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Where are we? S

» Kinematics
1. Foundations and general concepts.
2. Planar kinematics.
3. Spherical and spatial kinematics.
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Readlngs etC- Planar Kinematics
» The text:

>

>

By now you should have read Chapter 1 of the text.
The projective plane is covered in the Appendix of
the text.

Today’s material will take us through Sections 2.1,
2.2, and 2.5.

» Qutside:

>

For an interesting history of kinematics, Chapter 1 of
Hartenberg and Denavit's Kinematic Synthesis of
Linkages.

Cool linkages etc etc: Reuleaux’s Kinematics of
Machinery.

Both the above are openly available at the KMODDL
web site
http://kmoddl.library.cornell.edu.
Geometric constructions and linkages simulated on
the course web page.

Hilbert and Cohn-Vossen. Geometry and the
Imagination.


http://kmoddl.library.cornell.edu

Decomposition of displacements RN
Translation o Rotation

Decomposition of

Theorem (22) displacements

For any displacement D of E", and any point O, D is the
composition of a translation with a rotation about O.

Proof.

v

Let O’ be the image of O under D.
Let T be the translation taking O to O'.

Consider the displacement T—' o D. Where does it
map O?

v

v

(T~'o D)(O) =777

So T-'o Dis a rotation; call it R.
SothenToR=ToT 'oD=D.

v

v

O]
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Decomposition of displacements R At

Note: Decomposition of

>

displacements

Theorem 2.2 is basis for most common
representation of displacements.

The decomposition is not unique: it depends on the
choice of O.

Note how simple it is to prove using group theory. We
are dividing the displacement D by the translation T!

Applies to E" for all n € Z.

Instead of D = T o R, (rotation, then translation) we
could have D = R o U (translation, then rotation).
The order matters. (Planar displacements do not
commutel) So T # U.

Book has misleading remark in proof of this theorem.
See errata file.



Decomposition examples

Decomposition of
displacements

Planar kinematics
Displacements determined

Rotate then translate Translate then rotate e

Displacements are rotations
or translations

Rotation centers

Projective
D: TOR D:ROU geo]metry
Motivation
The projective plane
Homogeneous coordinates
Projections
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Planar kinematics RN
Motivation

That is all we will do on “general” kinematics. On to

planar kinematics.

Displacements determined
by two points

Why planar kinematics?

v

The kinematics of flatland? No, much bigger.

Planar motions are common in E2. All points moving
in parallel planes.

v

» Most mobile robots on flat terrain (except when they
fall over).

» Many grippers use planar motion.

» Many kinematic linkages use planar motion.

v

All spatial motions can be decomposed into
components including planar motions.

v

Spatial rotation is closely related to planar motion.



Two points is enough. RN

What can we say about rigid motions of E2? Displacement dtermined
The first thing is: two points is enough . ..

Theorem (2.3)

A planar displacement is completely determined by the
motion of any two points.

Proof.
Construct a coordinate frame . .. ]
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Every Disan Rora T Prarar Kinmatics

Theorem (2.4)

Every planar displacement is either a translation or a
r Ota tl on. E:S‘rpa\:zlearzs:tss are rotations

Useful construction

C
» Pick two points A and B. B
» Let A’ and B’ be the images. \ /
» Construct perpendicular bisectors.

v

Intersection gives fixed point. Why? Preserves
distance from A and from B.

» Looks like a constructive proof, but it is not.
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A legitimate proof Prarar Kinmatics

Proof.

» Pick any point A. We can assume
A£A.

» Pick B the midpoint of line segment
AA'. We can assume B’ is not on
AA.

» Construct L to AB at B, and L to AB' at B'. They are
not parallel. Let M be their intersection.

» Consider the rotation R that maps Ato A’ and M to
itself. Where is R(B)? Distance constraints give two
circles, with two intersections: B or B'.

» So Rmaps Bto B'. R=D.

]



Rotation centers S

» Consider again construction
of rotation centers from the
motion of two points. How
does it fail when A4’ is parallel
to BB'?

Rotation centers

» The perpendiculars are parallel. There is no
intersection, hence no rotation center.

» But, in the projective plane they do intersect!!!

» Every planar displacement is a rotation about a point
in the projective plane.

» But that is not a displacement or a rotation of the
projective plane. There is no distance, or angle, in
the projective plane, hence no rigidity.
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Motivation

Why projective geometry?

It's cool.

It's useful.

Specifically, it gives us points at infinity which are
very useful in kinematics.

It also gives us a useful dual mapping between
points and lines.

It’s really cool.

v

v

Motivation

v

v

v
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Overview

The basic idea:
» Start with the Euclidean plane E?.

» In the Euclidean plane, when two lines intersect you
get a point, but some pairs of lines don’t intersect:
parallel lines. Euclid’s fifth postulate.

The projective plane

» Add some points, the ideal points or the points at
infinity. One point for each set of parallel lines.

» Call the new structure the projective plane—P?.

We will do it concretely using homogeneous
coordinates.
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Homogeneous coordinates e o
Definition
Let the Cartesian coordinates of some point in E? be
(n,v) € R?
Then we will say that

(X?y7 W) é (WT]? WV? W)

Homogeneous coordinates

are the homogeneous coordinates of the point,
provided
w#0

To go from homogeneous coordinates in R® to Cartesian
coordinates in R?:

(1) Clyorse 0
w



Homogeneous coordinates RN

Invariance to scaling

Scaling the homogeneous coordinates does not change
the point!

(az; ) H<Z;;Zvvz>:<;§z>,a,w7éo
w

Homogeneous coordinates

So, homogeneous coordinates represent a point in R? by
a line through the origin of R3.
w # O}

(%)
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Homogeneous coordinates Planar Kitaratics

Central projection

» In homogeneous coordinate space, embed the
Euclidean plane as w = 1.

oy

ments are rotations

» Also embed the sphere x2 + y? + w? = 1.

» A line through the origin of R® probably (!)

» intersects the sphere in antipodal points
» intersects the w = 1 plane at the appropriate point

(x/w,y/w). e

Euclidean point

logeneous coordinate point



Homogeneous coordinates Lecture 3

Planar Kinematics
Ideal points

» The original idea: extend E? by adding some ideal
points.

» Euclidean point:
line through origin of R3 intersecting w = 1 plane.

» ldeal point: S
line through origin of R® not intersecting w = 1 plane.

With Cartesian coords, no place to put ideal points. With
homogeneous coordinates, there’s a perfect spot!
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Definition

» Define the projective plane P? to be the set of lines
through the origin of E3.

» Aline in E2 is represented by plane through origin of
E3.

» The ideal points form a line! The line at infinity. The
equator of the embedded sphere.

The projective plane
Homogeneous coordinates

» “Parallel lines” intersect at infinity.

Projections

parallel lines in Euclidean plane

line at infinity

"parallel" lines on sphere
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Projective plane and duality e o

» Duality. Two points determine a line. Two lines
determine a point. Every axiom of the projective
plane has a dual axiom by switching “line” and
“point”.
» Every theorem likewise has a dual theorem, and A
every proof a dual proof. In projective geometry, you
get to prove two theorems for the price of one proof.



Projective plane and duality

Dual map

» Using the homogeneous coordinate construction, the
dual mapping between points and lines is concrete.
A point in P? is represented by a line through the
origin of R3, perpendicular to a plane through the
origin of R3, representing a line in R?.

line in R"3.

perpendicular plane in R'3

dual line x'in R"2

point x in R"2

w=1 plane
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Projections
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