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Feedback vs. Feedforward Control

High latency
Residual errors
Subject to oscillations if gain too high

Anticipatory response gives low latency
Better accuracy (lower error)
Sensors tell us the system state
Control requires an internal model that 
includes timing information.

Sensor input

Heater output

Predictions 
from internal
model

Anticipatory 
response to
window 
opening
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Pavlovian Eyeblink Conditioning
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Eyeblink Conditioning in Humans

from San Diego Instruments

● Measure cognitive development
● Impaired by mental disorders:

● Schizophrenia
● OCD

● Fetal alchohol syndrome
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Delay vs. Trace Conditioning
● Delay conditioning: CS stays on until US arrives (up to 4 secs)

● Trace conditioning: CS comes on and then goes off again.
US must be associated with the memory trace of the CS. Trace 
can be up to 2 secs in duration.

● Trace conditioning takes about 5x as many trials to learn.
● Trace conditioning (but not delay conditioning) is disrupted by 

lesions of hippocampus or medial prefrontal cortex.

CS
US

CS
Trace

US
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Effect of Inter-Stimulus Interval (ISI)
● ISI must be 100-3000 msec

(ideal is 200-500 msec)
● The learned CR (blink) is 

timed to just precede the US 
(air puff).

● Several hundred trials 
required for long ISIs

● Long ISIs also generate a 
broader response

● ITI (Inter-Trial Interval) is the 
time between successive 
trials. Should be long and 
somewhat random.
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Two responses

Two responses

Mixing 200 ms and 700 ms ISI Trials

 P 7/8

P 1/2

P 1/8

700 F

200 F
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Eyelid Conditioning Circuitry

(Interpositus)
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Effects of Lesions
● Lesioning the cerebellar cortex disrupts response timing but 

does not abolish the response entirely.
● Associative learning can still occur, but responses have very 

short latency (timing is off).

● Conclusion: two sites of Pavlovian learning in the cerebellum:
– Interpositus nucleus learns to respond to the CS (mf  nuc)
– Cerebellar cortex fine tunes the temporal response (pf  Pk)

CS US
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Theories of Cerebellar
Response Timing

a) Tapped delay lines

b) Spectral timing models
  i) PCs with fixed timing
 ii) PCs w/adjustable timing

c) Conjunctions of oscillators

d) State machines:
  i) Mauk & colleagues
 ii) liquid state machines

e) Selectable “timing units”
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Medina & Mauk (2000) Simulation

600 mossy fibers
10,000 granule cells
900 Golgi cells
60 basket/stellate cells
20 Purkinje cells
6 nucleus cells
> 300,000 synapses
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More Simulation Details in the J.Neurosci. Paper

Realistic mossy and climbing fiber
inputs based on experimental data.
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Response Timing in the Model

ISI values of 250, 500, and 750 msec.`
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LTP + LTD
● Granule cells exhibit a 

variety of broad temporal 
responses

● LTD alone produces an 
overly broad CR (right).

● But LTP + LTD together 
produces a precisely 
timed response by 
combining inputs from 
multiple Purkinje cells to 
keep the DCN inhibited 
until just before the US is 
expected to arrive.

granule cell responses
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Time Course of Learning and Response Shaping

Nuclear cell Simulated Purkinje cell Early LTP + Late LTD
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Learning With LTP Disengaged:
Response Timing is Poor
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Recovery After Partial Lesion to Cerebellar Cortex
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Recovery After Lesioning Cerebellar Cortex
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Why Do Long ISIs Prevent Learning?
Hypothesis: Too Much LTP Overwhelms LTD
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● Li et al. (2013) scale up model using a GPU (NVIDIA GTX 580).
– 1024 mossy fibers
– 220 = 1,048,567 granule cells (vs. 50 billion in humans)
– 32 Purkinje cells (each with 32,768 granule cell synapses)
– 128 basket cells, 512 stellate cells; 1024 Golgi cells

● Results for eyeblink:
– Original model couldn't handle 1000 msec ISI
– New model can (sort of) handle 1000 msec ISI
– New model still can't handle 1150 msec ISI

● Results for cart-pole balancing task:
– Mossy fibers encode pole angle, angular velocity,

and acceleration
– Two groups of opposed output cells, for left and

 right motion
– Sort of works, with no special tuning

Scaling Up to 1 Million Granule Cells



23

Cerebellar Cortex As a Liquid State Machine
Yamazaki and Tanaka, Neural Networks ,20(3):290-297, April 2007
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Rich Variety of Granule Cell Activity Patterns
(Medina & Mauk Noted This Too)
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Similarity Index: Granule Cell Activity Patterns
Evolve Over Time

Correlation of LSM activity 
patterns at times t

1
 and t

2
.

Slices through the graph at left at 
t=200, t=500, and t=800 show 
that similarity changes smoothly.
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Cerebellum = Liquid State Machine + Perceptron
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Fiala et al. Spectral Timing Model

Fiala, Grossberg, and Bullock, J. Neurosci. 16(11):3760-3774, 1996

Summary: there could be a set of delay lines 
built  into every Purkinje cell's dendritic tree.
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Metabolic Transmission Pathway
in Purkinje Cell Dendrites

DAG = diacylgycerol
G = guanine nucleotide-binding protein
mGluR1 = metab. glutamate receptor
PKC = phospholipase C
PIP

2
 = phosphatidylinositol

4,5-biphosphate
IP

3
 = inositol 1,4,5-triphosphate,

a second messenger
IP

3
R = IP

3
 receptor
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Basic Story

IP
3
R Open 

Probability

● Glutamate binds to mGluR1 receptors, causing second 
messenger IP

3
 to bind to IP

3
R receptor.

● IP
3
R receptor causes release of calcium from storage in the 

endoplasmic reticulum (ER).
● Ca2+ activates calcium-

dependent potassium channels,
hyperpolarizing the dendrite and
pausing the cell.

● When Ca2+ concentration gets
too high, the IP

3
R receptor

closes again.
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Spectral Timing
● Calcium level in the dendrite builds slowly as IP

3
 accumulates.

● Positive feedback on IP
3
 production and IP

3
R channel opening 

results in a rapid rise in calcium level.
● But when Ca2+ level high enough, IP

3
R channels close again.

● The speed at which this happens depends on the number of 
mGluR1 receptors in the synapse.

● Different concentrations of mGluR1 receptors produce different 
timing characteristics.

● High calcium level hyperpolarizes the dendrite through calcium-
dependent potassium channels and inhibits firing.
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Spectral Timing: Calcium Concentration Profiles

Fiala et al. simulation: responses to 50 msec glutamate 
application produced by varing B

max
 parameter.
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Learning Performance of the Model
Using a Population of Purkinje Cells

30 trials; ISI = 500 msec
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Learning in Purkinje Cell Dendrites

LTD

LTP

LTD

LTP
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Problems with Spectral Timing Models
● Fiala et al. assume that each Purkinje cell (or each dendrite) 

has a fixed number of mGluRs, giving a fixed latency value.
– But Jirenhed & Hesslow (2011) show that any Purkinje cell can 

learn any CS-US interval.

● Alternative model by Steuber and Willshaw (2004) assumes that 
learning modulates the number of mGluRs. This predicts that 
CR latency should decrease as learning proceeds.

– But Jirenhed et al. (2007) found that while CR magnitude increases 
with learning, CR latency remained constant.

– Changing the CS-US interval should cause a gradual shift in 
latency, but experiments show simultaneous extinction and 
acquisition.

– Model can't account for double peak CRs seen in animals.
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Summary
● Two sites of cerebellar learning for eyeblink conditioning:

– Cells in interpositus nucleus learn to respond to tone CS
– Purkinje cells in cerebellar cortex learn timing of the response

● Purkinje cells require both LTP and LTD to produce temporally 
accurate responses.

● Granule cells have diverse response profiles
● Multiple hypotheses about how the cerebellum keeps time: 

delay lines, spectral timing, oscillators, liquid state machines
● Two hypotheses for why learning fails at long ISIs:

– Medina et al: long period of LTP overwhelms LTD
– Medina & Mauk recurrent network (= LSM) model: granule cell 

activity sequence gradually diverges
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Are All These Models Wrong?
● Hesslow et al. (2013) find problems with all existing models:

– Purkinje cells have an intrinsic spiking mechanism that does not 
depend on parallel fiber input, so LTD of the pf→Pk synapse 
should not be sufficient to silence the cell.

– The time course of LTD does not agree with that of eyeblink 
conditioning. (But in vitro slice experiments aren't a direct match 
for behavioral experiments.)

– Granule cells may not have the rich variety of temporal responses 
these models assume.

– A single Purkinje cell can learn a range of CS-US timings, so 
spectral timing models that assign a specific delay to each 
Purkinje cell cannot be correct.

– Models that learn by adapting a cell's delay value cannot account 
for dual-peak responses, or for the fact that changing the ISI after 
training simultaneously extinguishes the old CR latency and  
potentiates a new one; it does not gradually shift the latency.
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Hesslow et al.'s Proposal (2013)
● Each Purkinje cell has a family of “timer units” with different 

latencies.
● Learning CR timing is done by selecting the units with the 

correct latency value.
● Once a timer is activated (by parallel fiber input), it runs 

autonomously and triggers hyperpolarization with its 
characteristic latency.

● Double-peak responses are explained by having more than one 
set of timer units selected.

Lots of open questions:
- What is the neurophysiological basis of timer units?
- How do timer units become selected?
- How do timers become activated?



38

A New Proposal
● Hesslow et al. (2013) theorize about a new mechanism:

– Doesn't depend on parallel fiber input timing.
– Mechanism is intrinsic to the Purkinje cell or interneurons.
– After training, pf input activates a molecular mechanism with a 

particular constant time delay that turns on a hyperpolarizing 
response for a specific duration.

– The delay is fixed, not adjustable.
– There is a family of these “timer units”, and the learning process 

selects the appropriate timer to use.
– Once a timer has been activated, it runs its course independent of 

further inputs, so extending the duration of the CS will not affect 
the CR.
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Recent Advances
● Suvrathan et al. (2016) showed that Purkinje cells in the 

flocculus, involved in learning the VOR, have a preferred PF-CF 
interval of about 120 msec for LTD. But Purkinje cells in the 
vermis, which implement a  variety of different behaviors, have 
preferred interval varying from 0 to 150 msec.

– Conclusion: different regions of cerebellum have different timing 
characteristics based on the behavior being controlled.

● Boele et al. (2018) show that two mechanisms contribute to 
learned Purkinje cell responses: (1) LTD of PF-to-PC synapses, 
and (2) inhibition from molecular layer interneurons (stellate and 
basket cells).

– Both mechanisms must be knocked out by genetic manipulation in 
order to severely impair eyeblink conditioning.
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Current Theories
● Intrinsic cellular timing mechanisms involving metabotropic 

glutamate receptors remain popular.
– In Purkinje cells
– In unipolar brush cells (Guo et al., Nature Comm. 2021)

● Temporal basis functions: granule cells generate a set of 
patterns that Purkinje cells can tune to, as in Mauk.

– New models include more refined analyses of activity patterns, e.g., 
Gilmer et al., J. Neurophys., 2022.

● Systems-level timing models address more complex behaviors 
than eyeblink, where timing involves cerebro-cerebellar loops 
operating over milliseconds to seconds.

– Timing is an integrated property of forward models and state 
estimation, e.g., Raghavan et al., Curr Opin Behav Sci., 2016.
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