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Where are we?

I Kinematics
1. Foundations and general concepts.
2. Planar kinematics.
3. Spherical and spatial kinematics.
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Readings etc.
I The text:

I By now you should have read Chapter 1 of the text.
The projective plane is covered in the Appendix of
the text.

I Today’s material will take us through Sections 2.1,
2.2, and 2.5.

I Outside:
I For an interesting history of kinematics, Chapter 1 of

Hartenberg and Denavit’s Kinematic Synthesis of
Linkages.

I Cool linkages etc etc: Reuleaux’s Kinematics of
Machinery.

I Both the above are openly available at the KMODDL
web site
http://kmoddl.library.cornell.edu.

I Geometric constructions and linkages simulated on
the course web page.

I Hilbert and Cohn-Vossen. Geometry and the
Imagination.

http://kmoddl.library.cornell.edu
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Decomposition of displacements
Translation ◦ Rotation

Theorem (2.2)

For any displacement D of En, and any point O, D is the
composition of a translation with a rotation about O.

Proof.

I Let O′ be the image of O under D.
I Let T be the translation taking O to O′.
I Consider the displacement T−1 ◦ D. Where does it

map O?
(T−1 ◦ D)(O) =???

I So T−1 ◦ D is a rotation; call it R.
I So then T ◦ R = T ◦ T−1 ◦ D = D.
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Decomposition of displacements

Note:
I Theorem 2.2 is basis for most common

representation of displacements.
I The decomposition is not unique: it depends on the

choice of O.
I Note how simple it is to prove using group theory. We

are dividing the displacement D by the translation T !
I Applies to En for all n ∈ Z.
I Instead of D = T ◦ R, (rotation, then translation) we

could have D = R ◦ U (translation, then rotation).
I The order matters. (Planar displacements do not

commute!) So T 6= U.
I Book has misleading remark in proof of this theorem.

See errata file.
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Decomposition examples

Rotate then translate

D = T ◦ R

Translate then rotate

D = R ◦ U
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Planar kinematics
Motivation

That is all we will do on “general” kinematics. On to
planar kinematics.

Why planar kinematics?

I The kinematics of flatland? No, much bigger.
I Planar motions are common in E3. All points moving

in parallel planes.
I Most mobile robots on flat terrain (except when they

fall over).
I Many grippers use planar motion.
I Many kinematic linkages use planar motion.

I All spatial motions can be decomposed into
components including planar motions.

I Spatial rotation is closely related to planar motion.
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Two points is enough.

What can we say about rigid motions of E2?
The first thing is: two points is enough . . .

Theorem (2.3)

A planar displacement is completely determined by the
motion of any two points.

Proof.
Construct a coordinate frame . . .
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Every D is an R or a T

Theorem (2.4)

Every planar displacement is either a translation or a
rotation.

Useful construction

I Pick two points A and B.
I Let A′ and B′ be the images.
I Construct perpendicular bisectors.

C

A B

A

B

I Intersection gives fixed point. Why? Preserves
distance from A and from B.

I Looks like a constructive proof, but it is not.
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A legitimate proof

Proof.

I Pick any point A. We can assume
A 6= A′.

I Pick B the midpoint of line segment
AA′. We can assume B′ is not on
AA′.

A B

M

B

A

I Construct ⊥ to AB at B, and ⊥ to A′B′ at B′. They are
not parallel. Let M be their intersection.

I Consider the rotation R that maps A to A′ and M to
itself. Where is R(B)? Distance constraints give two
circles, with two intersections: B or B′.

I So R maps B to B′. R = D.
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Rotation centers

I Consider again construction
of rotation centers from the
motion of two points. How
does it fail when AA′ is parallel
to BB′?

C

A B

A

B

I The perpendiculars are parallel. There is no
intersection, hence no rotation center.

I But, in the projective plane they do intersect!!!
I Every planar displacement is a rotation about a point

in the projective plane.
I But that is not a displacement or a rotation of the

projective plane. There is no distance, or angle, in
the projective plane, hence no rigidity.
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Projective geometry
Motivation

Why projective geometry?

I It’s cool.
I It’s useful.
I Specifically, it gives us points at infinity which are

very useful in kinematics.
I It also gives us a useful dual mapping between

points and lines.
I It’s really cool.
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The projective plane
Overview

The basic idea:
I Start with the Euclidean plane E2.
I In the Euclidean plane, when two lines intersect you

get a point, but some pairs of lines don’t intersect:
parallel lines. Euclid’s fifth postulate.

I Add some points, the ideal points or the points at
infinity. One point for each set of parallel lines.

I Call the new structure the projective plane—P2.
We will do it concretely using homogeneous
coordinates.
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Homogeneous coordinates
Definition
Let the Cartesian coordinates of some point in E2 be

(η, ν) ∈ R2

Then we will say that

(x , y ,w) , (wη,wν,w)

are the homogeneous coordinates of the point,
provided

w 6= 0

To go from homogeneous coordinates in R3 to Cartesian
coordinates in R2: x

y
w

 7→ (
x/w
y/w

)
,w 6= 0 (1)
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Homogeneous coordinates
Invariance to scaling

Scaling the homogeneous coordinates does not change
the point! ax

ay
aw

 7→ (
ax/aw
ay/aw

)
=

(
x/w
y/w

)
,a,w 6= 0

So, homogeneous coordinates represent a point in R2 by
a line through the origin of R3.

(
x
y

)
↔


 wx

wy
w

∣∣∣∣∣∣w 6= 0


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Homogeneous coordinates
Central projection

I In homogeneous coordinate space, embed the
Euclidean plane as w = 1.

I Also embed the sphere x2 + y2 + w2 = 1.
I A line through the origin of R3 probably (!)

I intersects the sphere in antipodal points
I intersects the w = 1 plane at the appropriate point

(x/w , y/w).
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Homogeneous coordinates
Ideal points

I The original idea: extend E2 by adding some ideal
points.

I Euclidean point:
line through origin of R3 intersecting w = 1 plane.

I Ideal point:
line through origin of R3 not intersecting w = 1 plane.

With Cartesian coords, no place to put ideal points. With
homogeneous coordinates, there’s a perfect spot!
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Projective plane
Definition

I Define the projective plane P2 to be the set of lines
through the origin of E3.

I A line in E2 is represented by plane through origin of
E3.

I The ideal points form a line! The line at infinity. The
equator of the embedded sphere.

I “Parallel lines” intersect at infinity.
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Projective plane and duality

I Duality. Two points determine a line. Two lines
determine a point. Every axiom of the projective
plane has a dual axiom by switching “line” and
“point”.

I Every theorem likewise has a dual theorem, and
every proof a dual proof. In projective geometry, you
get to prove two theorems for the price of one proof.
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Projective plane and duality
Dual map

I Using the homogeneous coordinate construction, the
dual mapping between points and lines is concrete.
A point in P2 is represented by a line through the
origin of R3, perpendicular to a plane through the
origin of R3, representing a line in R2.
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