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Examples of Caching in the Mem. Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server
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Summary

m The speed gap between CPU, memory and mass storage
continues to widen and the average cost of a storage
approximate our cheapest memory

m Careful movement of data can allow us to have the
average access approximate our fastest memory

= An understanding of the behavior of our work, including its
working set, locality, etc, can enable us to facilitate this movement.

m Memory hierarchies based on caching close the gap by
exploiting locality.

m Flash memory progress outpacing all other memory and
storage technologies (DRAM, SRAM, magnetic disk)

= Able to stack cells in three dimensions
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Supplemental slides
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Storage Trends

SRAM
Metric 1985 1990 1995 2000 2005 2010 2015  2015:1985
$/MB 2900 320 256 100 75 60 320 116
access (ns) 150 35 15 3 2 1.5 200 115
DRAM
Metric 1985 1990 1995 2000 2005 2010 2015  2015:1985
$/MB 880 100 30 1 0.1 0.06 0.02 44,000
access (ns) 200 100 70 60 50 40 20 10
typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500
Disk
Metric 1985 1990 1995 2000 2005 2010 2015  2015:1985
$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333
access (ms) 75 28 10 8 S 3 3 25
typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000
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CPU Clock Rates Inflection point in computer history

when designers hit the “Power Wall”

1985 1990 1995 : 2003 2005 2010 2015 2015:1985
CPU 80286 80386 Pentiumi P-4 Core2 Corei7(n)Corei7(h)
Clock
rate (MHz) 6 20 150 1 3,300 2,000 2,500 3,000 500
Cycle i
time (ns) 166 50 6 030 : 0.50 0.4 0.33 500
Cores 1 1 1 1 2 4 4 4
Effective
cycle 166 50 6 1 030 025 0.10 0.08 2,075
time (ns) i i

(n) Nehalem processor
(h) Haswell processor 66
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