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Announcements

m Autolab is up and running
® Use https://beta.autolabproject.com

= Because we are beta testing, a special version of the CLI is needed:
= /afs/cs/academic/class/18213-f25/bin/autolabv3
= C Labis already released in Autolab

"= Nominally datalab is released at 11:59pm, but it’ll actually be auto-released
after the 18613 lecture at 2pm.

m If you’'ve resectioned with the Registrar, we don’t get told, so we won’t
automatically move you to a new group.

" Please email gkesden@andrew.cmu.edu so we can hook you up.

® For a “belt and suspenders approach”, please also let your current group TA
know.

m HW #1is out
= Due September 4th,
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Bits, Bytes, and Integers

m Representing information as bits CSAPP 2.1

m Bit-level manipulations
m Integers CSAPP 2.2

= Representation: unsigned and signed
= Conversion, casting
" Expanding, truncating

= Addition, negation, multiplication, shifting CSAPP 2.3
m Byte Ordering CSAPP 2.1.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

Analog Computers

m Before digital computers there were analog computers.

m Consider a couple of simple analog computers:

= A simple circuit can allow one to adjust voltages using variable
resistors and measure the output using a volt meter:

= A simple network of adjustable parallel resistors can allow one to
find the average of the inputs.
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https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-

Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-

without-a-transistor-op-amp-and-any-external-supply
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Needing Less Accuracy, Precision is Better

m We don’t try to measure exactly
= We just ask, is it high enough to be “On”, or
" |s it low enough to be “Off”.

m We have two states, so we have a binary, or 2-ary, system.

= We represent these statesas 0 and 1

m Now we can easily interpret, communicate, and duplicate signals well enough to know
what they mean.
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Binary Representation

m Binary representation leads to a simple binary, i.e. base-2,
numbering system

" Orepresents 0

" 1 represents 1

= Each “place” represents a power of two, exactly as each place in our
usual “base 10”7, 10-ary numbering system represents a power of 10

m By encoding/interpreting sets of bits in various ways, we
can represent different things:

= Operations to be executed by the processor, numbers, enumerable
things, such as text characters

m As long as we can assign it to a discrete number, we can
represent it in binary
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Binary Representation:
Simple Numbers

m For example, we can count in binary, a base-2 numbering
system
= 000, 001, 010,011, 100, 101, 110, 111, ...
= 000 =0%2% + 0*21* 0*2° = O (in decimal)
= 001 =0%2% + 0*21* 1*29 = 1 (in decimal)
= 010 =0%22% + 1*21* 0*2° = 2 (in decimal)
= 011=0%22 + 1*21+ 1*20 = 3 (in decimal)
= Etc.
m For reference, consider some base-10 examples:
= 000 =0*10% + 0*10'+* 0*10Q°
= 001 =0%102 + 0*10! * 1*10°
« 357 =3*%102 + 5*101 * 7*10°
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Hexadecimal and Octal

m Writing out numbers in binary takes too many digits

m We want a way to represent numbers more densely such that
fewer digits are required

= But also such that it is easy to get at the bits that we want

m Any power-of-two base provides this property

® Qctal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our
familiar base-10.

® Each has been used by “computer people” over time
" Hexadecimal is often preferred because it is denser.
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Hexadecimal

. 4 @
m Hexadecimal 0016 to FFie SRR

= Base 16 number representation
= Use characters ‘0’ to ‘9" and ‘A’ to ‘F

m Consider 1A2B in Hexadecimal:
= 1*%163 + A*162 + 2*16' + B*16°
= 1*163 + 10*16%2 + 2*16! + 11*16° =6699 (decimal)

" The C Language prefixes hexadecimal numbers with “Ox”
so they aren’t confused with decimal numbers

= Write FA1D37B1sin C as

= OxFA1D37B
. Oxfald37b 18213: 0100 0111 0010 0101

4 7 2 5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10
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Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11
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Boolean Algebra
m Developed by George Boole in 19th Century

= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or

= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1

&0 1 | [0 1
0|10 O O(0 1
1(0 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AMO 1
IER 0|0 1
1[0 1(1 O
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Fun fact: Modern Deep learning to Boole

Hinton received the 2018 Turing Award, often referred to as the "Nobel Prize of
Computing", together with Yoshua Bengio and Yann LeCun, for their work on deep
learning

Hinton is the of the great-
great-grandson of
mathematician and

educator Mary Everest
Boole and her husband, the
logician George Boole

https://en.wikipedia.org/wiki/Geoffrey_Hinton
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General Boolean Algebras

m Operate on Bit Vectors
= Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14
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Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}

"a=1if] €A
= 01101001 {0,3,5,6}
= 76543210
= 01010101 {0,2,4,6}
= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
m A Symmetric difference 00111100 {2,3,4,5}

m o~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15
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Bit-Level Operations in C

>
Operations &, |, ~, " Available in C o P&
m Operations &, |, =, vailable in 5T 0T 0665
= Apply to any “integral” data type 1|1 0001
= |long, int, short, char, unsigned 2 | 2 10010
P ’ ’ 3 |3 |0011
= View arguments as bit vectors 4 |4 | 0100
_ , i 5|5 | 0101
= Arguments applied bit-wise 6 16 10110
7 |7 | 0111
m Examples (Char data type) 8 T8 11000
= ~0x41 > 9 [ 9 ]1001
A |10 1010
. B (11| 1011
= ~0x00 - C |12 | 1100
D (13| 1101
) E [14] 1110
= 0x69 & 0x55 - F |15]| 1111

= 0x69 | 0X55 >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16
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Bit-Level Operations in C

\
St 2 o
H ~ A H H ‘3‘ O %

m Operations &, |, ~, M Available in C 5 1o T 0000
= Apply to any “integral” data type 1|1 0001
] . . 2 [ 2 [ 0010
long, int, short, char, unsigned 3 T3 0011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise > | 5 | 0101
g PP 6 | 6 | 0110
m Examples (Char data type) R R
= ~0x41 - 10111110 9 | 9 [ 1001
.~ A |10 1010
Ox00 - 11111111 B T11 11011
= 0x69 & 0x55: 0x69 | 0x55: Cc [12] 1100
0110 1001 0110 1001 D |13]1101
E |14 | 1110
& 0101 0101 | 0101 0101 F |15 | 1111

0100 0001 01111101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17
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Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= AlwaysreturnOor1

= Early termination

= Examples (char data type) Watch out for && vs. & (and || vs. |)...

" 10x41 - 0x00 Super common C programming pitfall!
= 10x00 - 0x01

= 110x41-> 0x01

" 0x69 && 0x55 - 0x01
= 0x69 || Ox55 - 0x01
= p&& *p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18
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Shift Operations
m Left Shift: x << vy Argument x | 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> vy
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2 | 00011000

. : 101 1
= Throw away extra bits on right Argument x | 10100010

" Logical shift << 3 00010000

= Fill with 0’s on left Log. >> 2 00101000
= Arithmetic shift

= Replicate most significant bit on left

Arith.>> 2 | 11101000

m Undefined Behavior

= Shift amount < 0 or = word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19
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Today: Bits, Bytes, and Integers

m Integers

= Representation: unsigned and signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
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Binary Number Lines

m In binary, the number of bits in the data type size
determines the number of points on the number line.

= We can assign the points any meaning we’d like

m Consider the following examples:
= 1 bit number line
- O
0 1
= 2 bit number line
9—0—0—0-
00 01 10 11
= 3 bit number line

9 000 0000

000 001010 011 100 101 110 111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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Some Purely Imaginary Examples

m 3 bit number line

o000 0000

-1/16 -1/8 -1/4 0 1/16 1/8 1/4 1/2

o000 0 00O

4

o000 0000

o000 0000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22
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Overflow

m Let’s consider a simple 3 digit number line:

o000 0000

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

m What happens if we add 1 to 7?
" |n other words, what happens if we add 1to 1117

= 111+ 001 =1 000

= But, we only get 3 bits — so we lose the leading-1.
" This is called overflow

m The result is 000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23
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Modulus Arithmetic

m Let’s explore this idea of overflow some more
= 111+ 001 =1 000 = 000

111 + 010 =1 001 = 001

111+011= 1010 =010

111 +100= 1011 =011

111+110 =1101=101
111+111=1110= 110

m So, arithmetic “wraps around” when it gets “too positive”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24
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Unsignhed and Non-Negative Integers

m We'll use the term “ints” to mean the finite set of integer

numbers that we can represent on a number line enumerated
by some fixed number of bits, i.e. bit width.

m We normally represent unsigned and non-negative int using
simple binary as we have already discussed

= An “unsigned” int is any int on a number line, e.g. of a data type, that
doesn’t contain any negative numbers

= A non-negative number is a number greater than or equal to (>=) Oon a
number line, e.g. of a data type, that does contain negative numbers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25
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How represent negative Numbers?

m We could use the leading bit as a sign bit.
®" 0 means non-negative
= 1 means negative

o000 0000

000 001 010 011 100 101 110 111
0 1 2 3 -0 -1 -2 -3

m This has some benefits

" |t lets us represent negative and non-negative numbers
" Orepresents 0

m It also has some drawbacks
"= There is a -0, which is the same as 0, except that it is different
" How to add such numbers 1 + -1 should equal O
= But, by simple math, 001 + 101 = 110, which is -27?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



A Magic Trick!

m Let’s just start with three ideas:
= 1 should be represented as 1
"-1+1=0

= We want addition to work in the familiar way, with simple rules.
m We want a situation where “-1” +1=0

m Consider a 3 bit number:
= 001+ “1”=0
= 001+111=0

= Remember 001 + 111 =1 000, and the leading one is lost to
overflow.

m“-1" =111
" Yep!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



Negative Numbers
m Well, if 111 is -1, what is -2?

=1 -1
= 111-001=110

m Does that really work?
" [fitdoes-2+2=0
= 110 + 010=1000 =000

m -2 + 5 should be 3, right?
= 110+101= 1011 = 011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



Finding —x the easy way

m Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4
= 0101

m We can find its negative by flipping each bit and adding 1
= 0101 Thisis 5
= 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

1011 This is the “twos complement of 57, e.g. 5 with the bits
flipped and 1 added

0101 + 1011 = 1 0000 = 0000

"X ="x+1

m Because of the fixed width, the “two’s complement” of a
number can be used as its negative.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
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Why Does This Work?

m Consider any number and its (ones) complement:
= 0101
= 1010

m They are called complements because complementary bits

are set. As a result, if they are added, all bits are necessarily
set:

" 0101 +1010=1111

m Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow
= (0101+1010)+1 = 1111+1 =10000 = 0000

m And if x + y =0, y must equal —x

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



Why Does This Work? Cont.

mIfx+y=0

= v must equal —x

m So if x + (Complement(x) +1)=0

= Complement(x) + 1 must equal —x

m Another way of looking at it:
" if x + (Complement(x) +1)=0
= x + Complement(x) =-1
= x =-1- Complement(x)
= -x =1+ Complement(x)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31
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Visualizing Two’s Complement

m Numbers “wrap around” with -1 at the very end

o000 0000

000 001 010 011 100 101 110 111
0 1 2 3 -4 -3 -2 -1

m A few things to note:
= All negative numbers start with a ”1”
= E.g. 100 is “-4”
® You can view the leading “1” as introducing a “-4”
= E.g. 101 =1*-4+0%2+1*1=-3
= But 010 =0*-4+1*2+0*1 =2
= -4 js missing a positive partner

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Complement & Increment Examples

x=0
Decimal | Hex Binary
0 0| 00 00| 00000000 00000000
~0 -1| FF FF| 11111111 11111111
~0+1 0| 00 00| 00000000 00OOOOOO

X =Tmin (The most negative two’s complement number)

Decimal | Hex Binary
x -32768| 80 00| 10000000 00000000
~X 32767| 7F FF| 01111111 11111111
~x+1 [ -32768| 80 00| 10000000 00000000

Canonical counter example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33
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Encoding Integers: Dense Form

Unsigned Two’s Complement
w-1 ) w—2 .
B2UX) = Y x;-2° BT(X) = —x, 2"+ x -2
i=0 i=0
short int x = 15213; \
short int y = -15213;

Sign

m C does not mandate using two’s complement

= But, most machines do, and we will assume so B It
m Cshort (2bytes long)
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011
m Sign Bit

" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative, 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34
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Numeric Ranges

m Unsigned Values
= UMin = 0

m Two’s Complement Values

= TMin = —2w-1
000...0 100...0
" UMax = 2 = TMax =  2%1-1
111...1 011..1
" Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 0OOOOOOOQO
-1 -1 FF FF| 11111111 11111111
0 0| 00 00| 00000000 00OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Quiz Time!

& > C & canvascmuedu/courses/28981/quizzes

SNl  —  18613/18213 > Quizzes 6 Student View
University
Fall 2022 .
®
Account Home
D) Announcements &
Dashboard svilab * Assignment Quizzes
vllabus
.
ssignments Day 2 - Binary and Int
Courses b:e) Y Y °

Not available until Sep 1 at 12:15pm | Due Sep 1 at 2:45pm | 4 pts | 4 Questions

m |Quizzes
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Today: Bits, Bytes, and Integers

m Integers

= Conversion, casting

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37



Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 = 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 ‘+/ - 16 b 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
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Relation between Sighed & Unsigned

Two’s Complement Unsigned
T2U
X > — > UX
T2B e B2U

Maintain Same Bit Pattern

w—1 0
Ux 1+1+|+ °® oo +|+]|+
X -|+]+ °©o o0 +]|+]+

Large negative weight
becomes
Large positive weight
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Conversion Visualized

m 2’s Comp. — Unsigned

= QOrdering Inversion ® UMax

= Negative — Big Positive ® UMax-1

/_:. TMax +1 | Unsigned

TMax @ *®  TMax Range
2’s Complement 0o @ @ 0
Range 1 .J/ -
-2
TMin
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Signed vs. Unsigned in C

m Constants

= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 42949672590

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= |Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u) ;

uy = ty; uy = fun (tx) ;
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Casting Surprises

m Expression Evaluation

"= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN=-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signhed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed
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Summary
Casting Signed <= Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing sighed and unsigned int
" intiscasttounsigned!!
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Today: Bits, Bytes, and Integers

m Integers

= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44



Carnegie Mellon

Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:
= X = Xyq s Xpye1 s Xupet » Xz 1+-0 X
L ]
k copies of MSB <€ w >
X o 0o
X, o 00 [ I BN ]
< k >< w >
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Sign Extension: Simple Example

Positive number

-16 8 4 2 1

10 = o 1 0 1 O
-32 16 8 4 2 1
10 = % 1 0 1 O
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Negative number

-16

2 1
1 O
2 1
1 O

46
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Truncation

m Task:
" Given k+w-bit signed or unsigned integer X
= Convert it to w-bit integer X’ with same value for “small enough” X

m Rule:
= Drop top k bits:
= X = X1 Xz reeer X
< k >< W >
X o 06 0 o 060

<€ w >
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Truncation: Simple Example

No sign change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0

-6 mod 16 = 26U mod 16 = 10U = -0 -10 mod 16 = 22U mod 16 = 06U = 6
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Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
" Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

® For small (in magnitude) numbers yields expected behavior
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Today: Bits, Bytes, and Integers

m Integers

= Addition, negation, multiplication, shifting
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Unsigned Addition

Operands: w bits u -
—|— \% o000
True Sum: w+1 bits 3+ v -
Discard Carry: whbits ~ UAdd (u , v) ceo .
>
. : o o°°\6:e3\°%6
m Standard Addition Function T 0000
" |gnores carry output ; ; 8823
m Implements Modular Arithmetic + o oto0
S = UAdd (u, v) = u+v mod?2v¥ 2 2 81%
7 | 7 | 0111
unsigned char 1110 1001 E9 223 g g 1882
+ 1101 0101 + D5 + 213 A [10 ] 1010
B [11 | 1011
1 1011 1110 1BE 446 C [12] 1100
1011 1110 BE 190  [Fli4]1ito
F |15 ] 1111
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Two’s Complement Addition

Operands: w bits u 200
+ v o 00

True Sum: w+1 bits
u + V oo
Discard Carry: w bits TAdd, (u, v) ¢o

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Will give s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 _lEE -66

1011 1110 BE -66
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Visualizing “True Sum” Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers uv Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface
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Visualizing Unsigned Addition

m Wraps Around Overflow
\

=" |f true sum > 2%
® At most once

True Sum
2W+1-

Overflow

2 "_LI

Modular Sum
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Visualizing 2’s Complement Addition

NegOver
m Values \

= 4-bit two’s comp.

TAdd,(u, v)

= Range from -8 to +7

m Wraps Around
" |f sum >2w1
= Becomes negative
= At most once
= |f sum < —2w1
= Becomes positive
= At most once

u 4 5 _ PosOver
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Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m Result: Same as computing ideal, exact result x*yand keeping
w lower bits.

m ldeal,exact results can be bigger than wbits
= Worst case is up to 2w bits
= Unsigned, because all bits are magnitude
= Signed, but only for Tmin*Tmin, because anything added to Tmin
reduces its magnitude and Tmax is less than Tmin.
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
= Impossible in hardware (at least without limits), as all resources are finite
" |n practice, is done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages
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Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k

Operands: w bits

* 2k Ol eee |01110] eee |0OIl0
True Product: w+k bits u - 2k o0 0| eee |0O]O
Discard k bits: w bits UMult, (u , 2) ooe 0] eee J0OJO
TMult, (u , 2¥)
m Examples
g << 3 == u * 8
" (u<< 5 - (u<kK 3) == u * 24

" Most machines shift and add faster than multiply
= Compiler generates this code automatically
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Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
=y > kgives Lu / 2¢]
= Uses logical shift

k
u °oe eoe Binary Point
Operands:
l 2k Ol eee |O|110| eee |0OIO0
Division: 3/ 2k (0] eee 10]0 l/ cee
Result: | u/2k] [ol e~ Jof0
Division | Computed Hex Binary

X 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6( 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 | 59.4257813 59 00 3B| 00000000 00111011
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Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x > kgives Lx / 2¢]

= Uses arithmetic shift
a Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a

bias). k
Operands: X Binary Point
l 2k Ol eee |O|110| eee |0O|0
Division: x / 2k Ll L I/ Ll
Result:  RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
X -15213 -15213 C4 93| 11000100 10010011
x > 1 -7606.5 -7607 E2 49| 11100010 01001001
x >> 4 -950.8125 -951 FC 49| 11111100 01001001
x >> 8 |-59.4257813 -60 FF C4( 11111111 11000100
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Round-toward-0 Divide

m Quotient of Negative Number by Power of 2
= Want [ x / 2¢] (Round Toward 0)
= Compute as L (x+(2%-1))/ 2~]
» InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k

Dividend: U 1 ot 0| eee |0O]O
_|_2k_1 Ol eee |O|O0|1]| eee |1]1

1 coe 1[ eee [1[1] Binary Point

Divisor: | 2k [O] ees |0[1]0] e+ |00 /

|_u/2k—| 1] eee |11111 XY _'1 eee |111

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x LAl ] eee
_|_2k_1 Ol eee [0|0O]1] eee |1]1

1 eoo oo
\ J
Y
Incremented by 1 Binary Point
Divisor: [ 2k 10| eee [0]1]0] e 0|0 /
[x/2¢] O e T T
\ J
Y

Incremented by 1

Biasing adds 1 to final result
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Today: Bits, Bytes, and Integers

m Byte Ordering
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Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and Linux
= Least significant byte has lowest address
m Becomes a concern when data is communicated

= Qver a network, via files, etc.

m Important notes
= Bits are not reversed, as the low order bit is the reference point.
= Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte
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Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01
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Fun Fact: Endianness

.~ ' TRAVELS The adjective endian has its origin in

R‘;;Nm | the writings of 18th century Anglo-Irish
oF Tux | writer Jonathan Swift. In the 1726

WOR LD, novel Gulliver's Travels, he portrays
o | the conflict between sects of
[Aabimsians e Lilliputians divided into those breaking
?_ﬁ‘{.g.;..‘;if._ the shell of a boiled egg from the big
[ e | [ end or from the little end.

https://en.wikipedia.org/wiki/Endianness
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Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop $ebx
8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx

804836¢c: 83 bb 28 0G 00 00 00 cmpl $0x0,0x28 (%ebx)

m Deciphering Numbers

= Value: O0x12ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

® Reverse: ab 12 00 00
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Today: Bits, Bytes, and Integers

m Representing information as bits CSAPP 2.1
m Bit-level manipulations

m Integers CSAPP 2.2

= Representation: unsigned and signed
= Conversion, casting

" Expanding, truncating
= Addition, negation, multiplication, shifting CSAPP 2.3
m Byte Ordering CSAPP 2.1.3

Questions?
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