Carnegie Mellon

o ——

IS=213"
el saies i,

<« AN g i taniai

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Machine-Level Programming |: Basics

18-213/18-613: Introduction to Computer Systems
4th L ecture, September 4th, 2025

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today: Machine Programming |I: Basics

m High level goals:

= Improve code performance, reliability, and code security (and think a bit
about the flip side of that coin)

= Understand our toolchain, so we can maximize the benefit we get
from it

= Empower the compiler to do more or us
= Optimize by hand, where, and only where appropriate
= Debug deeply rooted problems
= Protect the security and reliability of code
= Note: Writing assembly is not on this list!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Today: Machine Programming |I: Basics

m History of Intel processors and architectures CSAPP 3.1
m Assembly Basics: Registers, operands, move CSAPP 3.3-3.4
m Arithmetic & logical operations CSAPP 3.5
m C, assembly, machine code CSAPP 3.2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Intel x86 Processors

m Dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on
m Xx86 is a Complex Instruction Set Computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs
m Compare: Reduced Instruction Set Computer (RISC)
= RISC: *very few* instructions, with *very few* modes for each
= RISC can be quite fast (but Intel still wins on speed!)
® Current RISC renaissance (e.g., ARM, RISCV), especially for low-power

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

= 8086 1978 29K 5-10
" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

" First 32 bit Intel processor , referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4E 2004 125M 2800-3800
" First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3333
" First multi-core Intel processor

m Corei7 2008 731M 1600-4400

= Four cores (our shark machines)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Intel x86 Processors, cont.

m Machine Evolution

. 386 1985 YRl IntegratedMemory Controller-3'Ch DDR3:
= Pentium 1993 3.1M ’ ; =
" Pentium/MMX 1997 AN (/e 0 Core Core2 Core3

® PentiumPro 1995 6.5M

® Pentium il 1999 8.2M

® Pentium 4 2000 42M Q

= Core 2 Duo 2006 291M Lk Shared L3 Cache

= Corei/ 2008 731M
= Corei7 Skylake 2015 1.9B

m Added Features
" |nstructions to support multimedia operations
" |nstructions to enable more efficient conditional operations
= Transition from 32 bits to 64 bits
" More cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Intel x86 Processors, cont.

[| PaSt GeneratiOnS Process technology

= 1t Pentium Pro 1995 600 Nnm

= 1t Pentium Il 1999 250 nm

= 1t Pentium 4 2000 180 nm

= 15t Core 2 Duo 2006 65 nm

. . Process technology dimension
m Recent & Upcoming Generations . &Y .

1 Nehalem 5008 45 nm = width of narrowest wires
2. SandyBridge 2011 32 nm (10 nm = 100 atoms wide)
3 lvy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
7 Kaby Lake 2016 14 nm
8 Coffee Lake 2017 14 nm
9. Cannon Lake 2018 10 nm

10. Ice Lake 2019 10 nm

11. Tiger Lake 2020 10 nm

12. Alder Lake 2021 10 nm

13. Raptor Lake 2022 10 nm .. “Intel 7 process”

14. Meteor Lake. 2023-247 7 nm ... “Intel 4 process”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Intel’s Latest: Raptor Lake (2022)

|
A s
W g

Carnegie Mellon

3 MiB

Core

L

mont
Core

mont
Core

mont
Core

mont
Core

Grace Grace | Grace Grace
mont mont mont mont
Core Core Core Core

4 MiB L2 |

4 MiB L2

In recent years, increasing die space devoted to the graphics/Al engine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
" Developed x86-64, their own extension to 64 bits

m Recent Years

" Intel got its act together
= 1995-2011: Lead semiconductor “fab” in world
= 2018: #2 largest by SS (#1 is Samsung)
= 2019-2023: back-and-forth with Samsung for #1

= AMD fell behind
= Relies on external semiconductor manufacturer GlobalFoundaries
= ca. 2019 CPUs (e.g., Ryzen) are competitive again (with TSMC)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to IA64

= Totally different architecture (Itanium, AKA “ltanic”)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on I1A64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to IA32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m Virtually all modern x86 processors support x86-64

= But, lots of code still runs in 32-bit mode

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition "

Carnegie Mellon

Our Coverage

m IA32

® The traditional x86
" For 15/18-213: RIP, Summer 2015

m X86-64

= The standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation
= Book covers x86-64
= Web aside on 1A32

= We will only cover x86-64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Today: Machine Programming |I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

L]

C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Levels of Abstraction

#include <stdio.h>
int main() {

int i, n = 10, t1 = 0, t2 = 1, nxt;
C programmer for (i = 1; i <= n; ++i){
printf("s%d, ", tl1);
nxt = tl + t2;

i Seems like nice
clean layers...

t2 = nxt;
return 0; }

Assembly programmer

CPU Memo
Addresses Y
Registers >
€ Data Code
PC < > Data
Condition Instructions Stack
Codes +

Computer Designer
Gates, clocks, circuit layout, ...

—D Q_
A
B Q D
— 6_
14

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for writing correct machine/assembly code

= Examples: instruction set specification, registers

= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Microarchitecture: Implementation of the architecture
= Examples: cache sizes and core frequency

m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones
= RISCV: Recent open-source ISA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter

» Address of next instruction
= Called “RIP” (x86-64)

= Register file
= Heavily used program data

" Memory
= Byte addressable array
= Code and user data
= Stack to support procedures

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching

Bryant al 16

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Xx86-64 Integer Registers

$rax Seax %r8 $r8d

srbx %ebx $r9 $r9d

$rcx Secx ¢rl10 $rl10d
srdx %edx $rll srlld
srsi %esi $rl2 srl2d
$rdi $edi $rl3 $rl3d
3rsp %esp srlé $rldd
srbp %ebp 3rl5 $rl5d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
= Not part of memory (or cache)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Some History: IA32 Registers Origin

(mostly obsolete)

~—_
$eax $ax $ah gal accumulate
$ecx $cx $ch Scl counter
a
e
= Tedx $dx %dh sdl data
2 <
©
o sebx $bx $bh bl base
3
a0 o - o 0 source
oSl oSl indesx
o . o A4 destination
L Oedl sdi index
o o stack
€SP ol pointer
base
o)
) %b _
oebp P pointer
\)
Y

16-bit virtual registers

(backwards compatibility)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edit 19

Carnegie Mellon

Assembly Characteristics: Operations

m Transfer data between memory and register
® Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches
" Indirect branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Moving Data srax
m Moving Data SIrCX
mo ource, Dest $rdx
o

m Operand Types srbx
Immediate: Constant integer data srsi
= Example: $0x400, $-533 Srdi
= Like C constant, but prefixed with '$ Srsp

= Encoded with 1, 2, or 4 bytes >1h
= Register: One of 16 integer registers °IOP

= Example: $rax, %$rl3
g SrN

= But $rsp reserved for special use
Qthers have special uses for particular instructions
onsecutive bytes of memory at address given by register

= Simplest example: ($rax) :
Warning: Intel docs use

mov Dest, Source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

= Various other “addressing modes”

Carnegie Mellon

movq Operand Combinations

Source Dest Src,Dest C Analog
(Reg movqg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, (%rax) *p = -147;

movqg %rax,%rdx temp2 = templ;
movq < Reg {Reg q p P

Mem movq Srax, (5rdx) *p = temp;

N Mem Reg movqg (%rax) , srdx temp = *p;

Cannot do memory-memory transfer with a single instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
" Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Example of Simple Addressing Modes

void

whatAmI (<type> a, <type> b)

{

?272°?

} whatAmI:
movq
movq
movq
movq
ret

] $rsi
$rdi

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

$rdi) , %rax
(%rsi), %rdx
$rdx, (%rdi)
$rax, (%rsi)

Carnegie Mellon

24

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{ swap:
long t0 = *xp; movq $rdi) , %Srax
long t1 = *yp; movq (%rsi), %Srdx
*xp = tl; movqg $rdx, (%rdi)
*yp = tO0; movqg $rax, (%rsi)
} ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Understanding Swap()

Memory
void swap Registers
(long *xp, long *yp)
{ $rdi o
long t0 = *xp; srsi
long tl1 = *yp; °
*xp = tl; $rax
*yp = t0;
} Srdx
Register Value
srdi Xp
Frsi YP swap:
$rax t0 movq $rdi), %rax # t0 = *xp
srdx tl movq $rsi), %$rdx # tl = *yp
movq $rdx, (%rdi) # *xp tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Understanding Swap()

. Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
srax 0x108
$rdx 456 [0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Understanding Swap()

. Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
rdx 456 | 0x100
swap:
movq $rdi), %Srax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Understanding Swap()

] Memory
Registers Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
rdx 456 |€ 456 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq $rsi), %$rdx # tl1 = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Understanding Swap()

. Memory
Reg Isters Address
456 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
rdx 456 456 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Understanding Swap()

. Memory
Reg Isters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 \ OX1O8
rdx 456 123 | 0x100
swap:
movq ($rdi), %rax # t0 = *xp
movq ($rsi), %rdx # tl1l = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
" Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Complete Memory Addressing Modes

m Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers
= Ri: Index register: Any, except for $rsp
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg|[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg|[Ri]]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Address Computation Examples

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

o
srdx 0x£f000 = D: Constant “displacement” 1, 2, or 4 bytes

= Rb: Base register: Any of 16 integer registers
srex | 0x0100 _ shen A per e

= Ri: Indexregister: Any, except for $rsp

= S: Scale: 1, 2, 4, or 8 (why these numbers?)
Expression Address Computation Address

0x8 (%rdx)

srdx, srcx)

$rdx, %rcx,4)

0x80 (,%rdx,2)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Address Computation Examples

$rdx O0xf000

$rcx 0x0100

Expression Address Computation Address
0x8 (%rdx) 0x£f000 + 0x8 0x£008
$rdx, $rcx) 0x£f000 + 0x100 0x£f100
$rdx, %rcx,4) 0xf000 + 4*0x100 |0x£f400
0x80 (,%rdx, 2) 2*0x£f000 + 0x80 0x1e080

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Today: Machine Programming |I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Address Computation Instruction

m leaqSrc, Dst

= Srcis address mode expression
= Set Dst to address denoted by expression

m Uses
® Computing addresses without a memory reference
= E.g., translationof p = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8

m Example
long ml2 (lon .
{ g mlz(long x) Converted to ASM by compiler:
return x*12; leaq (%rdi,%rdi,2), %rax # t = x+2*x

} salg $2, %rax # return t<<2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Some Arithmetic Operations

m Two Operand Instructions:
Format Computation
addqg Src,Dest Dest = Dest + Src
subg Src,Dest Dest = Dest — Src
imulg SrcDest Dest = Dest * Src

shlqg Src,Dest Dest = Dest << Src Synonym: salq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical

XOorqg Src,Dest Dest = Dest Src

andg Src,Dest Dest = Dest & Src

orq Src,Dest Dest = Dest | Src

m Watch out for argument order! Src,Dest
(Warning: Intel docs use “op Dest,Src”)

m No distinction between signed and unsigned int (why?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Quiz Time!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Some Arithmetic Operations

m One Operand Instructions

incg Dest Dest = Dest + 1
decqg Dest Dest = Dest — 1
negq Dest Dest = — Dest
notq Dest Dest = ~“Dest

m See book for more instructions

= Depending how you count, there are 2,034 total x86 instructions

= (If you count all addr modes, op widths, flags, it’s actually 3,683)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Arithmetic Expression Example

arith:
leaq (%rdi,%$rsi), %Srax

long arith addq ¥rdx, S%rax
(long x, long y, long z) leaq $rsi,%rsi,2), %rdx
{ salq $4, %$rdx

long tl1 = x+y; leaq 4 (%$rdi,%$rdx), %rcx

long t2 = z+tl; imulq ¥rcx, srax

long t3 = x+4; ret

long t4 =y * 48;]]

long t5 = t3 + t4; Interesting Instructions

long rval = t2 * t5; " leagq: address computation

return rval; = salg: shift
} = imulgqg: multiplication

= Curious: only used once...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition M

Understanding Arithmetic Expression

Example

arith:
leaq (%$rdi,%rsi), %Srax # tl
long arith addqg $rdx, %rax # t2
(long x, long y, long z) leaq (%rsi,%rsi,2), %rdx
{ salqg $4, %$rdx # t4
long tl1 = x+y; leaq 4(%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulq $rcx, %Srax # rval
long t3 = x+4; ret

long t4 =y * 48;

long 5 = t3 + t4; Register | Usels)
t2 * t5;

long rval =

return rval; srdi Argument x
} Frsi Argument y
Srdx Argument z,
t4
$rax tl, t2, rval

$rcx t5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Today: Machine Programming |I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

L]

C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gecc -Og pl.c p2.c -o p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -Og -S)

A

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

A 4

binary Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg srbx
void sumstore (long x, long y, movq $rdx, S%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y): popq srbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcc -0g -S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_ startproc
pushg %rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)
popda Srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:

.size sumstore, .-sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

What it really looks like

Things that look weird
and are preceded by a “’
sumstore: are generally directives.

pushg %rbx

sumstore:
pushqg $rbx
o o
movq srdx, %rbx movq srdx, S%$rbx
call plus
call plus : .
movq ¥rax, (%rbx)
movq $rax, (%rbx) .
o pPopq $rbx
PopPq $rbx ret

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Assembly Characteristics: Operations

m Transfer data between memory and register
® Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Object Code

Code for sumstore
m Assembler

0x0400595:; .
|
0x53 Translates . s into .o
0x48 = Binary encoding of each instruction
0x839 = Nearly-complete image of executable code
0xd3 ..)) _
Oxe8 = Missing linkages between code in different
Oxf2 files
Oxff m Linker
Oxff _ | .) o
Oxff Resolves references between files

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 e Each instruction
0x03 1, 3, or 5 bytes

Ox5b e Starts at address
Oxc3 0x0400595 = Linking occurs when program begins

execution

= E.g.,, code formalloc, printf

= Some libraries are dynamically linked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Machine Instruction Example
m C Code

= Store value t where designated by
dest

*dest = t;

m Assembly

" Move 8-byte value to memory

movqg %rax, (%rbx)

= Quad words in x86-64 parlance
" Operands:

t: Register $rax

dest: Register $rbx

*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
® Stored at address 0x40059e

0x40059%9e: 48 89 03

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%rbx)
4005al: b5b pop $rbx
4005a2: c3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can berun on either a.out (complete executable) or . o file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Alternate Disassembly
Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, srbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059%e <+9>: mov $rax, (3rbx)
0x00000000004005a1 <+12>:pop %rbx
0x00000000004005a2 <+13>:retq

m Within gdb Debugger

= Disassemble procedure
gdb sum
disassemble sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
Code
Dump of assembler code for function sumstore:
0x0400595: 0x0000000000400595 <+0>: push %rbx
0x53 0x0000000000400596 <+1>: mov srdx, $rbx
0x48 0x0000000000400599 <+4>: callg 0x400590 <plus>
0x89 0x000000000040059e <+9>: mov $rax, ($rbx)
0xd3 0x00000000004005al <+12>:pop $rbx
Oxe8 0x00000000004005a2 <+13>:retq
Oxf2
Oxff
g:ii m Within gdb Debugger
0x48 = Disassemble procedure
0x89 gdb sum
gXO3 disassemble sumstore
x5b
Oxc3 = Examine the 14 bytes starting at sumstore

x/14xb sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

What Can be Disassembled?

$ objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001: : . _

30001003 .Reverse englneerlroig forbidden by
30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= Ccompiler will figure out different instruction combinations to
carry out computation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

	Default Section
	Slide 1
	Slide 2: Machine-Level Programming I: Basics 18-213/18-613: Introduction to Computer Systems 4th Lecture, September 4th, 2025
	Slide 3: Today: Machine Programming I: Basics
	Slide 4: Today: Machine Programming I: Basics
	Slide 5: Intel x86 Processors
	Slide 6: Intel x86 Evolution: Milestones
	Slide 7: Intel x86 Processors, cont.
	Slide 8: Intel x86 Processors, cont.
	Slide 9: Intel’s Latest: Raptor Lake (2022)
	Slide 10: x86 Clones: Advanced Micro Devices (AMD)
	Slide 11: Intel’s 64-Bit History
	Slide 12: Our Coverage
	Slide 13: Today: Machine Programming I: Basics
	Slide 14: Levels of Abstraction
	Slide 15: Definitions
	Slide 16: Assembly/Machine Code View
	Slide 17: Assembly Characteristics: Data Types
	Slide 18: x86-64 Integer Registers
	Slide 19: Some History: IA32 Registers
	Slide 20: Assembly Characteristics: Operations
	Slide 21: Moving Data
	Slide 22: movq Operand Combinations
	Slide 23: Simple Memory Addressing Modes
	Slide 24: Example of Simple Addressing Modes
	Slide 25: Example of Simple Addressing Modes
	Slide 26: Understanding Swap()
	Slide 27: Understanding Swap()
	Slide 28: Understanding Swap()
	Slide 29: Understanding Swap()
	Slide 30: Understanding Swap()
	Slide 31: Understanding Swap()
	Slide 32: Simple Memory Addressing Modes
	Slide 33: Complete Memory Addressing Modes
	Slide 34: Address Computation Examples
	Slide 35: Address Computation Examples
	Slide 36: Today: Machine Programming I: Basics
	Slide 37: Address Computation Instruction
	Slide 38: Some Arithmetic Operations
	Slide 39: Quiz Time!
	Slide 40: Some Arithmetic Operations
	Slide 41: Arithmetic Expression Example
	Slide 42: Understanding Arithmetic Expression Example
	Slide 43: Today: Machine Programming I: Basics
	Slide 44: Turning C into Object Code
	Slide 45: Compiling Into Assembly
	Slide 46: What it really looks like
	Slide 47: What it really looks like
	Slide 48: Assembly Characteristics: Data Types
	Slide 49: Assembly Characteristics: Operations
	Slide 50: Object Code
	Slide 51: Machine Instruction Example
	Slide 52: Disassembling Object Code
	Slide 53: Alternate Disassembly
	Slide 54: Alternate Disassembly
	Slide 55: What Can be Disassembled?
	Slide 56: Machine Programming I: Summary

