
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine-Level Programming V:
Advanced Topics

18-213/18-613: Introduction to Computer Systems
8th Lecture, September 18, 2025

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Memory Layout

 Buffer Overflow

▪ Vulnerability CSAPP 3.10.3

▪ Protection CSAPP 3.10.4

 Unions CSAPP 3.9.2

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: x86-64 Linux Memory Layout

 Stack
▪ Runtime stack (8MB limit)

▪ E. g., local variables

 Heap
▪ Dynamically allocated as needed

▪ When call malloc(), calloc(), new()

 Data
▪ Statically allocated data

▪ E.g., global vars, static vars, string constants

 Text / Shared Libraries
▪ Executable machine instructions

▪ Read-only

Hex Address

00007FFFFFFFFFFF

(= 247–1)

000000

Stack

Text

Data

Heap

400000

8MB

not drawn to scale

Shared
Libraries

00007FFFF0000000

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Memory Allocation Example

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()

{

void *phuge1, *psmall2, *phuge3, *psmall4;

int local = 0;

phuge1 = malloc(1L << 28); /* 256 MB */

psmall2 = malloc(1L << 8); /* 256 B */

phuge3 = malloc(1L << 32); /* 4 GB */

psmall4 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */

}

not drawn to scale

Where does everything go?
Text

Data

Heap

00007FFFFFFFFFFF

Stack

Shared
Libraries

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: x86-64 Example Addresses

local 0x00007ffe4d3be87c

phuge1 0x00007f7262a1e010

phuge3 0x00007f7162a1d010

psmall4 0x000000008359d120

psmall2 0x000000008359d010

big_array 0x0000000080601060

huge_array 0x0000000000601060

main() 0x000000000040060c

useless() 0x0000000000400590

address range ~247

000000

Text (code)

Data (statically allocated)

Heap

not drawn to scale

Heap

Stack

Shared
Libraries

(Exact values can vary)

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Runaway Stack Example

 Functions store local data on
stack in stack frame

 Recursive functions cause deep
nesting of frames

int recurse(int x) {

int a[1<<15]; // 4*2^15 = 128 KiB

printf("x = %d. a at %p\n", x, a);

a[0] = (1<<14)-1;

a[a[0]] = x-1;

if (a[a[0]] == 0)

 return -1;

return recurse(a[a[0]]) - 1;

}

not drawn to scale

00007FFFFFFFFFFF

Stack

Shared
Libraries

8MB

./runaway 67

x = 67. a at 0x7ffd18aba930

x = 66. a at 0x7ffd18a9a920

x = 65. a at 0x7ffd18a7a910

x = 64. a at 0x7ffd18a5a900

. . .

x = 4. a at 0x7ffd182da540

x = 3. a at 0x7ffd182ba530

x = 2. a at 0x7ffd1829a520

Segmentation fault (core dumped)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: x86-64 Procedure Summary

 Important Points
▪ Stack is the right data structure for procedure call/return

▪ If P calls Q, then Q returns before P

 Recursion (& mutual recursion) handled by
normal calling conventions
▪ Can safely store values in local stack frame and in

callee-saved registers

▪ Put function arguments 7+ at top of stack

▪ Result return in %rax

 Pointers are addresses of values

▪On stack or global

Return Addr

Saved
Registers
+
Local
Variables

Argument
Build

Arguments
7+

Caller
Frame

%rsp

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

 Unions

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Memory Referencing Bug Example

▪ Result is system specific

fun(0) -> 3.1400000000

fun(1) -> 3.1400000000

fun(2) -> 3.1399998665

fun(3) -> 2.0000006104

fun(6) -> Stack smashing detected
fun(8) -> Segmentation fault

typedef struct {

 int a[2];

 double d;

} struct_t;

double fun(int i) {

 volatile struct_t s;

 s.d = 3.14;

 s.a[i] = 1073741824; /* Possibly out of bounds */

 return s.d;

}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Referencing Bug Example
typedef struct {

 int a[2];

 double d;

} struct_t;

fun(0) -> 3.1400000000

fun(1) -> 3.1400000000

fun(2) -> 3.1399998665

fun(3) -> 2.0000006104

fun(4) -> Segmentation fault
fun(8) -> 3.1400000000

Location accessed by

fun(i)

Explanation:
??? 8

Critical State 7

Critical State 6

Critical State 5

Critical State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Such problems are a BIG deal

 Generally called a “buffer overflow”
▪ when exceeding the memory size allocated for an array

 Why a big deal?
▪ It’s the #1 technical cause of security vulnerabilities

▪ What is #1 overall cause?

▪ social engineering / user ignorance

 Most common form
▪ Unchecked lengths on string inputs

▪ Particularly for bounded character arrays on the stack

▪ sometimes referred to as stack smashing

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploits Based on Buffer Overflows

 Buffer overflow bugs can allow remote machines to execute
arbitrary code on victim machines

 Distressingly common in real programs
▪ Programmers keep making the same mistakes 

▪ Recent measures make these attacks much more difficult

 Examples across the decades
▪ Original “Internet worm” (1988)

▪ “IM wars” (1999)

▪ Twilight hack on Wii (2000s)

▪ … and many, many more

 You will learn some of the tricks in attacklab
▪ Hopefully to convince you to never leave such holes in your programs!!

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: the original Internet worm (1988)

 Exploited a few vulnerabilities to spread
▪ Early versions of the finger server (fingerd) used gets() to read the

argument sent by the client:

▪ finger droh@cs.cmu.edu

▪ Worm attacked fingerd server by sending phony argument:

▪ finger “exploit-code padding new-return-

address”

▪ exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

 Once on a machine, scanned for other machines to attack

▪ invaded ~6000 computers in hours (10% of the Internet ☺)

▪ see June 1989 article in Comm. of the ACM

▪ the young author of the worm was prosecuted…

▪ and CERT was formed… still homed at CMU

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example 2: IM War

 July, 1999
▪ Microsoft launches MSN Messenger (instant messaging system).

▪ Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

AIM
server

AIM
client

AIM
client

MSN
client

MSN
server

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IM War (cont.)

 August 1999
▪ Mysteriously, Messenger clients can no longer access AIM servers

▪ Microsoft and AOL begin the IM war:

▪ AOL changes server to disallow Messenger clients

▪ Microsoft makes changes to clients to defeat AOL changes

▪ At least 13 such skirmishes

▪ What was really happening?

▪ AOL had discovered a buffer overflow bug in their own AIM clients

▪ They exploited it to detect and block Microsoft: the exploit code
returned a 4-byte signature (the bytes at some location in the AIM
client) to server

▪ When Microsoft changed code to match signature, AOL changed
signature location

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!

To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you

might find interesting because you are an Internet security expert with

experience in this area. I have also tried to contact AOL but received

no response.

I am a developer who has been working on a revolutionary new instant

messaging client that should be released later this year.

...

It appears that the AIM client has a buffer overrun bug. By itself

this might not be the end of the world, as MS surely has had its share.

But AOL is now *exploiting their own buffer overrun bug* to help in

its efforts to block MS Instant Messenger.

....

Since you have significant credibility with the press I hope that you

can use this information to help inform people that behind AOL's

friendly exterior they are nefariously compromising peoples' security.

Sincerely,

Phil Bucking

Founder, Bucking Consulting

philbucking@yahoo.com

It was later determined that this
email originated from within
Microsoft!

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programmers keep making these mistakes…

https://xkcd.com/1354/

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Worms and Viruses

 Worm: A program that
▪ Can run by itself

▪ Can propagate a fully working version of itself to other computers

 Virus: Code that
▪ Adds itself to other programs

▪ Does not run independently

 Both are (usually) designed to spread among computers
and to wreak havoc

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

String Library Code
 Implementation of Unix function gets()

▪ No way to specify limit on number of characters to read

 Similar problems with other library functions
▪ strcpy, strcat: Copy strings of arbitrary length

▪ scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */

char *gets(char *dest)

{

 int c = getchar();

 char *p = dest;

 while (c != EOF && c != '\n') {

 *p++ = c;

 c = getchar();

 }

 *p = '\0';

 return dest;

}

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Vulnerable Buffer Code

void call_echo() {

 echo();

}

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}

unix>./bufdemo-nsp

Type a string:01234567890123456789012

01234567890123456789012

unix>./bufdemo-nsp

Type a string:012345678901234567890123

012345678901234567890123

Segmentation Fault

btw, how big
 is big enough?

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Disassembly

000000000040069c <echo>:

 40069c: 48 83 ec 18 sub $0x18,%rsp

 4006a0: 48 89 e7 mov %rsp,%rdi

 4006a3: e8 a5 ff ff ff callq 40064d <gets>

 4006a8: 48 89 e7 mov %rsp,%rdi

 4006ab: e8 50 fe ff ff callq 400500 <puts@plt>

 4006b0: 48 83 c4 18 add $0x18,%rsp

 4006b4: c3 retq

4006b5: 48 83 ec 08 sub $0x8,%rsp

 4006b9: b8 00 00 00 00 mov $0x0,%eax

 4006be: e8 d9 ff ff ff callq 40069c <echo>

 4006c3: 48 83 c4 08 add $0x8,%rsp

 4006c7: c3 retq

call_echo:

echo:

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example

echo:

 subq $0x18, %rsp

 movq %rsp, %rdi

 call gets

 . . .

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}

Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unused

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example
echo:

 subq $0x18, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unused
. . .

 4006be: callq 4006cf <echo>

 4006c3: add $0x8,%rsp

 . . .

call_echo:
00 40 06 c3

00 00 00 00

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #1
echo:

 subq $0x18, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
. . .

 4006be: callq 4006cf <echo>

 4006c3: add $0x8,%rsp

 . . .

call_echo:
00 40 06 c3

00 00 00 00

unix>./bufdemo-nsp

Type a string:01234567890123456789012

01234567890123456789012

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

00 32 31 30

Overflowed buffer, but did not corrupt state

“01234567890123456789012\0”

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffer Overflow Stack Example #2
echo:

 subq $0x18, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}Return Address
(8 bytes)

%rsp

Stack Frame
for call_echo

33 32 31 30 buf

After call to gets

20 bytes unused
. . .

 4006be: callq 4006cf <echo>

 4006c3: add $0x8,%rsp

 . . .

call_echo:

00 00 00 00

unix>./bufdemo-nsp

Type a string:012345678901234567890123

012345678901234567890123

Segmentation fault

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

Program “returned” to 0x0400600, and then crashed.

00 40 06 00

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Smashing Attacks

 Overwrite normal return address A with address of some other code S

 When Q executes ret, will jump to other code

int Q() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

void P(){

 Q();

 ...

}

return
address
A

Stack after call to gets()

A B

P stack frame

Q stack frame

data written
by gets() pad

AA → S

void S(){

/* Something

 unexpected */

 ...

}

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crafting Smashing String

Stack Frame
for call_echo

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

c8 06 40 00 00 00 00 00

%rsp

00000000004006c8 <smash>:

4006c8: 48 83 ec 08

Target Code

int echo() {

 char buf[4];

 gets(buf);

 ...

 return ...;

}

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 07 FF

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

FF FF AB 8000 40 06 c3

00 00 00 00

void smash() {

 printf("I've been smashed!\n");

 exit(0);

}
24 bytes

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Smashing String Effect

Stack Frame
for call_echo

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

c8 06 40 00 00 00 00 00

%rsp

00000000004006c8 <smash>:

4006c8: 48 83 ec 08

Target Code

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 07 FF

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

FF FF AB 8000 40 06 c8

00 00 00 00

void smash() {

 printf("I've been smashed!\n");

 exit(0);

}

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performing Stack Smash

 Put hex sequence in file smash-hex.txt

 Use hexify program to convert hex digits to characters
▪ Some of them are non-printing

 Provide as input to vulnerable program

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

c8 06 40 00 00 00 00 00

linux> cat smash-hex.txt

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 c8 06 40 00 00 00 00 00

linux> cat smash-hex.txt | ./hexify | ./bufdemo-nsp

Type a string:012345678901234567890123?@

I've been smashed!

void smash() {

 printf("I've been smashed!\n");

 exit(0);

}

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Injection Attacks

 Input string contains byte representation of executable code

 Overwrite return address A with address of buffer B

 When Q executes ret, will jump to exploit code

int Q() {

 char buf[64];

 gets(buf);

 ...

 return ...;

}

void P(){

 Q();

 ...

}

return
address
A

Stack after call to gets()

A B

P stack frame

Q stack frame

B

exploit
code

data written
by gets()

pad

AB

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Does The Attack Code Execute?
Stack

Text

Data

Heap

Shared
Libraries

int Q() {

 char buf[64];

 gets(buf); // A->B

 ...

 return ...;

}

void P(){

 Q();

 ...

}

A B

exploit
code

pad

AB

…

rip

rip

rip

rip

rsp

rsp

ret ret

rip

rsp

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What To Do About Buffer Overflow Attacks

 Avoid overflow vulnerabilities

 Employ system-level protections

 Have compiler use “stack canaries”

 Lets talk about each…

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Don’t We Just Make The Stack Grow Upward?

 Overflowing a buffer within a stack frame may not be
possible
▪ But overflowing a buffer within a function higher up the call chain

(lower address in the stack that grows upward) remains possible.

foo()

bar()

gets(buffer)
(or…strcpy, memcpy, vector_add(), etc)

char buffer[n]

return addr

return addr

…

args

char * srcp

foo()

bar()

gets(buffer)

char buffer[n]

return addr

return addr

…

args

char * srcp

Kaboom!

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1. Avoid Overflow Vulnerabilities in Code (!)

 For example, use library routines that limit string lengths
▪ fgets instead of gets

▪ strncpy instead of strcpy

▪ Don’t use scanf with %s conversion specification

▪ Use fgets to read the string

▪ Or use %ns where n is a suitable integer

/* Echo Line */

void echo()

{

 char buf[4];

 fgets(buf, 4, stdin);

 puts(buf);

}

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections can help

 Randomized stack offsets
▪ At start of program, allocate

random amount of space on
stack

▪ Shifts stack addresses for entire
program

▪ Makes it difficult for hacker to
predict beginning of inserted
code

▪ E.g.: 5 executions of memory
allocation code

▪ Stack repositioned each time
program executes

local 0x7ffe4d3be87c 0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c

main

Application
Code

Random
allocation

Stack base

B?

B?

exploit
code

pad

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2. System-Level Protections can help

 Nonexecutable code
segments
▪ In traditional x86, can mark

region of memory as either
“read-only” or “writeable”

▪ Can execute anything
readable

▪ x86-64 added explicit
“execute” permission

▪ Stack marked as non-
executable

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3. Stack Canaries can help

 Idea
▪ Place special value (“canary”) on stack just beyond buffer

▪ Check for corruption before exiting function

 GCC Implementation
▪ -fstack-protector

▪ Now the default (disabled earlier)

unix>./bufdemo-sp

Type a string:0123456

0123456

unix>./bufdemo-sp

Type a string:012345678

*** stack smashing detected ***

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Protected Buffer Disassembly

40072f: sub $0x18,%rsp

400733: mov %fs:0x28,%rax

40073c: mov %rax,0x8(%rsp)

400741: xor %eax,%eax

400743: mov %rsp,%rdi

400746: callq 4006e0 <gets>

40074b: mov %rsp,%rdi

40074e: callq 400570 <puts@plt>

400753: mov 0x8(%rsp),%rax

400758: xor %fs:0x28,%rax

400761: je 400768 <echo+0x39>

400763: callq 400580 <__stack_chk_fail@plt>

400768: add $0x18,%rsp

40076c: retq

echo: Aside: %fs:0x28
• Read from memory using

segmented addressing
• Segment is read-only
• Value generated randomly

every time program runs

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Setting Up Canary

echo:

 . . .

 mov %fs:0x28, %rax # Get canary

 mov %rax, 0x8(%rsp) # Place on stack

 xor %eax, %eax # Erase register

 . . .

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}
Return Address

(8 bytes)

%rsp

Stack Frame
for call_echo

[3][2][1][0] buf

Before call to gets

20 bytes unusedCanary
(8 bytes)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Checking Canary

echo:

 . . .

 mov 0x8(%rsp),%rax # Retrieve from stack

 xor %fs:0x28,%rax # Compare to canary

 je .L6 # If same, OK

 call __stack_chk_fail # FAIL

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}Return Address

Saved %ebp

Stack Frame
for main

[3][2][1][0]

Saved %ebx

Canary

Return Address
(8 bytes)

%rsp33 32 31 30 buf

After call to gets

20 bytes unusedCanary
(8 bytes)

00 36 35 34

Input: 0123456

Some systems:
LSB of canary is 0x00
Allows input 01234567

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Return-Oriented Programming Attacks

 Challenge (for hackers)
▪ Stack randomization makes it hard to predict buffer location

▪ Marking stack nonexecutable makes it hard to insert binary code

 Alternative Strategy
▪ Use existing code

▪ E.g., library code from stdlib

▪ String together fragments to achieve overall desired outcome

▪ Does not overcome stack canaries

 Construct program from gadgets
▪ Sequence of instructions ending in ret

▪ Encoded by single byte 0xc3

▪ Code positions fixed from run to run

▪ Code is executable

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #1

 Use tail end of existing functions

long ab_plus_c

 (long a, long b, long c)

{

 return a*b + c;

}

00000000004004d0 <ab_plus_c>:

4004d0: 48 0f af fe imul %rsi,%rdi

4004d4: 48 8d 04 17 lea (%rdi,%rdx,1),%rax

4004d8: c3 retq

rax  rdi + rdx

Gadget address = 0x4004d4

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Gadget Example #2

 Repurpose byte codes

void setval(unsigned *p) {

 *p = 3347663060u;

}

<setval>:

4004d9: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)

4004df: c3 retq

rdi  rax

Gadget address = 0x4004dc

Encodes movq %rax, %rdi

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Execution

 Trigger with ret instruction

▪ Will start executing Gadget 1

 Final ret in each gadget will start next one
▪ ret: pop address from stack and jump to that address







c3Gadget 1 code

c3Gadget 2 code

c3Gadget n code

Stack

%rsp

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Crafting an ROP Attack String

 Gadget #1
▪ 0x4004d4 rax  rdi + rdx

 Gadget #2
▪ 0x4004dc rdi  rax

 Combination
 rdi  rdi + rdx

Stack Frame
for call_echo

buf

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33

d4 04 40 00 00 00 00 00 dc 04 40 00 00 00 00 00

Return Address
(8 bytes)

00 00 00 00

00 40 04 dc

%rsp

Attack String (Hex)

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 00 00

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

00 40 04 d0

Multiple gadgets will corrupt stack upwards

d4

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Happens when echo returns?

1. Echo executes ret

▪ Starts Gadget #1

2. Gadget #1 executes ret
▪ Starts Gadget #2

3. Gadget #2 executes ret
▪ Goes off somewhere ...

Stack Frame
for call_echo

buf

Return Address
(8 bytes)

00 00 00 00

00 40 04 dc

%rsp

Return Address
(8 bytes)

33 32 31 30

20 bytes unused

00 00 00 00

37 36 35 34

31 30 39 38

35 34 33 32

39 38 37 36

33 32 31 30

00 40 04 d400 40 04

00 00 00 00

Multiple gadgets will corrupt stack upwards

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Defense: IBT

“Indirect Branch Tracking (IBT) is a control flow integrity
technology for x86-64 processors that creates a special
"branch target" instruction that has no function other than to
mark a location as a valid indirect branch target, with the
processor capable of being put into a mode where it will raise
an exception if an indirect branch is made to a location
without a branch target instruction.

IBT is designed to protect against computer security exploits
that use indirect branch instructions to jump into code in
unintended ways, such as return-oriented programming.”

-- https://en.wikipedia.org/wiki/Indirect_Branch_Tracking

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Defense: IBT, cont.
 “If IBT is enabled, the CPU will ensure that every indirect branch lands

on a special instruction (endbr32 or endbr64), which executes as a no-
op; if anything else is found, the processor will raise a control-
protection (#CP) exception.” (https://lwn.net/Articles/889475/)

 “[x86-64’s] IBT cannot ensure that the target of an indirect branch
matches the caller's expectations, but it can ensure that the target was
meant to be reached in this way [i.e. via an indirect jump, but not
necessarily the intended indiret jump].”
(https://lwn.net/Articles/889475/)

 Complete compliance w.r.t. marking indirect jump targets is require
while IBT is enable, which can be tricky, for example, w.r.t. library
code, firmware code, and future code.

▪ IBT is most likely turned off before any access to firmware, for
example.

https://lwn.net/Articles/889475/

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Defense: IBT, cont.
 “The ENDBRANCH (see Section 73 for details) is a new instruction that is used

to mark valid jump target addresses of indirect calls and jumps in the program.
This instruction opcode is selected to be one that is a NOP on legacy machines
such that programs compiled with ENDBRANCH new instruction continue to
function on old machines without the CET enforcement. On processors that
support CET the ENDBRANCH is still a NOP and is primarily used as a marker
instruction by the processor pipeline to detect control flow violations. The CPU
implements a state machine that tracks indirect jmp and call instructions.
When one of these instructions is seen, the state machine moves from IDLE to
WAIT_FOR_ENDBRANCH state. In WAIT_FOR_ENDBRANCH state the next
instruction in the program stream must be an ENDBRANCH. If an ENDBRANCH
is not seen the processor causes a control protection exception (#CP), else the
state machine moves back to IDLE state.”

▪ Control-flow Enforcement Technology Specification , Section 1.2, Page 11, Document Number:
334525-003, Revision 3.0, Intel, May 2019.

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Defense: IBT, cont.
 “The ENDBRANCH (see Section 73 for details) is a new instruction that is used

to mark valid jump target addresses of indirect calls and jumps in the program.
This instruction opcode is selected to be one that is a NOP on legacy machines
such that programs compiled with ENDBRANCH new instruction continue to
function on old machines without the CET enforcement. On processors that
support CET the ENDBRANCH is still a NOP and is primarily used as a marker
instruction by the processor pipeline to detect control flow violations. The CPU
implements a state machine that tracks indirect jmp and call instructions.
When one of these instructions is seen, the state machine moves from IDLE to
WAIT_FOR_ENDBRANCH state. In WAIT_FOR_ENDBRANCH state the next
instruction in the program stream must be an ENDBRANCH. If an ENDBRANCH
is not seen the processor causes a control protection exception (#CP), else the
state machine moves back to IDLE state.”

▪ Control-flow Enforcement Technology Specification , Section 3.1, Page 19, Document Number:
334525-003, Revision 3.0, Intel, May 2019.

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ROP Defense: IBT, cont.
foo:

.LFB6:

 .cfi_startproc

 endbr64

 pushq %rbp

 .cfi_def_cfa_offset 16

 .cfi_offset 6, -16

 movq %rsp, %rbp

 .cfi_def_cfa_register 6

 movl %edi, -4(%rbp)

 movl %esi, -8(%rbp)

 cmpl $6, -8(%rbp)

 ja .L2

 movl -8(%rbp), %eax

 leaq 0(,%rax,4), %rdx

 leaq .L4(%rip), %rax

 movl (%rdx,%rax), %eax

 cltq

 leaq .L4(%rip), %rdx

 addq %rdx, %rax

 notrack jmp *%rax

 .section .rodata

 .align 4

 .align 4

 Note the handling of the entry to function calls and the jump for a
switch statement above

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

 Unions

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Union Allocation
 Allocate according to largest element

 Can only use one field at a time

union U1 {

 char c;

 int i[2];

 double v;

} *up;

struct S1 {

 char c;

 int i[2];

 double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

typedef union {

 float f;

 unsigned u;

} bit_float_t;

float bit2float(unsigned u)

{

 bit_float_t arg;

 arg.u = u;

 return arg.f;

}

unsigned float2bit(float f)

{

 bit_float_t arg;

 arg.f = f;

 return arg.u;

}

Using Union to Access Bit Patterns

Same as (float) u ? Same as (unsigned) f ?

u

f

0 4

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Revisited

 Idea
▪ Short/long/quad words stored in memory as 2/4/8 consecutive bytes

▪ Which byte is most (least) significant?

▪ Can cause problems when exchanging binary data between machines

 Big Endian
▪ Most significant byte has lowest address

▪ Sparc, Internet

 Little Endian
▪ Least significant byte has lowest address

▪ Intel x86, ARM Android and IOS

 Bi Endian
▪ Can be configured either way

▪ ARM

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example
union {

 unsigned char c[8];

 unsigned short s[4];

 unsigned int i[2];

 unsigned long l[1];

 } dw;

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

32-bit

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

64-bit

How are the bytes inside
short/int/long stored?

Memory addresses growing

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example (Cont).
int j;

for (j = 0; j < 8; j++)

 dw.c[j] = 0xf0 + j;

printf("Characters 0-7 ==

[0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x]\n",

 dw.c[0], dw.c[1], dw.c[2], dw.c[3],

 dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",

 dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x,0x%x]\n",

 dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",

 dw.l[0]);

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on Sun

Big Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]

Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]

Long 0 == [0xf0f1f2f3]

Output on Sun:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

MSB LSB MSB LSB

Print

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on IA32

Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf3f2f1f0]

Output:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

LSB MSB LSB MSB

Print

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering on x86-64

Little Endian

Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf7f6f5f4f3f2f1f0]

Output on x86-64:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

LSB MSB

Print

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Compound Types in C

 Arrays
▪ Contiguous allocation of memory

▪ Aligned to satisfy every element’s alignment requirement

▪ Pointer to first element

▪ No bounds checking

 Structures
▪ Allocate bytes in order declared

▪ Pad in middle and at end to satisfy alignment

 Unions
▪ Overlay declarations

▪ Way to circumvent type system

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

▪ Code Injection Attack

▪ Return Oriented Programming

 Unions

	Slide 1
	Slide 2: Machine-Level Programming V: Advanced Topics 18-213/18-613: Introduction to Computer Systems 8th Lecture, September 18, 2025
	Slide 3: Today
	Slide 4: Recall: x86-64 Linux Memory Layout
	Slide 5: Recall: Memory Allocation Example
	Slide 6: Recall: x86-64 Example Addresses
	Slide 7: Recall: Runaway Stack Example
	Slide 8: Recall: x86-64 Procedure Summary
	Slide 9: Today
	Slide 10: Recall: Memory Referencing Bug Example
	Slide 11: Memory Referencing Bug Example
	Slide 12: Such problems are a BIG deal
	Slide 13: Exploits Based on Buffer Overflows
	Slide 14: Example: the original Internet worm (1988)
	Slide 15: Example 2: IM War
	Slide 16: IM War (cont.)
	Slide 17
	Slide 18: Programmers keep making these mistakes…
	Slide 19: Aside: Worms and Viruses
	Slide 20: String Library Code
	Slide 21: Vulnerable Buffer Code
	Slide 22: Buffer Overflow Disassembly
	Slide 23: Buffer Overflow Stack Example
	Slide 24: Buffer Overflow Stack Example
	Slide 25: Buffer Overflow Stack Example #1
	Slide 26: Buffer Overflow Stack Example #2
	Slide 27: Stack Smashing Attacks
	Slide 28: Crafting Smashing String
	Slide 29: Smashing String Effect
	Slide 30: Performing Stack Smash
	Slide 31: Code Injection Attacks
	Slide 32: How Does The Attack Code Execute?
	Slide 33: What To Do About Buffer Overflow Attacks
	Slide 34: Why Don’t We Just Make The Stack Grow Upward?
	Slide 35: 1. Avoid Overflow Vulnerabilities in Code (!)
	Slide 36: 2. System-Level Protections can help
	Slide 37: 2. System-Level Protections can help
	Slide 38: 3. Stack Canaries can help
	Slide 39: Protected Buffer Disassembly
	Slide 40: Setting Up Canary
	Slide 41: Checking Canary
	Slide 42: Return-Oriented Programming Attacks
	Slide 43: Gadget Example #1
	Slide 44: Gadget Example #2
	Slide 45: ROP Execution
	Slide 46: Crafting an ROP Attack String
	Slide 47: What Happens when echo returns?
	Slide 48: ROP Defense: IBT
	Slide 49: ROP Defense: IBT, cont.
	Slide 50: ROP Defense: IBT, cont.
	Slide 51: ROP Defense: IBT, cont.
	Slide 52: ROP Defense: IBT, cont.
	Slide 53: Today
	Slide 54: Union Allocation
	Slide 55: Using Union to Access Bit Patterns
	Slide 56: Byte Ordering Revisited
	Slide 57: Byte Ordering Example
	Slide 58: Byte Ordering Example (Cont).
	Slide 59: Byte Ordering on Sun
	Slide 60: Byte Ordering on IA32
	Slide 61: Byte Ordering on x86-64
	Slide 62: Summary of Compound Types in C
	Slide 63: Summary

