
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

14-513 18-613

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Overview

18-213/18-613: Computer Systems
An 15-213/18-213/15-513/14-513/18-613 Ecosystem Course

1st Lecture, August 26th, 2025

Instructors:

Gregory Kesden

Vyas Sekar

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

18-213/18-613
In A Nutshell

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Are We Here?

 “This course provides a programmers view of how computer
systems execute programs, store information, and
communicate.”

 “It enables students to become more effective programmers,
especially in dealing with issues of performance, portability and
robustness.”

 “It also serves as a foundation for courses on compilers,
networks, operating systems, and computer architecture, where
a deeper understanding of systems-level issues is required.”

▪ From the official course description, emphasis added.

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why Are We Here?

 Topics covered include:

▪ machine-level code and its generation by optimizing compilers,

▪ performance evaluation and optimization,

▪ computer arithmetic,

▪ memory organization and management,

▪ networking technology and protocols, and

▪ supporting concurrent computation.

 Also from the official course description

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Who Are You?
(And, Who Is Everyone Else?)

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Who Are You?

 18-213

▪ ECE Undergrads

 18-613
▪ MS in Electrical and Computer Engineering (Pittsburgh and Silicon Valley)

▪ MS in Software Engineering (Silicon Valley)

▪ MS in Artificial Intelligence Engineering

 Interlopers ☺
▪ Others who happened to want the flexibility of a remote class this

summer, since the other related offerings are Pittsburgh-centric.

▪ You are most welcome and invited!

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Where Is Everyone Else? Sibling Offering

 15-213

▪ Undergrads in CS (Majors, 2nd majors, minors)

 14-513/15-513
▪ Other Masters Students (Outside of the College of Engineering)

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Who Am I? Gregory Kesden

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Who Am I? Vyas Sekar

B.Tech, IIT Madras CSE,2003
PhD, CMU CSD, 2010

Chennai→
Pittsburgh → Berkeley

→ Long Island → Pittsburgh
→ SF Bay Area → Pittsburgh

Research: Networking, Security, Systems
Web: http://users.ece.cmu.edu/~vsekar/

Non-work: Run, squash, frisbee, cryptic crosswords, trivia, word puzzles

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

About The Course
Topical Coverage In Detail

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Programs and Data

 Topics

▪ Bit operations, arithmetic, assembly language programs

▪ Representation of C control and data structures

▪ Includes aspects of architecture and compilers

 Assignments

▪ L0 (C programming Lab): Test/refresh your C programming abilities

▪ L1 (datalab): Manipulating bits

▪ L2 (bomblab): Defusing a binary bomb

▪ L3 (attacklab): The basics of code injection attacks

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Memory Hierarchy

 Topics

▪ Memory technology, memory hierarchy, caches, disks, locality

▪ Includes aspects of architecture and OS

 Assignments

▪ L4 (cachelab): Building a cache simulator and optimizing for locality.

▪ Learn how to exploit locality in your programs.

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Virtual Memory

 Topics

▪ Virtual memory, address translation, dynamic storage allocation

▪ Includes aspects of architecture and OS

 Assignments
▪ L5 (malloclab): Writing your own malloc package

▪ Get a real feel for systems-level programming

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exceptional Control Flow

 Topics

▪ Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

▪ Includes aspects of compilers, OS, and architecture

 Assignments

▪ L6 (tshlab): Writing your own Unix shell.

▪ A first introduction to concurrency

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Networking, and Concurrency

 Topics

▪ High level and low-level I/O, network programming

▪ Internet services, Web servers

▪ concurrency, concurrent server design, threads

▪ I/O multiplexing with select

▪ Includes aspects of networking, OS, and architecture

 Assignments
▪ L7 (proxylab): Writing your own Web proxy

▪ Learn network programming and more about concurrency and
synchronization.

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

What Makes This Course Different?
Course Perspective and Overarching Theme

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective

 Most (Many?) Systems Courses are Builder-Centric

▪ Computer Architecture

▪ Design pipelined processor in Verilog

▪ Operating Systems

▪ Implement sample portions of operating system

▪ Compilers

▪ Write compiler for simple language

▪ Networking

▪ Implement and simulate network protocols

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric

▪ By knowing more about the underlying system, you can be more effective
as a programmer

▪ Enable you to

▪ Write programs that are more reliable and efficient

▪ Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

▪ Cover material in this course that you won’t see elsewhere

▪ Not just a course for dedicated hackers

▪ We bring out the hidden hacker in everyone!

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Theme:
(Systems) Knowledge is Power!
 Systems Knowledge

▪ How hardware (processors, memories, disk drives, network infrastructure)
plus software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

▪ How you as a programmer can best use these resources

 Useful outcomes
▪ Become more effective programmers

▪ Able to find and eliminate bugs efficiently

▪ Able to understand and tune for program performance

▪ Prepare for later “systems” classes in CS, ECE, INI, ...

▪ Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, Computer Security, etc.

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

It’s Important to Understand How Things
Work
 Why do I need to know this stuff?

▪ Abstraction is good, but don’t forget reality

 Most CS courses emphasize abstraction
▪ (CE courses less so)

▪ Abstract data types

▪ Asymptotic analysis

 These abstractions have limits
▪ Especially in the presence of bugs

▪ Need to understand details of underlying implementations

▪ Sometimes the abstract interfaces don’t provide the level of control or
performance you need

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Aside: Ousterhout’s “Law”
“how fast you learn is a lot more important

than how much you know to begin with”

Source: https://briankeng.com/2015/07/a-little-bit-of-slope/

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

About The Course
How We Get There

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Components
 Lectures

▪ Higher level concepts

 Labs (8)
▪ The heart of the course

▪ 1-2+ weeks each

▪ Provide in-depth understanding of an aspect of systems

▪ Programming and measurement

 Exams (midterm + final)
▪ 15% each, in-class, 90 minutes each (final is not cumulative)

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way

▪ Set a reasonable threshold for full credit

▪ Post intermediate results (anonymized) on Autolab scoreboard for glory!

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Resources

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Textbooks

 Randal E. Bryant and David R. O’Hallaron,

▪ Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

▪ http://csapp.cs.cmu.edu

▪ This book really matters for the course!

▪ How to solve labs

▪ Practice problems typical of exam problems

▪ Electronic editions available (Don’t get paperback version!)

▪ On reserve in Sorrells Library

 Brian Kernighan and Dennis Ritchie,
▪ The C Programming Language, Second Edition, Prentice Hall, 1988

▪ Still the best book about C, from the originators

▪ Even though it does not cover more recent extensions of C

▪ On reserve in Sorrells Library

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Online Resources

 Web site: https://www.cs.cmu.edu/~18213

▪ Contains the schedule, deadlines, course policies, and many other
resources.

 Autolab: https://beta.autolabproject.com/
▪ Used to distribute labs, let you test your solutions, compete against each

other, and for final grading

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Online Resources

 Piazza: https://piazza.com/cmu/fall2025/18x13

▪ Q&A among your peers and privately with course staff

▪ Can be anonymous with peers.

 Canvas: https://www.canvas.cmu.edu

▪ Video links are automatically uploaded here after processing

▪ Look for “Panopto”

▪ Access is automatically managed by the University, updating each night to
sync with the official course roster.

https://www.canvas.cmu.edu/

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help
 Email, Call, or Zoom the Instructor

▪ See web site for instructors’ availability and coordinates.

▪ Greg’s cell phone is 412-818-7813

 Piazza

▪ https://piazza.com/cmu/fall2024/18x13

 TA Office Hours

▪ https://office-hours-01.andrew.cmu.edu:4443/

▪ Starts Wednesday

 Small Group Sessions

▪ Started yesterday :-)

 Appointments

▪ By request

https://piazza.com/cmu/fall2024/18x13
https://piazza.com/cmu/fall2024/18x13
https://office-hours-01.andrew.cmu.edu:4443/
https://office-hours-01.andrew.cmu.edu:4443/
https://office-hours-01.andrew.cmu.edu:4443/
https://office-hours-01.andrew.cmu.edu:4443/
https://office-hours-01.andrew.cmu.edu:4443/
https://office-hours-01.andrew.cmu.edu:4443/

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Facilities

 Labs will use the Intel Computer Systems Cluster

▪ The “shark machines”

▪ linux> ssh shark.ics.cs.cmu.edu

▪ 21 servers donated by Intel for 213/513/613

▪ 10 student machines (for student logins)

▪ 1 head node (for instructor logins)

▪ 10 grading machines (for autograding)

▪ Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1

▪ Rack-mounted in Gates machine room

▪ Login using your Andrew ID and password

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Policies

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Grading
 Labs (50%):

▪ weighted according to effort (Detailed on Web site)

 Midterm Exam (15%):

▪ During class

▪ No note sheet, we’ll provide a reference sheet.

 Final Exam (15%):

▪ NOT comprehensive, 90 minute, during finals week.

▪ No note sheet, we’ll provide a reference sheet.

 Homework (15%)

▪ Weekly Problem sets (about 12-14 assignments), mostly, or inspired by, former
exam questions

▪ Drop lowest two (2) homeworks

 Small Group/Participation (5%, or 10% penalty)

▪ Small groups are mandatory.

▪ Counts 5% of your final grade, unless you attend less than 60%, in which case you
lose 10% of your final score.

▪ In person

Final grades based on a straight scale
(90/80/70/60)

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Timeliness
 Grace days

▪ 5 grace days for the semester

▪ Limit of 0, 1, or 2 grace days per lab used automatically

▪ Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

 Lateness penalties

▪ Once grace day(s) used up, get penalized 15% per day

▪ No handins later than 3 days after due date

 Catastrophic events
▪ Major illness, death in family, …

▪ Formulate a plan (with your academic advisor) to get back on track

 Advice
▪ Once you start running late, it’s really hard to catch up

▪ Try to save your grace days until the last few labs

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Personal Touch
 You are organized into groups of 5 students and a TA facilitator

▪ Each TA facilitator only has 2 groups.

▪ The goal is to give you personal attention and to help you enjoy getting to
know and working with some of your wonderful colleagues.

 If you need anything, your TA should be your first stop
▪ They focus on only 10 students. Their goal is to know you well.

▪ They have time allocated each week for 1:1 meetings with students in their
group – if you need help, don’t let it go to waste, just ask

 They are very empowered.
▪ If you need anything, e.g. schedule adjustments, just ask. They’ll work with

you in a personal way to adjust deadlines to your needs.

▪ But they aren’t allowed to “kick the can”. They need to make adjustments
that lead to getting caught up. They are asked to consider the whole
schedule and ensure a good path to success.

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Academic Integrity, and Violations Thereof

 Doing one’s own work and giving credit where credit is due for
the ideas and work of others are very important in the
academic culture at CMU and across the United States, among
many other places

 Even what may seem to some to be small failures to do one’s
own work or credit others are taken very seriously here

▪ Course penalties ranging from -100% on the assignment to an R in the class

▪ Program penalties ranging from probation to dismissal

▪ Other consequences, such as loss of eligibility for scholarships, fellowships,
awards, etc

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

AIVs vis-à-vis AI Tools
 AI tools, such as, but not limited to, ChatGPT and Co-Pilot may be used to get help with

understanding APIs, libraries, frameworks, provided code, error/warning/info messages, and
similar, as well as tools taught in the course, such as GDB, and valgrind, and lecture material.

 AI tools, such as, but not limited to, ChatGPT and Co-Pilot, may not be used to get partial or
complete solutions to any portion of any assignment, or to get explanations or instructions
for completing any assignment, e.g. you cannot ask ChatGPT what special cases should be
considered for malloc lab’s coalesce, or what steps are required to allocate a miniblock, or
which accesses are cache hits vs misses for cache configuration and trace given in a
homework assignment.

 You may not upload the code you write for a lab assignment (or even parts of it) to any AI
tool (cloud-based or locally hosted or in your IDE) nor give the AI tool access to the code (or
even parts of it). Much like asking a friend for help and providing access to your code, the
help you get is most likely going to be an AIV, so it is not permitted. Examples of AI Tools
include ChatGPT, github copilot, Gemini, Claude, and many others.

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

AIVs vis-à-vis AI Tools
 In general, you may use AI tools for help understanding course material of any kind, but you

may not ask it to generate anything toward any assignment, e.g. code, steps, special cases,
answers, etc.

 Please keep in mind: Responses you receive from an AI tool may well be attributable to
publicly accessible materials and not properly cited by the AI tool, they may be given to other
students in response to their queries, and they may be incorrect, inapplicable, or incomplete.
En caveat emptor. You, not your tools, are wholly responsible for your submissions.

 Please treat responses from AI Tools as if they came from a person or a published work and
cite them to the AI Tool in any case where you would cite the contribution should it have
been made by a person or have come from a published work.

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Consider “Speeding” on the Highway
 The posted sign says, “65 MPH”

▪ In some places this means, “Go 60 MPH to be safe, because if you cross 65
MPH, you’ll likely be pulled over, fined, and your insurance will cost a lot
more. And, be careless too often and you’ll lose your license.”

▪ The speed limit is set to protect lives. It makes no sense to risk killing a
person, widowing someone, orphaning someone, or disabling someone
for life just to get somewhere a few minutes faster.

▪ In some places this means, “Don’t go less than 65 MPH or over 79 MPH”

▪ Cars are pretty safe, speed limits are set very conservatively, I’m an
especially good driver, and if I go slower, I’ll slow down everyone behind
me and they’ll be annoyed, people will honk at me, and my friends
won’t let me drive.”

 Conditions – and culture – define one’s view.
▪ It varies drastically from place to place.

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Our Culture
 Credit must be given for other people’s intellectual

contributions (.)

▪ Ideas

▪ Work product

 Using other people’s intellectual property when it isn’t allowed
is like trespassing – but worse.

▪ It isn’t allowed (.)

 Using other people’s intellectual property without proper
citation isn’t allowed.
▪ It is like stealing a rental car.

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Know the Policies
 Look at the syllabus, course web site, University Web site, and

any departmental or program information:

▪ Read the policies

▪ Ask questions

▪ Follow the policies

 Work that isn’t yours can’t influence your project work

▪ Things you google, or find on git, or your seniors tell you, or your friends
tell you.

 You can’t give unauthorized assistance

▪ Even after you leave the class.

 The policy is retroactive
▪ You can be punished in accordance with the policy – even after graduation.

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How to Avoid AIVs

 Start early

 Don’t rely on marathon programming sessions

▪ Your brain works better in small bursts of activity

▪ Ideas / solutions will come to mind while you’re doing other things

 Plan for stumbling blocks
▪ Assignment is harder than you expected

▪ Code doesn’t work

▪ Bugs hard to track down

▪ Life gets in the way

▪ Minor health issues

▪ Unanticipated events

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Diving In:
 Great Realities

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

▪ Float’s: Yes!

▪ Int’s:

▪ 40000 * 40000 --> 1600000000

▪ 50000 * 50000 --> ?

 Example 2: Is (x + y) + z = x + (y + z)?
▪ Unsigned & Signed Int’s: Yes!

▪ Float’s:

▪ (1e20 + -1e20) + 3.14 --> 3.14

▪ 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

▪ Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
▪ Due to finiteness of representations

▪ Integer operations satisfy “ring” properties

▪ Commutativity, associativity, distributivity

▪ Floating point operations satisfy “ordering” properties

▪ Monotonicity, values of signs

 Observation

▪ Need to understand which abstractions apply in which contexts

▪ Important issues for compiler writers and serious application programmers

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

▪ Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
▪ Behavior of programs in presence of bugs

▪ High-level language models break down

▪ Tuning program performance

▪ Understand optimizations done / not done by the compiler

▪ Understanding sources of program inefficiency

▪ Implementing system software

▪ Compiler has machine code as target

▪ Operating systems must manage process state

▪ Creating / fighting malware

▪ x86 assembly is the language of choice!

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

▪ It must be allocated and managed

▪ Many applications are memory dominated

 Memory referencing bugs especially pernicious
▪ Effects are distant in both time and space

 Memory performance is not uniform

▪ Cache and virtual memory effects can greatly affect program performance

▪ Adapting program to characteristics of memory system can lead to major
speed improvements

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

▪ Easily see 10:1 performance range depending on how code written

▪ Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance
▪ How programs compiled and executed

▪ How to measure program performance and identify bottlenecks

▪ How to improve performance without destroying code modularity and
generality

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why The Performance Differs

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

copyij

copyji

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out

▪ I/O system critical to program reliability and performance

 They communicate with each other over networks
▪ Many system-level issues arise in presence of network

▪ Concurrent operations by autonomous processes

▪ Coping with unreliable media

▪ Cross platform compatibility

▪ Complex performance issues

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Coming Up

• Lab 0 is out: Enjoy!

• Lab 1 comes out Thursday

• Next class: From Signals to Bits to Integer Arithmetic

• Always: How can we be of service? Please reach out!

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Welcome
and Enjoy!

	Slide 1
	Slide 2
	Slide 3: 18-213/18-613 In A Nutshell
	Slide 4: Why Are We Here?
	Slide 5: Why Are We Here?
	Slide 6: Who Are You? (And, Who Is Everyone Else?)
	Slide 7: Who Are You?
	Slide 8: Where Is Everyone Else? Sibling Offering
	Slide 9: Who Am I? Gregory Kesden
	Slide 10: Who Am I? Vyas Sekar
	Slide 11: About The Course Topical Coverage In Detail
	Slide 12: Programs and Data
	Slide 13: The Memory Hierarchy
	Slide 14: Virtual Memory
	Slide 15: Exceptional Control Flow
	Slide 16: Networking, and Concurrency
	Slide 17: What Makes This Course Different? Course Perspective and Overarching Theme
	Slide 18: Course Perspective
	Slide 19: Course Perspective (Cont.)
	Slide 20: Course Theme: (Systems) Knowledge is Power!
	Slide 21: It’s Important to Understand How Things Work
	Slide 22: Aside: Ousterhout’s “Law”
	Slide 23: About The Course How We Get There
	Slide 24: Course Components
	Slide 25: Lab Rationale
	Slide 26: Course Resources
	Slide 27: Textbooks
	Slide 28: Online Resources
	Slide 29: Online Resources
	Slide 30: Getting Help
	Slide 31: Facilities
	Slide 32: Course Policies
	Slide 33: Policies: Grading
	Slide 34: Timeliness
	Slide 35: A Personal Touch
	Slide 36: Academic Integrity, and Violations Thereof
	Slide 37: AIVs vis-à-vis AI Tools
	Slide 38: AIVs vis-à-vis AI Tools
	Slide 39: Consider “Speeding” on the Highway
	Slide 40: Our Culture
	Slide 41: Know the Policies
	Slide 42: How to Avoid AIVs
	Slide 43: Diving In: Great Realities
	Slide 44: Great Reality #1: Ints are not Integers, Floats are not Reals
	Slide 45: Computer Arithmetic
	Slide 46: Great Reality #2: You’ve Got to Know Assembly
	Slide 47: Great Reality #3: Memory Matters Random Access Memory Is an Unphysical Abstraction
	Slide 48: Great Reality #4: There’s more to performance than asymptotic complexity
	Slide 49: Why The Performance Differs
	Slide 50: Great Reality #5: Computers do more than execute programs
	Slide 51: Coming Up
	Slide 52: Welcome and Enjoy!

