
Approximately as appeared in� Learning and Computational Neuroscience� Foundations
of Adaptive Networks� M� Gabriel and J� Moore� Eds�� pp� ����	
�� MIT Press� �����

Chapter ��

Time�Derivative Models of Pavlovian

Reinforcement

Richard S� Sutton

Andrew G� Barto

This chapter presents a model of classical conditioning called the temporal�
di�erence �TD� model� The TD model was originally developed as a neuron�
like unit for use in adaptive networks �Sutton and Barto ����	 Sutton ���
	
Barto� Sutton and Anderson ����
� In this paper� however� we analyze it
from the point of view of animal learning theory� Our intended audience
is both animal learning researchers interested in computational theories of
behavior and machine learning researchers interested in how their learning
algorithms relate to� and may be constrained by� animal learning studies�
For an exposition of the TD model from an engineering point of view� see
Chapter �� of this volume�

We focus on what we see as the primary theoretical contribution to
animal learning theory of the TD and related models� the hypothesis that
reinforcement in classical conditioning is the time derivative of a compos�
ite association combining innate �US
 and acquired �CS
 associations� We
call models based on some variant of this hypothesis time�derivative mod�
els� examples of which are the models by Klopf �����
� Sutton and Barto
�����a
� Moore et al �����
� Hawkins and Kandel ����

� Gelperin� Hop�
�eld and Tank �����
� Tesauro �����
� and Kosko �����
	 we examine
several of these models in relation to the TD model� We also brie�y ex�
plore relationships with animal learning theories of reinforcement� including
Mowrer�s drive�induction theory �Mowrer ����
 and the Rescorla�Wagner
model �Rescorla and Wagner ����
�

Although the Rescorla�Wagner model is not a time�derivative model� it
plays a central role in our exposition because it is well�known and success�
ful both as an animal learning model and as an adaptive�network learning
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algorithm �Widrow and Ho� ����
� We use the Rescorla�Wagner model

as an example throughout the paper� and we use its limitations to mo�

tivate time�derivative theories of reinforcement� We also show that all

predictions of the Rescorla�Wagner model can be obtained from a simple

time�derivative theory of reinforcement closely related to that advocated

by Mowrer and others in the �����s�

One reason adaptive network models are of interest as animal learning

theories is that they make predictions about the e�ect on learning of intra�

trial temporal relationships� These relationships strongly in�uence learn�

ing� but little of modern animal learning theory deals explicitly with them� �

The most well�studied e�ect is that of the CS�US inter�stimulus interval

�ISI
 on the e�ectiveness of conditioning� The attempt to reproduce the

main features of this e�ect in a real�time computational model has driven

much of the theoretical development of these models �e�g�� Blazis and Moore

����	 Desmond� this volume	 Grossberg and Levine ����	 Wagner ����
�

In this paper� we systematically analyze the ISI behavior of time�derivative

models� using realistic stimulus durations and both forward and backward

CS�US intervals� The models� behaviors are compared with the empirical

data for rabbit eyeblink �nictitating membrane
 conditioning� We �nd that

our earlier time�derivative model �Sutton and Barto ����a
 has signi�cant

problems reproducing features of these data� and we brie�y explore partial

solutions in subsequent time�derivative models proposed by Moore et al�

�����
� Klopf �����
� and Gelperin et al� �����
�

The TD model was designed to eliminate these problems by relying

on a slightly more complex time�derivative theory of reinforcement� In

this paper� we motivate and explain this theory from the point of view of

animal learning theory� and show that the TD model solves the ISI prob�

lems and other problems with simpler time�derivative models� Finally� we

demonstrate the TD model�s behavior in a range of conditioning paradigms

including conditioned inhibition� primacy e�ects �Egger and Miller ����
�

facilitation of remote associations� and second�order conditioning�

Theoretical Framework

This section introduces the framework within which we discuss theories of

reinforcement in classical conditioning� The presentation is largely tutorial�

and readers already familiar with theories of classical conditioning may

prefer simply to consult Equations � and � and then to skip to the following

section� where we discuss time�derivative theories�

In a typical classical conditioning experiment� two stimuli� called the

conditioned stimulus �CS
 and the unconditioned stimulus �US
� are paired

in close succession� After su�cient pairings� the CS comes to produce a
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response� called the CR� similar to the response originally produced only

to the US� For example� in rabbit eyeblink conditioning� the CS might be

the sound of a buzzer and the US might be a pu� of air to the rabbit�s eye

that re�exively causes the eye to blink� After appropriate CS�US �buzzer�

airpu�
 pairings� the buzzer alone comes to elicit eyeblink CRs� providing

evidence for the existence of a CS�US association� We consider experi�

ments in which multiple CSs are used� either on the same or on di�erent

trials� but usually consider only one US� One theoretical interpretation of

classical conditioning is that it is the process by which the animal infers

causal relationships between stimulus events �Dickinson ����
� A related

interpretation� to which we return later� is that classical conditioning is a

manifestation of the animal�s attempt to predict the US from cues provided

by CSs�

A learning theory should predict how the associations between CSs and

USs change� The most basic observation is that� in order for an association

to change� the CS and US� or processes directly related to them� must

occur at roughly the same time� Accordingly� almost all theories propose

a multiplicative relationship between CS processing and contemporaneous

US processing in determining the change in the association�s strength� V �

�V � �level of US Processing
� �level of CS Processing
� ��


The amount of learning is thereby proportional to both the level of CS

processing and the level of US processing� as long as these occur at the

same time �cf�� Dickinson ����� p� ��
	 Wagner ����
� Some theories

emphasize the e�ect of variations in CS processing� others the e�ect of

variations in US processing� By virtue of the multiplicative interaction

between these processes� many experimental results can be explained by

reference to either�

For example� suppose two CSs� A and B� are presented simultaneously

and paired with the US �written AB�US
� It is generally found that one

of the two CSs� say B� will be overshadowed by the other� A� in that it

becomes much less strongly associated with the US than it would have in

simple B�US pairings without A� Mackintosh�s �����
 theory explains the

de�cit as due to competition between A and B for a limited CS processor	

when presented together� one or both of the stimuli must get a signi�cantly

smaller share of the processor than it would if presented alone� Rescorla

and Wagner�s �����
 theory� on the other hand� explains the de�cit by

reference to competition for US processing� They propose that the level of

US processing depends on how unexpected the US is� As A and B become

associated with the US� they each reduce its unexpectedness� and thereby

subtract from the amount of US processing available for the other� Again�

at least one CS su�ers a signi�cant de�cit�
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As another example� consider a blocking experiment� in which extended

A�US pretraining is followed by a second stage of AB�US training� The

resulting association to B is found to be much weaker than that formed by

an equivalent amount of AB�US training without A having been pretrained�

According to Mackintosh�s theory� A�s pretraining identi�es it as a useful

CS	 more attention is then paid to it� at B�s expense� in second stage

training� According to Rescorla and Wagner�s theory� pretraining with A

reduces the unexpectedness of the US in AB�US training� thus reducing

the learning to both A and B during this stage�

Reinforcement and Eligibility

The US process is widely associated with the concept of Pavlovian rein�

forcement� Throughout this paper� we use the term reinforcement as a

shorthand for �level of US processing� in the sense of Equation �� It is

also convenient to have a simple term for the level of CS processing� CS

processing is associated with concepts such as attention� salience� stimulus

traces� and rehearsal� Collectively� these concepts have to do with deter�

mining which CSs have their associations changed by reinforcement and

which do not� We say that they determine which associations are eligible

for change� should reinforcement occur	 the level of processing of a CS is

termed its eligibility �cf� Klopf ����� ����
�

Using the new terms� we rewrite Equation � as

�V � Reinforcement � Eligibility� ��


Although the eligibility term is always positive �or zero
� the reinforcement

term can be either positive or negative� We refer to a positive reinforce�

ment term as positive reinforcement� and to a negative reinforcement term

as negative reinforcement� Because eligibility is always non�negative� incre�

ments in associative strength are always caused by positive reinforcement

and decrements in associative strength are always caused by negative rein�

forcement�

In these terms� Rescorla and Wagner�s theory explains blocking and

overshadowing by reference to a theory of reinforcement� while Mackin�

tosh�s theory explains it by reference to a theory of eligibility� In this pa�

per� we consider real�time models of both reinforcement and eligibility� but

focus on reinforcement models� The models of eligibility we do consider�

various forms of stimulus traces�are very simple compared to Mackintosh�s

theory or to other theories of CS processing �e�g�� Pearce and Hall ����	

Lovejoy ����	 Zeaman and House ����	 Sutherland and Mackintosh ����	

Grossberg and Levine ����
� Like the Rescorla�Wagner model� our time�

derivative models will most often invoke variations in reinforcement� i�e�� in

US processing� to explain results such as blocking and overshadowing�
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Trial�level Theories and Real�time Theories

We have discussed one major distinction between theories�that some em�

phasize variations in reinforcement and others variations in eligibility� An�

other important distinction is whether their update equations� such as

Equations � or �� apply at every moment in time� both within and between

trials� or only at the end of entire trials treated as wholes� Models that treat

entire trials as wholes are called trial�level models� The Rescorla�Wagner

model� for example� is a trial�level model� it makes predictions about what

is learned from a trial based only on what CSs and USs were presented dur�

ing the trial� Its predictions do not depend on the temporal relationships

between these stimuli�

Models that apply continuously� on a moment by moment basis� are

called real�time models� Hull�s stimulus trace hypothesis �Hull ����
 is

a simple example of a real�time model� According to that model� the

internal representation of a CS persists for several seconds after CS o�set�

This stimulus trace determines the CS�s eligibility� and thus the amount

by which the CS�s association is changed by reinforcement� The more

time that passes between CS and US� the more the trace has faded by the

time of the US� and thus the smaller the predicted change in associative

strength� Unlike trial�level theories� such a real�time theory is able to make

predictions about the e�ect on learning of intratrial temporal relationships

among stimuli�

Both trial�level and real�time models have a long history in animal

learning theory� Real�time models have the advantage that do not re�

quire a division of the animal�s experience into trials by an experimenter

or theorist� Trial�level models may describe animal learning behavior with�

out specifying how it could come about� Such theories are harder to map

into neural hardware� harder to convert into useful engineering algorithms�

and ultimately less satisfying as scienti�c explanations� In addition� trial�

level models do not consider intratrial temporal relationships� yet these are

known to have signi�cant e�ects on learning� Trial�level models can be

applied successfully only when intratrial factors are held constant�

Nevertheless� the success of trial�level theories in predicting the results

of experiments with constant intratrial temporal relationships is impressive�

The trial�level Rescorla�Wagner model� for example� is the most in�uential

current theory of classical conditioning� It has attained this status by accu�

rately predicting the e�ects of a wide range of experimental manipulations

while being a simple model clearly expressable by a few equations �as we

discuss below
� The challenge to real�time models is to achieve a compa�

rable level of simplicity� clarity� and predictive accuracy while including

variations in intratrial temporal relationships� Here we analyze one class

of real�time models� which we call time�derivative models� relate them to

previous models� and evaluate how well they have met this challenge�
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Time�Derivative Theories of Reinforcement

In this section we brie�y present the Rescorla�Wagner model and explore

its inherent limitations as a trial�level model� As a way of overcoming these

limitations� we introduce the simple time�derivative theory of reinforcement

used in the SB and DR models �Sutton and Barto ����a	 Klopf ����
� We

show that this time�derivative theory makes all the same predictions as the

Rescorla�Wagner model when the Rescorla�Wagner model applies� but� in

addition� correctly accounts for phenomena beyond the scope of that model�

The Rescorla�Wagner Model

The central idea of the Rescorla�Wagner model �Rescorla and Wagner ����


is that learning occurs whenever events violate expectations� in particular�

whenever the actual US level received on a trial di�ers from the level ex�

pected� In other words� Rescorla and Wagner hypothesized that reinforce�

ment is the discrepancy between expected and actual US events� They

denoted this discrepancy � � �V � where � represents the actual US level

on the trial and �V represents the expected or predicted level� The predicted

level� �V � is a composite or total prediction depending on the associative

strengths of all the CSs present on the trial� Typically� it is assumed to be

simply the sum of those associative strengths� The symbol � represents

the e�ectiveness of the US received on the trial	 if the US is absent� � is

zero� otherwise � is some positive number combining� in an unspeci�ed

way� the US�s intensity� duration� and temporal relationship with the CSs�

If training is continued with the same CSs� then their composite prediction�
�V � should approach � �

To write the Rescorla�Wagner model in the form of Equation �� a

notation is needed for indicating whether or not a CS is present on the trial�

Let Xi � � mean that the ith CS� CSi � is present on the trial� whereas

Xi � � means that CSi is absent� Let Vi denote the associative strength

of CSi � With this notation� the prediction �V is written �V �
P

i ViXi �

and the Rescorla�Wagner model is written

�Vi � ��� � �V 
� �iXi� ��


where � and �i are positive constants depending on the US and CS re�

spectively� For example� �i generally re�ects CSi �s salience� Equation

� is in the form of Equation �� where �iXi is the eligibility and � � �V

is the reinforcement� � The �nal term� Xi � is usually omitted from the

equation de�ning the Rescorla�Wagner model� and instead it is stated in

words that the equation applies only to the associative strengths of CSs

that are present on a trial� Because Xi is � for CSs present on a trial and

� for those not present� it is clear that Equation � represents this selective

application of the usual equation�
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Figure �
Illustration of variations in a US�s reinforcing e�ect� � � within a single trial� With a long

duration US� a CS preceding its onset can become positively associated with the US� whereas
a CS preceding its o�set can become negatively associated�

A limitation of the Rescorla�Wagner model becomes apparent in

second�order conditioning� In this procedure� a CS� A� is paired with the

US� and then another CS� B� is paired with A� B can acquire a signi�cant

positive association with the US in this way �see Rescorla ����a
� a result

contrary to the prediction of the Rescorla�Wagner model� On all trials on

which B is present� the US does not occur� and thus � is zero� and the

reinforcement �� �V in Equation � is negative or zero� Thus� the Rescorla�

Wagner model incorrectly predicts that B�s associative strength could only

decrease or remain the same as a result of second�order conditioning�

To apply the Rescorla�Wagner model successfully to second�order con�

ditioning one must hypothesize that pretrained CSs such as A create a

positive � � In particular� this � might be assumed proportional to A�s

associative strength� Once this has been done� the Rescorla�Wagner model

correctly predicts the development of B�s associative strength and the e�ect

of substituting other CSs for B� The Rescorla Wagner model makes explicit

predictions given a particular � � but it does not specify what value �

should have�

This limitation is particularly signi�cant for a real�time theory of re�

inforcement� because � appears to vary even within trials� For example�

Segundo et al� �����
 paired a long�duration shock US with two CSs� one

preceding US onset� the other preceding US o�set� as shown in �gure ��

The CS that preceded US onset was found to develop a positive association

with the US� while the CS that preceded US o�set developed a negative

association� Apparently� USs produce reinforcement�nonzero � s�of op�

posite sign at their onset and o�set �Mackintosh ���
� p� ���
� The idea

that changes in US level determine reinforcement� rather than the level

itself� is the basis of time�derivitive theories of reinforcement�

The �Y Theory

Second�order conditioning shows that CSs as well as USs can generate re�

inforcement if the CSs are associated with a US� Let us hypothesize that

the reinforcing e�ects of a CS occur at its onset and o�set� just as the
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reinforcing e�ects of a US appear to occur at its onset and o�set� In par�

ticular� suppose that each CSi with association of strength Vi produces

reinforcement  Vi at its onset and �Vi at its o�set� The US can be

viewed as having a large �xed association of strength VUS such that it

produces reinforcement  VUS at its onset and �VUS at its o�set� � Thus�

all stimuli� CSs and US� generate reinforcement  V at their onset and

�V at their o�set� For any given time� let Y represent the sum of the

associative strengths of all stimuli� including the US� that are present at

that time� Note that Y is not constant over a trial but changes as stimuli

are presented and removed� Let �Y denote the change in Y over a small

increment of time�
�Y �t
 � Y �t
 � Y �t��t
�

Clearly� �Y is zero except when some stimulus with a nonzero associative

strength turns on or o�� at which time it is  V for an onset or �V

for an o�set� � If several stimuli turn on or o� simultaneously� then �Y is

the sum of all the individual reinforcements� Thus� we can formalize the

central idea of the time�derivative theory as being that reinforcement at

any time is given by �Y � the time�derivative of the net association� innate

and acquired� between the current set of stimuli and the response� We call

this the �Y ��Y dot�
 theory of Pavlovian reinforcement�

The �Y theory is su�cient to account for all the predictions of the

Rescorla�Wagner model� Suppose the CSs present on a trial have simulta�

neous onsets and o�sets� the o�sets coinciding with US onset� and consider

the reinforcement generated during the trial� The onsets of the CSs produce

some reinforcement� but because no CS precedes this reinforcement� no CS

associative strength is a�ected by it� There is a much better temporal re�

lationship between the CSs and the reinforcement produced at the time of

their joint o�set �and the US onset
� The CS o�sets produce reinforcement

of net strength ��V and the simultaneous US onset produces reinforcement

of strength  VUS � The net reinforcement at this time is thus VUS� �V � If

we identify VUS with � � then this reinforcement is identical to that used in

the Rescorla�Wagner model� Hence� for this special case� the �Y theory and

the Rescorla�Wagner model predict exactly the same changes in associative

strengths�

So far we have ignored the reinforcement produced at US o�set� This

is appropriate if the US is long enough that reinforcement at its o�set is

in a very poor temporal relationship with the CSs� A shorter US compli�

cates the analysis but does not change the conclusion� US o�set produces

reinforcement of �VUS � Presumably� however� the presented CSs are less

eligible at this time because some time has elapsed since their o�set	 let

us say they are half as eligible� The change in associative strength at this

time is then ��
�VUS � for an overall change on the trial of
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VUS � �V �
�

�
VUS �

�

�
VUS � �V �

which is again of the same form as the reinforcement term in the Rescorla�

Wagner model� in this case with � � �
�VUS � Similar adjustments must be

made to the value of � to deal with trace intervals between CS o�set and US

onset� but again the agreement with the Rescorla�Wagner model is retained�

In general� for any trial in which the CSs begin and end simultaneously�

the �Y theory and the Rescorla�Wagner model predict exactly the same

changes in associative strengths�

The �Y theory was �rst formulated as stated here in our ���� real�time

model �Sutton and Barto ����a
� Hull�s drive�reduction theory �Hull ��
�


was perhaps the �rst to emphasize the role of changes in giving rise to re�

inforcement� According to that theory� however� only US o�set produced

reinforcement� and that reinforcement was positive rather than negative as

it is in the �Y theory� Mowrer�s drive�induction theory �Mowrer ����
 is

closer to the �Y theory in proposing that US onset produces positive rein�

forcement� but does not assign a reinforcing role to o�sets� Later Mowrer

�����
 proposed that both onsets and o�sets of both CSs and USs were

reinforcers� Although Mowrer did not express his ideas as compactly as we

have here in the �Y theory� the basic idea can nevertheless be seen in his

���� book� It is interesting to note� therefore� that the predictions of the

Rescorla�Wagner model follow as a consequence of this idea� Klopf �����


was the �rst to point out the relationships between the �Y theory� which is

also used in his DR model� and Mowrer�s work�

The �Y theory of reinforcement is not just consistent with the Rescorla�

Wagner model� it is also a real�time extension of that model� The �Y theory

can be applied to any experiment� not only to those with simultaneous CSs�

and thus has a larger scope than the Rescorla�Wagner model and the po�

tential to unify disparate results� Before this can be explored� however�

we should be clearer about the informal ideas we have been using regard�

ing good and poor temporal relationships� Because this is a question of

eligibility� we now turn to formalizing a real�time theory of eligibility�

Real�Time Theories of Eligibility

As noted earlier� a theory of eligibility can include the e�ects of attention�

salience� generalization� contrast� stimulus traces� and other phenomena

involving the representation of CSs and the eligibility of their associations

for being a�ected by reinforcement� Although all of these are important

phenomena� they are beyond the scope of this paper� and we do not attempt

to include them� As theories of eligiblity we consider only several simple

kinds of stimulus traces�
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Figure �
The role of the stimulus trace in bridging the trace interval between CS and US� The trace

overlaps the US even though the CS does not�

Hull�s Stimulus Traces

In classical conditioning experiments� the CS often terminates before the

onset of the US� The interval of time between CS and US during which

no stimuli are present is called the trace interval� Conditioning is found

to be more e�ective as the trace interval decreases� but it can still occur
at substantial intervals� Apparently� a CS leaves behind some short�term

memory� or trace� indicating that is has recently been presented� Figure �

illustrates the role of such a stimulus trace within a trial� The idea is to

preserve the framework of Equations � and �� in which contiguity of US and

CS processes is required for learning to occur� Because the CS itself does
not persist until the time of the US� some CS process must be postulated

that does�

The time course marked CS in �gure � represents the external�

experimenter�de�ned stimulus� More important for learning� however� is

the subject�s internal representation of the stimulus� That these two can

be di�erent should be clear	 for example� consider a brief �ash of light and
its afterimage� It is possible� then� that while the external CS terminates

abruptly as shown in �gure �� the internal representation follows a di�er�

ent time course� perhaps one more like that shown for the stimulus trace�

Hull �����
 proposed exactly this� that the stimulus trace is identical with

the internal representation of the stimulus� and that all such internal rep�
resentations persist for several seconds after the removal of the external

stimulus�

Eligibility Traces

An alternative to Hull�s stimulus trace is a trace that is distinct from the

internal representation of the stimulus used to generate behavior� Such

a distinct stimulus trace is responsible only for enabling learning� not for

generating behavior	 its e�ect is solely to in�uence the eligibility term of
Equation �� We distinguish this kind of stimulus trace from Hull�s by calling

it an eligibility trace �Klopf ����� ����
� Of course� both kinds of stimulus

traces could be used together�
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Figure �
A simple eligibility trace� The time course of the trace 	X follows and lags behind the internal

representation X of the CS�

An advantage of using eligibility traces is that it is then not required

that the internal representation of the CS be delayed or spread out in

time� A delayed or spread out CS representation can make it di�cult to

produce rapid or precisely�timed responses� With eligibility traces� the

internal representation is less constrained and can better support this sort

of behavior� We have further discussed the advantages of eligibility traces

elsewhere �Sutton and Barto ����a	 Barto and Sutton ����
� All the models

we consider here use eligibility traces�

The simplest eligibility trace builds up while a CS is presented and

fades away when it is removed� as illustrated in �gure �� Let Xi denote

the level of the internal representation of CSi at each moment in time�

For the moment� we assume that the internal representation is simply iden�

tical to the external one� that is� we assume that Xi � � when CSi is

present� and that Xi � � when CSi is absent� The eligibility trace we

denote by �Xi � and we think of it as a running average of recent values of

Xi � The eligibility trace illustrated in �gure � is obtained by continuously

incrementing �Xi at a �xed rate toward Xi � A complete speci�cation for
�X is given in the appendix�

The SB Model

Our ���� model� which Moore et al� �����
 called the Sutton�Barto� or SB�

model� is obtained by combining the �Y theory of reinforcement with the
�X eligibility trace�

�Vi � � �Y � �i �Xi�

where � and �i are positive constants as in the Rescorla�Wagner model�

Since this is a real�time model� the equation applies at every moment within

and between trials� rather than only once for each trial as in the Rescorla�

Wagner model� We have previously shown the SB model to be consis�

tent with a wide variety of empirical results� including all those where the

Rescorla�Wagner model is applied� plus others including second�order con�

ditioning� limited ISI dependency� and primacy e�ects �Sutton and Barto

����a	 Barto and Sutton ����
�



��� Sutton and Barto

Figure �
Illustration of the SB model� Shown are the associative strengths after each trial of a simulated

experiment involving simple acquisition 
Trials ����
� blocking 
Trials �����
 and primacy

Trials �����
� See text� Reprinted with notational changes from Sutton and Barto 
����a
�

Figure 
 shows an example of the SB model�s behavior� For the �rst

�� trials� a CS� A� is presented alone followed by the US	 acquisition of the

corresponding associative strength� VA � is shown� Trials ����� correspond

to the second stage of a blocking experiment� A has already been condi�

tioned� and now B is introduced with the same time course as A� followed

by the US� The model shows complete blocking� with VB remaining at its

intial value of zero during these trials� Finally� in trials ������ B is extended

so that its onset precedes A� B is now in a good temporal relationship to

pick up the positive reinforcement � �Y 
 produced at the onset of A� Not

only does B acquire associative strength during these trials� no longer being

blocked by A� but A actually loses associative strength� Although we did

not realize it at the time these results were �rst published� the SB model�s

prediction that A will lose associative strength under these conditions is

novel and surprising� Why should a well�trained CS that continues to be

paired with the US in a good temporal relationship lose associative strength

just because a new CS is introduced with no initial association and in a
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poorer temporal relationship to the US! One might expect the original CS

to block or limit conditioning to the new CS� but the SB model predicts

that the original CS rather than the new one will show a decrement in asso�

ciative strength� Recently� Kehoe� Schreurs� and Graham �����
 tested and

con�rmed the prediction that the original CS can lose associative strength

under these conditions� They also noted that alternative theories do not

make this prediction and have considerable di�culty in explaining the re�

sult�

Problems with Time�Derivative Models

Although the SB model successfully accounts for primacy e�ects� stimulus�

context e�ects� and some e�ects of intratrial temporal relationships� it has

also been found to have several problems� In this section� we review these

problems and several new models that have been proposed to remedy them�

In order to simplify the presentation we focus on two ways of evaluating a

model� One is by comparison with empirical data regarding the e�ect on

conditioning of the CS�US inter�stimulus interval� The second is by repeat�

edly presenting the model with a long serial�compound stimulus containing

a di�erent component CS for every time step before� during� and after the

US� The response topography learned under these conditions is completely

under the model�s control and reveals something essential about the model�

Inter�Stimulus�Interval Dependency

One of the main reasons for exploring real�time models is that they are able

to make predictions based on intratrial temporal relationships among stim�

uli� One of the simplest cases in which this issue arises is that in which there

is exactly one CS and one US� Empirically� the most important determinant

of conditioning rate and asymptotic level is the time interval between the

onset of the CS and the onset of the US� called the inter�stimulus interval

or ISI� �gure � shows the empirical relationship between the ISI and the

e�ectiveness of two kinds of conditioning of rabbit nictitating membrane

response� The shape of the empirical ISI dependency is roughly as shown

here for all species and response systems� but the time course varies sub�

stantially �see� e�g�� Macintosh ���

� The two kinds of conditioning for

which data are shown are delay conditioning and what we call �xed�CS con�

ditioning �see �gure �
� In �xed�CS conditioning� the CS duration is �xed

and independent of ISI� Fixed�CS conditioning includes trace conditioning�

in which the ISI is greater than the CS duration� but also includes shorter

and backward intervals� In delay conditioning� the CS duration is equal to

the ISI� which is always positive�
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Figure �
The empirical ISI dependency for the rabbit nictitating membrane response� Data is shown

for both �xed�CS and delay conditioning 
�gure �
� The general shape of the ISI dependency
is constant accross species and response systems� but its time course varies substantially�

Figure �

Temporal relationships in �xed�CS and delay conditioning� The indicated stimulus durations
are commonly used in rabbit NMR conditioning� These durations were also used to obtain the
simulation data shown in �gures �� ��� and ��� under the interpretation that one simulation

time step is equivalent to �� ms�
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Figure �
ISI dependency of the SB model for �xed�CS conditioning with a long US� 
Reprinted from

Sutton and Barto ����a


In Sutton and Barto ����a� we compared the empirical data in �gure

� with the simulation data in �gure � for �xed�CS conditioning of the SB

model� In both cases� associative strength is near zero at zero ISI �simul�

taneous CS�US presentation
� rises quickly to a maximum at intermediate

ISIs� and then falls o� gradually at long ISIs� If we identify each simula�

tion time step with approximately �� ms�� then there appears to be a good

match between model and data� However� this comparison is limited by

the fact that the simulation used a very long US� equivalent to about ����

ms�� whereas a US of ��� ms� is more typical in real experiments� In ad�

dition� delay conditioning and backward �xed�CS conditioning paradigms

were not simulated� If we repeat the simulation experiment� extended and

made more realistic in these ways� we obtain the data shown in �gure ��

The SB model�s ISI behavior shown in �gure � deviates from the em�

pirical data in �gure � for delay conditioning at long ISIs and for �xed�CS

conditioning at short forward and backward ISIs� In delay conditioning� the

SB model predicts e�ective conditioning at all long ISIs� whereas the most

prominent feature of the empirical ISI dependency of delay conditioning is

the reduction in e�ectiveness of conditioning with increasing ISI� In �xed�

CS conditioning� the SB model predicts strong inhibitory conditioning for

both forward and backward conditioning when the CS and US overlap� The

empirical data are not as clear here� as special tests must be run to detect
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Figure �
ISI dependency of the SB model� Shown is the CS associative strength V after �� acquisition

trials as a function of the CS�US ISI� This simulation used a short�duration US� The intratrial
temporal relationships were as shown in �gure ��

inhibitory associations� but the studies that have been done do not support

the SB model�s prediction of strong inhibitory conditioning with short USs

�e�g�� Prokasy et al� ����
� First we consider e�orts to solve the delay

conditioning problem and then e�orts to solve the �xed�CS conditioning

problem�

Solving the Delay Conditioning Problem

In Sutton and Barto ����a� we explained the empirical reduction in ef�

fectiveness of delay conditioning at long ISIs by appealing to di�erences

between external CS representations and internal �subjective
 CS represen�

tations� Whereas the external CS remains constant during the ISI in delay

conditioning� it is likely that the CS as perceived by the subject changes

during the ISI� In particular� the beginning of the CS is probably repre�

sented more saliently than its end� For example� a long external CS such

as that shown in �gure �a might give rise to a shorter internal CS repre�

sentation such as that shown in �gure �b� If this were the case with the

long CSs used in delay conditioning� then the SB model�s ISI dependency

for delay conditioning would look more like that for �xed�CS conditioning	

that is� it would diminish with increasing ISI in qualitative accord with the

empirical data�

The principal virtue of this explanation is that it leaves the SB model

intact� The principal weakness of this explanation is that special internal

CS representations have had to be hypothesized to deal with one of the sim�

plest of classical conditioning experiments� As we consider more complex

experiments� will the model�s explanations involve increasingly complex hy�

potheses about internal representions! Relying on such hypotheses would
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Figure �
External and possible internal stimulus representations for a long overt CS�

Figure ��
ISI dependency of the SBD model� The US duration was �� ms� the CS duration in �xed�CS

conditioning was ��� ms� These data are from Moore et al� 
����
�

make it extremely di�cult to unambiguously determine the predictions of

the model�

Moore� Desmond� Blazis� et al� �Moore et al� ����	 Blazis et al� ����
�

proposed modifying and extending the SB model to form the Sutton�Barto�

Desmond �SBD
 model� Although they were primarily concerned with

matching behavioral and neurophysiological data on CR topography� their

changes also resulted in a better match to the empirical ISI data for delay

conditioning� They distinguished internal and external stimulus represen�

tations� but proposed a speci�c way of transforming one to the other so

that this step could not be manipulated in an ad hoc manner� Among

other changes� they hypothesized that the rate of decay of the eligibility

trace increases as a function of CS duration� Figure �� shows their simula�

tion data for the ISI dependency of the SBD model in �xed�CS and delay

conditioning� The SBD model correctly predicts a reduction in the e�ec�

tiveness of delay conditioning at long ISIs� However� they also found weak

inhibitory conditioning at some small ISIs in forward delay conditioning�

depending on parameter settings �Blazis and Moore ����
� Data were not

published for backward or simultaneous conditioning� but the model appar�

ently did not signi�cantly ease the SB model�s problem of strong inhibitory

conditioning �Blazis� personal communication
�
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Klopf ������ ����
 proposed a simpler way of modifying the SB

model to obtain weakened delay conditioning at long ISIs� In his Drive�

Reinforcement �DR
 model� eligibility does not increase during a CS but is

triggered by CS onset and then follows a �xed time course whether or not

the CS continues� Figure �� illustrates such an onset�triggered eligibility for

the case in which the time course of eligibility is a simple decay� � Because

CS duration does not a�ect the time course of eligibility� �xed�CS and delay

conditioning both lose e�ectiveness at long ISIs� Klopf �����
 demonstrated

this in simulations� but has not published the complete ISI dependency of

his model� Figure �� shows the ISI dependency of what might be consid�

ered a simpli�ed DR model�a model formed by using �Y for reinforcement

and onset�triggered eligibility whose time course is a simple delay�

Figure ��a shows the ISI dependency of the simpli�ed DR model for

�xed�CS conditioning after �� trials� Note that strong inhibitory condi�

tioning still occurs for simultaneous and backward CS�US presentation�

Figure ��b shows the ISI dependency of the simpli�ed DR model for de�

lay conditioning after ��� 
��� ����� and ������ trials� In all cases� delay

conditioning decreases in e�ectiveness at longer ISIs� in accord with the

empirical data� However� the ISI at which the decrease begins increases

with the number of conditioning trials� In fact� if conditioning proceeded

to asymptote� delay conditioning at all ISIs would equal a maximal value

determined by the intensity and duration of the US� For delay condition�

ing� this model predicts that associative strength increases toward the same

high value for all ISIs� increasing faster at some ISIs than at others� Few

experiments with animals have included the many thousands of trials that

would be required to test this prediction� but the conventional interpreta�

tion of the available empirical results is that asymptotic conditioning level

as well as rate of conditioning decreases at long ISIs �e�g�� Bitterman ���

�

A second problem with onset�triggered eligibility is that it predicts that

long CSs will not extinguish� Extinction in models using �Y as reinforce�

ment is normally caused by the decrement in Y � and hence negative �Y �

at CS o�set� However� if eligibility begins fading at the onset of a long CS�

then it can be very small or zero by CS o�set �see �gure ��
� Thus� it is in�

correctly predicted that a su�ciently long excitatory CS will not extinguish

through non�reinforced presentation� where �su�ciently long� is de�ned as

longer than than the maximum ISI at which delay conditioning is e�ective�

In general� the model predicts an inverse relationship between CS length

and rate of extinction� The empirical data currently available do not di�

rectly contradict this prediction� but they are not supportive of it �e�g�� see

Schneiderman ����
� Morgan and Klopf �personal communication
 have

veri�ed with simulations that the DR model makes these predictions�
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Figure ��
An onset�triggered eligibility trace� As in Klopf�s DR model� the trace is incremented only at

the onsets of CSs� For a very long CS� eligibility can nearly equal zero at CS o�set�

Figure ��
Interim and asymptotic ISI dependency of the simpli�ed DR model� Top� Fixed�CS condi�

tioning� �� trials� Bottom� Delay conditioning� various numbers of trials� The parameter
values used here were � � ���� � � � � and � � ��� � The � parameter was chosen to
approximately match the e�ect of Klopf�s 
����
 choices for his learning rate parameters c�

through c� �



��
 Sutton and Barto

Solving the Fixed�CS Conditioning Problem

In �xed�CS conditioning� the SB model predicts strong inhibitory condi�

tioning at simultaneous and near�simultaneous ISIs ��gure �
� but this is

not con�rmed by the available empirical data� Strong inhibitory condition�

ing is predicted because of the good temporal relationship between the CS

and the o�set of the US� Inhibitory conditioning is in fact predicted by the

SB model whenever the CS and US overlap� even in a forward arrangement

with a long ISI� In the simpli�ed DR model� inhibitory conditioning is pre�

dicted only for backward and simultaneous conditioning� but for those cases

the inhibitory conditioning is very strong �see �gure ��
� The full DRmodel

apparently makes similar predictions �Morgan and Klopf� personal commu�

nication
� as does the SBD model �Blazis� personal communication
� Em�

pirically� backward and simultaneous conditioning have occasionally been

found to produce weak inhibitory conditioning� but more often they pro�

duce weak excitatory conditioning �see Mackintosh ���
� ����	 Gormezano

et al� ����	 Prokasy et al� ����
� Although further empirical studies are

needed� it is clear that the predictions of strong inhibitory conditioning

made by all of these models are counter to actual animal behavior�

One way of eliminating these problematic predictions is to use a mod�

i�ed �Y theory in which only the onsets of USs create reinforcement� as

in Gelperin� Hop�eld and Tank�s �����
 Limax model� This is e�ectively

what we did in our original experiments with the SB model by using a very

long US� If the US is long enough� its o�set will occur when none of the

CSs are eligible� and thus negative reinforcement at this time has little or

no e�ect� This is the way we produced the �xed�CS ISI dependency for the

SB model shown in �gure �� which shows less of a problem with inhibitory

associations than does the ISI dependency shown in �gure �� However�

ignoring US o�set in this or any other way is questionable� For example�

it is known that US duration a�ects conditioning �Gormezano� Kehoe and

Marshall ����� p� ����
	 Frey and Butler ����
 and that US o�set can cause

inhibitory conditioning �Segundo et al� ����
�

To better understand the SB model�s problems when CS and US over�

lap� consider the case of complete overlap� that in which the CS and US

begin simultaneously and end simultaneously� The reinforcement created

at their joint onset causes no conditioning in the SB model because the

CS is not yet eligible� However� the reinforcement at their joint o�set�

�VUS�VCS � is negative initially and causes VCS to become negative� The

learning process stabilizes when the reinforcement at o�set is zero� that is�

when VCS � �VUS � At this point the reinforcing e�ect of the US is exactly

cancelled by that of the CS� both at o�set and onset� This means that if a

second CS is added that precedes the US� it will not acquire any associative

strength� In fact� this prediction of the SB model does not depend on the

simultaneous CS having been trained �rst� Even if the CS that precedes
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the US is trained to a strong excitatory asymptote� a subsequently added

simultaneous CS will become a strong inhibitor and cause the preceding CS

to lose all its associative strength�

These are problematic predictions because conditionable stimuli with

time courses similar to the time course of the US are invariably present in

all conditioning experiments� For example� an airpu� to the eye acts as a

US� but also produces conditionable stimuli� The time course of some of

these stimuli will be similar to the time course of the US� whereas others

will be longer� shorter� and with various delays	 some may be initiated at

US o�set� We have shown that US cancellation results in �Y models if only

a US�simultaneous CS is present� but what if all these other CSs are present

as well! This brings up the wider question of how the models behave when

presented not with one or two stimuli� but with a whole collection of them�

We now show that US cancellation tends to result in this case as well�

Behavior in Response to Complete�Serial�Compound Stimuli

The learning behavior of an animal or real�time model is often limited by the

temporal pattern of CSs presented to it� For example� whenever no stimuli

are present� Y must be zero� and� whenever the CSs present are constant�

Y must be constant� Animals too are strongly in�uenced by the temporal

pattern of CSs� but can partially overcome these limitations� For example�

when animals are presented with a very long�duration CS� followed by the

US� they eventually learn to repond di�erentially to the earlier and later

portions of the CS� If the earlier and later portions are distinguishable� e�g��

if they are tones of two di�erent frequencies� then animals �nd it easier to

respond di�erentially to them� Turning the original CS into a sequence of

stimulus components� called a serial�compound stimulus� frees the animal

to more easily exhibit what is in some sense its natural response� Taking

this idea to its extreme� the animal or model could be presented with a

distinguishable stimulus component for every small segment of time before�

during� and after the US� If such a stimulus sequence completely covers the

intratrial interval� then we call it a complete serial�compound stimulus� or

CSC stimulus�

A complete�serial�compound experiment is an experiment in which a

CSC stimulus is presented on each trial along with a US� In simulations of

CSC experiments� a separate component CS is provided for every time step

during a trial� The model is then able to produce a di�erent� independent

response level� Y � for each simulation time step during a trial� The be�

havior of Y during a trial is not constrained by the CSs� but is entirely

a function of the model�s properties� It reveals what the model would do

in every experiment with the US� if the model were not limited by the
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Figure ��
Intratrial behavior of Y for the SB model in a CSC experiment� A separate CS has been

provided for every time step before� during� and after the US� Shown in each graph is the
behavior of the composite association Y during a single trial� The �rst graph 
trial �
 shows
the timing of the US� as initially Y is equal to the US signal� The height at each intratrial time

shows the association to the component CS occurring at that time� plus the US association
when the US is present� Initially� CSs preceeding the US become positively associated� but
eventually the SB model learns only inhibitory associations such that all e�ects of the US are

cancelled� The US is � time steps long� and the intratrial time period shown is �� time steps
long�

stimulus representation� Because Y is presumably related to the CR� the

intratrial behavior of Y also has implications for theories of intratrial CR

topography�

Figure �� shows the intratrial behavior of Y developing over trials

in a CSC experiment with the SB model� The height at each intratrial

time shows the association to the component CS occurring at that time

�plus the US association for times when the US is present
� Although

there is some transient conditioning to CSs that precede the US� eventually

this extinguishes� leaving only CSs occuring during the US with nonzero

associative strengths� These CSs are conditioned inhibitors having identical

strength� �VUS � Their e�ect is to exactly cancel the reinforcing e�ect of the

US� The SB model thus predicts that there can be no asymptotic excitatory

conditioning if a rich set of CSs are available�

The US cancellation problem shown most clearly by this CSC experi�

ment is apparently an inherent consequence of the �Y theory of reinforce�

ment� For example� the same cancellation results if �Y reinforcement is

used in conjunction with an onset�triggered eligibility� Morgan and Klopf

�personal correspondence
 have veri�ed that the DR model� which uses �Y



Time�Derivative Models of Pavlovian Reinforcement ���

reinforcement� also cancels the e�ect of the US if presented with a simul�

taneous CS� This result also seems inevitable for the SBD model� which

uses a modi�ed �Y theory of reinforcement� From the equations of the the
SBD model it is clear at least that if the simultaneous CS initially cancels

the US� then no reinforcement and thus no learning changes will occur� In

general� learning stops in a �Y theory of reinforcement whenever �Y � � is

attained at all times during a trial� One way this can occur is by cancelling

the US� but this is inappropriate for a model of classical conditioning�

One possible source of the US�cancellation problem is that primary
and acquired reinforcers are treated nearly identically in the �Y theory�

They are identical except that the reinforcing e�ect of primary reinforcers is

presumed to be �xed and permanent� whereas that of acquired reinforcers is

subject to the learning process� This appeared initially to be consistent with

the operational de�nition of primary reinforcers as reinforcers that retain
their reinforcing e�ect even when repeatedly presented and not followed by

another reinforcer� i�e�� that do not extinguish� However� we have seen that

the e�ects of primary reinforcers as well as the e�ects of acquired reinforcers

tend to extinguish in models using �Y reinforcement� This suggests that

primary reinforcers should be modeled as being di�erent from acquired
reinforcers in some more essential way than is done in the �Y theory�

We have discussed a number of attempts to solve problems with the

ISI dependency of the SB model in delay and �xed�CS conditioning� none of

which is completely successful� Most of the attempts to solve the problems

in delay conditioning are modi�cations to the eligibility term� The �xed�CS

conditioning problems� however� seem to implicate the reinforcement term�
In the next section we take a more theoretical approach and derive a new

reinforcement term� that used in the TD model� and show that it solves

both kinds of problems�

The TD Model�s Theory of Reinforcement

Classical conditioning can be viewed as a manifestation of the subject�s

attempt to predict the arrival of the US� In terms of the Rescorla�Wagner

model� �V is the predicted US level on the trial and � is the actual US

level� Their di�erence � � �V drives the learning process as the model�s
reinforcement term� How can we extend these trial�level ideas to form a

real�time model! In this section we show how the computational theory

of TD methods as prediction algorithms �Sutton ����	 see also chapter

�� of this volume
 provides an answer to this question that solves the ISI

problems of the other time�derivative models�

In the Rescorla�Wagner model� � for a trial depends on the US�s in�
tensity and duration� A more intense or longer US results in a larger �

for that trial� In a real�time model� we let � change over time within a
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Figure ��
Time course of primary reinforcement� � � for � USs of di�erent intensities� durations� and

repetitions� In all cases� the area under the curve represents the overall reinforcing e�ect�

Figure ��
Time course of correct predictions near a US� A� Primary reinforcement� the correct prediction
at each time t relates to the future area under this curve� B� The correct predictions at each

time t of this future area� C� With imminence weighting� correct predictions fall as the area
becomes temporally remote�

trial� Its value at each time represents the strength of the US� or rather

the strength of its reinforcing e�ect� at that time� A more intense US is

represented by a correspondingly larger � value at the times when the US

is present� and a longer duration US is represented by a longer period of

over which � is non�zero� A double US is represented by two intervals

over which � is non�zero� In general� it is reasonable to propose that the

area under the � curve �see �gure �

 corresponds to the total primary

reinforcement on the trial�

From a real�time perspective� then� we might consider the animal to

be predicting the area under the � curve� Of course� at each time we

would only be concerned with predicting the area for future � �s� If the

current time is half�way through a US� then the current prediction should

be a prediction only of the remaining half� as shown in �gure ��a� Figure

��b shows the correct predictions of future areas under the � curve at each

point in time before� during� and after the presentation of the US� After

the US� there is no future area and the correct prediction is zero� Before

the US� all the area lies ahead and the correct prediction is constant and

equal to the total area� During the US� the area remaining in the future
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falls linearly from all of it at US onset to none at US o�set� The arrow

in �gure ��b indicates the height that corresponds to the shaded area in

�gure ��a�

If the future areas in �gure ��b are viewed as the predictions the sub�

ject is trying to learn� one problem is immediately apparent� the prediction

level is equally high for all times prior to the US� whereas� empirically� ani�

mals seem to learn a weaker prediction for CSs presented far in advance of

the US� The simple future�area view is also problematic theoretically� What

if the US is so delayed that the experimenter considers it to be part of the

next trial! Should the animal be predicting the sum of the areas of all

the USs that will be delivered in the experiment! In its lifetime! Clearly�

temporally remote primary reinforcement � � values
 should be discounted

in some way� Primary reinforcement that is immediate should carry full

weight	 when slightly delayed� it should carry slightly less weight	 when

long�delayed� it should carry very little weight� In other words� upcom�

ing primary reinforcement should be weighted according to its imminence�

With imminence weighting� the correct prediction for each point in time

near the US would look something like what is shown in �gure ��c�

Another example of the e�ect of imminence weighting is shown in �gure

��� Figure ��a shows a sequence of primary reinforcement created by a se�

quence of USs	 this is a � curve� Figure ��b shows the imminence weighting

function� specifying the way the weight given to primary reinforcement falls

o� with delay with respect to a particular time t � Figure ��c shows how

the original sequence is transformed by the imminence weighting function

applied at time t to give reduced weight to delayed primary reinforcement�

We propose that the quantity the subject is attempting to predict at time

t is the area under this curve rather than the area under the � curve�

To obtain the correct predictions for other times� the weighting function is

slid along the time axis so that its base starts at the time in question� the

� sequence is reweighted according to the new position� and the new area

is totalled� An example for another time t� is shown in �gures ��d and

��e� By repeating this process for every time� one obtains the sequence

of correct predictions shown in �gure ��f� This is what an animal should

predict when faced with the US pattern in �gure ��a� if it is attempting to

predict imminence�weighted areas�

It is useful to formalize these ideas with explicit reference to time�

For the moment we assume time is divided into small discrete steps� Let

�t denote the primary reinforcement received at time step t � where t �

�� �� �� � � � Let �Vt denote the prediction made at time t about values of �

for times later than t � Our initial theory� without imminence weighting� is

formalized by saying that the prediction should equal the sum of all future

� values�
�Vt � � � �t��  �t��  �t��  �t��  � � �
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Figure ��
Imminence weighting� A� A temporal sequence of primary reinforcement 
USs
� B� Exponen�

tial imminence�weighting for time t�the weight given at time t to primary reinforcement
at each later time� C� Primary reinforcement weighted for prediction at time t � the correct
prediction at time t is the area under this curve� D� Imminence weighting for time t� � E�

Primary reinforcement weighted for prediction at time t� � the correct prediction at time t�

is the area under this curve� F� The correct predictions at each time� the heights at times t

and t� equal the total areas in C and E�

where the quotation marks indicate that this is a desired relationship and

not one that necessarily holds� We can introduce imminence weighting by

discounting delayed primary reinforcement by some fraction � � � � � � � �

for each step that it is delayed� One�step delayed primary reinforcement

would then be discounted by � � two�step delayed primary reinforcement

by �� � three�step delayed by �� � and so on� The prediction at time t

should be

�Vt � � � �t��  ��t��  ���t��  ���t��  � � � �



This is the form of discounting used to produce the desired predictions

plotted in �gures ��c and �� �using a very small time step
�

Derivation of a Reinforcement Term

If the goal is to obtain predictions as given by Equation 
� what can we

conclude about the reinforcement term for use in our standard framework

given by Equation �! Sutton has recently developed a new computational

theory of prediction methods� called Temporal�Di�erence �TD� methods�

which suggests an answer� That theory provides a methodology for con�
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structing TD learning methods specialized for predicting quantities in the
form of Equation 
� We follow that methodology now to derive a suitable

reinforcement term�

The discounted sum that we seek to predict� given by Equation 
� can
be divided into two parts� one of which is the immediate reinforcement� and

one of which is a new discounted sum containing all the later reinforcements�

�Vt � � � �t��  �
h
�t��  ��t��  ���t��  � � �

i
� ��


The quantity in brackets is very similar to the overall sum to be predicted
given by Equation 
� In fact� it is exactly what the prediction �Vt�� is

supposed to be� That is� if we write out Equation 
 for the desired value
for �Vt�� �

�Vt�� � � � �t��  ��t��  ���t��  ���t��  � � � �

we see that we can exactly substitute �Vt�� into Equation � to obtain

�Vt � � � �t��  � �Vt���

Thus� we can simply state the desired prediction for one time step in terms

of the primary reinforcement and desired prediction for the next time step�
We want the prediction at each time step to equal the primary reinforcement

received on the next step plus the next prediction �discounted by � 
� The
discrepancy or error is then the di�erence between these quantities�

�t��  � �Vt�� � �Vt�

This discrepancy is much like the discrepancy used in the Rescorla�Wagner
model� � � �V � where the role of � in their model is being taken here

by �t��  � �Vt�� � This suggests that we use this discrepancy directly as
a reinforcement term� If this is done in combination with the �X model

of eligibility� one obtains the temporal�di�erence �TD
 model �Sutton and
Barto ����
�

�Vi � �
�
�t��  � �Vt�� � �Vt

�
� �i �Xi�

where � and �i are positive constants as in the Rescorla�Wagner model�

and where the equation applies at each moment in time as in all real�time
models� �

Although the TD model does not use �Y as its reinforcement� we con�

sider it to be a time�derivative model of reinforcement� In the theory above�
�Vt and �t�� � �Vt�� are viewed as predictions� formed on successive time

steps� of the same quantity� a discounted sum of � values� The discrep�
ancy between these two predictions is thus a discrete�time analog of the

time derivative of the prediction of that quantity� This discrepancy rep�
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Figure ��
Intratrial behavior of 	V for the TD model in a CSC experiment� The highest curve repre�

sents the theoretically correct predictions as given by Equation �� The lower curves are the
predictions generated by the TD model in a CSC experiment after various numbers of trials�
as indicated� A di�erent component CS is presented for every time step during the trial�

The height at any intratrial time represents the associative strength of the component CS
presented at that time� The peak of the predictions is one time step before US onset�when
the US is temporally closest but still lies entirely in the future� The US is � time steps long�

and the intratrial time shown is �� time steps�

Figure ��
ISI dependency of the TD model� Unlike the other models� the TD model�s ISI dependency

is a good match to the empirical data in �gure �� These associative strengths were obtained
after �� trials� See �gure � for the temporal relationships between stimuli�
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resents how the model�s expectation of discounted future � changes from

one time step to the next� In Chapter ��� we show in more detail how this

view of the TD model �ts into a computational framework�

Since the TD model is based on a theory of reinforcement in which the

correct predictions follow the time course shown in �gure ��c� one might ex�

pect it to produce similar actual predictions in a complete�serial�compound

experiment� Figure �� shows that indeed it does� The highest curve rep�

resents the theoretically correct intratrial predictions as given by Equation


� The lower curves are the prediction topographies generated by the TD

model at various trials of a simulation experiment in which a di�erent CS

is provided for each time step before� during and after the US� The ac�

tual predictions gradually approach the ideal ones� This shows that the

new model has solved the problems with cancellation of USs demonstrated

earlier for the �Y models�

Figure �� shows the ISI dependency of the TD model for �xed�CS and

delay conditioning� These curves are a good match to the empirical data

for rabbit NMR in �gure �� Delay conditioning decreases in e�ectiveness

at long ISIs� and there is no problem of strong inhibitory conditioning in

�xed�CS conditioning at near�zero ISIs�

Demonstrations of the TD model

The TD model seems to solve many of the problems with other time�

derivative models� but does the TD model retain the desirable properties

of these models on the wide range of experimental conditions in which they

have been explored! We have previously shown �Sutton and Barto ����


that it does� and that� in fact� it is in slightly better accord with the data

than is the SB model� In addition� we have shown that the TD model is

consistent with the data on serial�compound experiments to a degree that

has not been shown for previous models such as the SB model or Klopf�s

DR model� � Below we review some of these demonstrations� We present

results showing the behavior of the TD model in a range of conditioning

paradigms including blocking� facilitation of remote associations� primacy

e�ects� and second�order conditioning�

The TD model exhibits complete blocking if �rst�stage training is con�

ducted until asymptotic associative strength is achieved and the CS added

in the second stage has exactly the same time course as the �rst CS� This

follows directly from Equation � and the use of an �X eligibility trace� From

Equation �� the only way to have a di�erent change in associative strength

for two CSs is for their eligibilities to di�er� But the �X eligibility traces

of two CSs with the same time course are identical� Therefore� if the pre�

trained CS no longer undergoes any change in associative strength in the

second stage of a blocking experiment� then neither can the new CS� The



��
 Sutton and Barto

pretrained CS remains fully associated� and the new CS remains with zero
associative strength�

One of the well�known failings of the Rescorla�Wagner model is that�
in its simplest form� it predicts that a CS with a negative association�
a conditioned inhibitor� will extinguish if presented alone� Empirically�
this extinction has not been observed �Zimmer�Hart and Rescorla ���

�
However� this incorrect prediction results from the assumption that the
composite association� �V � is a simple sum of associative strengths of the
CSs present on a trial� If one assumes instead that �V is the sum if that
sum is positive� and zero otherwise� then the model correctly predicts that
conditioned inhibitors will not extinguish� Donegan� Gluck and Thompson
�����
 and others have noted this for the Rescorla�Wagner model	 Moore et
al� �����
 showed essentially the same thing for the SB model �by similarly
assuming Y is always non�negative
� and Klopf �����
 has shown this for
the DR model� We �Sutton and Barto ����
 followed their example and
speci�ed the TD model�s �V to be

P
ViXi when that sum is positive and

to be zero when the sum is negative� We now show that this produces the
correct behavior in a conditioned inhibition experiment� �

Figure �� shows the behavior of the TD model �with �V restricted
to be non�negative
 in a conditioned inhibition �CI
 training regime� In
CI� reinforced and unreinforced trials of the two types shown in �gure ��a
are intermixed� CS� is followed by the US except in the presence of
CS� � CS� is found empirically to become positively conditioned whereas
CS� becomes a conditioned inhibitor� This result was also found in the
simulation� In the extinction phase of the simulated CI experiment� both
stimuli were presented individually without the US� The result shown in
�gure �� is the same as that found empirically� the association to the excitor
extinguishes� but the association to the inhibitor does not �Zimmer�Hart
and Rescorla ���

�

Real�time conditioning models are interesting primarily because they
make predictions for a wide range of situations that cannot be represented
by trial�level models� These situations involve conditionable stimuli that
occur together but not strictly simultaneously� A compound stimulus whose
components do not both begin and end at the same time is called a serial
compound� It should be recognized that almost all learning involves se�
rial compounds� either because the animal distinguishes earlier and later
portions of a stimulus that may be viewed as a single stimulus by the ex�
perimenter� or because the animal�s behavior gives rise to a predictable
sequence of situations leading to reinforcement� as in maze running� Ke�
hoe �����
 surveys the theoretical issues and empirical results relevant to
serial�compound conditioning�

One of the theoretical issues arising in serial�compound conditioning
concerns the facilitation of remote associations� It has been found that
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Figure ��
Conditioned inhibition and its extinction in the TD model� In this and in all following sim�

ulations� 	Vt was forced to be non�negative� A
 Time traces showing the two kinds of trials
presented alternately in a conditioned inhibition experiment 
trials ����
 and in a subsequent
attempt to extinguish the resultant associations 
trials ������
� B
 Behavior over trials of the

associative strengths of CS� and CS� � During acquisition� the associative strength of CS�

becomes positive� while the associative strength of CS� becomes negative� The association
of CS� � but not of CS� � is extinguished by nonreinforcement� Both CSs were ��� ms� in

duration and the US was ��� ms� in duration�
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if the empty trace interval between the CS and the US is �lled with a

second CS to form a serial compound stimulus� then conditioning to the

�rst CS is facilitated� Figure ��b shows the behavior of the TD model in a

simulation of such an experiment� the timing details of which are shown in

�gure ��a� Consistent with the experimental results �see Kehoe ����
� the

model shows facilitation of both the rate of conditioning and the asymptotic

level of conditioning of the �rst CS due to the presence of the second CS�

As discussed earlier� a strength of real�time models is their ability to

make predictions about the e�ects on conditioning of intratrial temporal

relationships� One of the best�known demonstrations of such an e�ect is

an experiment by Egger and Miller �����
 that involves two overlapping

CSs in a delay con�guration as shown in �gure ��a� Although CSB is in

a better temporal relationship with the US� the presence of CSA reduces

conditioning to CSB substantially as compared to controls in which CSA

is absent� Figure ��b shows the same result being generated by the TD

model in a simulation of this experiment�

Earlier we discussed similar results for the SB model ��gure 

 from

an earlier paper �Sutton and Barto ����a
� That simulation experiment

di�ered from the Egger�Miller experiment in that the shorter CS was given

prior training until it was fully associated with the US� When the longer�

earlier CS was introduced� the association to the pretrained short CS de�

creased as training continued� As we discussed earlier� this is a surprising

and then�untested prediction� subsequently con�rmed by Kehoe� Schreurs�

and Graham �����
� who also noted that alternative �non�time�derivative


theories do not make this prediction and have considerable di�culty in ex�

plaining the result� The behavior of the TD model under these conditions

is shown in �gure ��� This behavior is actually in slightly better accord

with the data than is the SB model�s behavior� in that the association to

the pretrained short CS is reduced after the introduction of the long CS�

but not completely eliminated�

Figure �� shows the behavior of the TD model in a second�order con�

ditioning experiment� In the �rst phase �not shown in the �gure
� CSB is

pretrained with the US� In the second phase� CSA is paired with CSB in

the absence of the US� in the sequential arangement shown in �gure ��a�

Empirically� CSA is found to acquire associative strength even though it is

never paired with the US� In the TD model� CSA �rst acquires a substan�

tial association and then that association and CSB�s association extinguish�

The same pattern is seen empirically�

Figure �
 shows the ISI dependency of the TD model for second�order

conditioning� It plots the associative strength after �� trials as a function of

the CSA�CSB ISI� This ISI curve di�ers from the CS�US ISI curve shown

in �gure �� in that here simultaneous presentation results in the forma�
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Figure ��
Facilitation of a remote association by an intervening stimulus in the TD model� A� Temporal

relationships among stimuli within a trial� B� The behavior over trials of CSA�s associative
strength when CSA is presented in a serial compound� as in A� and when presented in an
identical temporal relationship to the US� only without CSB�

Figure ��
The Egger�Miller or primacy e�ect in the TD model� A� Temporal relationships among stimuli
within a trial� B� The behavior over trials of CSB�s associative strength when CSB is presented

with and without CSA�
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Figure ��
Temporal primacy overriding blocking in the TD model� A� Temporal relationships between

stimuli� B� The behavior over trials of CSB�s associative strength when CSB is presented
with and without CSA� The only di�erence between this simulation and that shown in �gure
�� was that here CSB started out fully conditioned�CSB�s associative strength was initially

set to ������ the �nal level reached when CSB was presented alone for �� trials� as in the
�CSA�absent� case in �gure ���

Figure ��

Second�order conditioning of the TD model� A� Temporal relationships between stimuli� B�
The behavior of the associative strengths associated with CSA and CSB over trials� The
second stimulus� CSB� has an initial associative strength of ����� at the beginning of the

simulation�
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Figure ��
E�ect of the CSA�CSB ISI on second�order conditioning of TD model� A� Temporal relation�

ships between stimuli� B� Resultant value of CSA�s associative strength after �� trials as a
function of CSA�CSB ISI�

tion of a large negative association instead of a small positive one� The

TD model treats the reinforcement due to USs and previously conditioned

CSs di�erently� US signals directly cause reinforcement� whereas changes

in the signals of previously conditioned CSs cause reinforcement� Thus� in

simultaneous presentation� a US�s reinforcement is delivered thoughout the

presentation� whereas a previously conditioned CS delivers reinforcement

only at its onset� and negative reinforcement at its o�set� so that a simulta�

neously paired CS will be much more a�ected by the negative reinforcement

than by the positive reinforcement�

Empirically� second�order conditioning is observed to occur with both

simultaneous and sequential CSA�CSB pairings� To explain this observa�

tion in terms of the TD model we must appeal to indirect associations�

which are outside the scope of the model per se� That is� the model

clearly predicts that no direct CSA�US association will develop� but does

not preclude the development of both CSA�CSB and CSB�US associa�

tions� which together could have the e�ect of a CSA�US association� This

explanation of second�order conditioning is in fact partially con�rmed em�

pirically� One observed di�erence between simultaneous and sequential

second�order conditioning is that responding to CSA is eliminated by ex�

tinguishing CSB after simultaneous second�order conditioning� but not after

sequential second�order conditioning �Rescorla ����b
� This suggests that

simultaneous second�order conditioning in fact does not result in a direct

CSA�US association� These simulation results also suggest the prediction
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that simultaneous pairing in second�order conditioning should result in a

negative CSA�US association� To our knowledge� this has not been tested�

Conclusion

The hypothesis that Pavlovian reinforcement is the time derivative of a

composite US and CS association accounts for many aspects of classical

conditioning� As Mowrer noted thirty years ago� it provides a uni�ed ac�

count of single�CS acquisition� higher�order conditioning� primacy e�ects�

and many instrumental learning phenomena that we have not considered

here� As we noted in ����� it also accounts for a wide range of stimulus

context e�ects by virtue of its reduction to the Rescorla�Wagner model

for the special case of simultaneously presented CSs� Once formalized and

combined with appropriate stimulus traces� time�deriviative models also

predict the e�ects of variations in intratrial temporal relationships� In par�

ticular� we have shown that the TD model reproduces salient features of

the empirical data in all three of these areas�

In comparing di�erent time�derivative models� we have focussed on

their predictions about the e�ect of the CS�US interstimulus interval on

single�CS acquisition conditioning� The predictions of our ���� model de�

viate from the empirical data for both �xed�CS and delay conditioning�

The related models proposed by Moore et al� �����
 and Klopf �����
 ease

some but not all of these problems� In particular� all of these models in�

correctly predict that a CS simultaneous with the US will become strongly

inhibitory and block conditioning to CSs that precede the US� Only the

TD model reproduces the main features of the empirical ISI dependency

without additional assumptions about subjective stimulus representations�

A distinguishing feature of the TD model is that it is based on a theory

about the function of classical conditioning� It is based on the supposition

that the goal of learning is to accurately predict at each point in time the

imminence�weighted sum of future US intensity levels� Given this goal� the

equations of the TD model follow from a computational theory of adaptive

prediction algorithms �Sutton ����	 Barto� Sutton and Watkins� this vol�

ume
� The TD model thus both predicts features of classical conditioning

behavior and provides an account of their function as part of a mechanism

for accurate prediction�

Finally� we note that the TD model is of course not a complete model

of classical conditioning� Among the major classes of phenomena not di�

rectly addressed by the model are attention� salience� con�guration� and

learning to learn �e�g�� see models by Mackintosh ����	 Pearce and Hall

����	 Kehoe ����	 Gelperin� Hop�eld and Tank	 Schlimmer and Granger

����	 Grossberg and Levine ����
� Models of many of these phenomena

could be added to the TD model as a �front end�� or pre�processing stage�
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intervening between the external stimuli and their representation to the TD

model� At the output end� the TD model has signi�cant implications for

CR topography� but would need to be augmented with a reponse rule be�

fore forming a full model of response generation �e�g�� see models by Moore

et al� ����	 Frey and Sears ����	 Blazis and Moore ����	 Desmond� this

volume
� Finally� we have noted that indirect associations� as revealed� e�g��

in sensory preconditioning experiments� are beyond the immediate scope

of the model� To include indirect associations� the model would need to

be extended from an adaptive�element model to a adaptive�network model

�e�g�� see models by Moore and Stickney ����	 Schmajuk and Moore ����	

Sutton and Barto ����b	 Sutton and Pinette ����
�
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Appendix� Details of TD Model Simulations

The equations in the text were left slightly ambiguous in order to avoid a

distracting complication of the notation� For clarity� the equations actu�

ally used in the TD model simulations are given here in full� with explicit

reference to time�

Vi�t �
 � Vi�t
 �

�
���t  �
  �

����X
j

Vj�t
Xj�t �


���	�
����X

j

Vj�t
Xj �t


���	


A� �Xi�t �
�

where bxc is x unless x � � � in which case it is � � and

�Xi�t �
 � �Xi�t
  	
�
Xi�t
� �Xi�t


�
�

When a stimulus was present� the corresponding input signal �Xi�t
 or

��t
 
 was set to �� and when the stimulus was absent� the signal was set

to �� All associative strengths� Vi � and eligibility traces� �Xi � were zero at

the start of training� except in the few cases explicitly noted�
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The time interval between trials was long enough for all traces to fall
to zero� Since no stimuli were presented during the inter�trial interval� it
is clear that reinforcement will be zero during this time� and that therefore
no learning will occur� Thus� the inter�trial interval was simulated simply
by setting the traces to zero�

The parameter values used were � � ��� � � � ��� � 	 � ��� � and
� � ���� � These values were chosen to approximately match ISI data for
the rabbit nictitating membrane response ��gure �
 under the interpretation
that each time step corresponds to �� ms� To produce the same behavior
under a di�erent interpretation of the time step� di�erent parameter values
must be used� For example� if one switched to an interpretation of a simu�
lation time step as �� ms�� then �ve times as many time steps would have
to occur in the same amount of clock time� Each of the learning rates �

and 	 would therefore have to be reduced by a �fth� to ���� and ���
 re�
spectively� so that approximately the same amount of learning would occur�
The rate at which imminence�weighting decreases� determined by � � must
also be reduced by a �fth� This is done by cutting the drop from ��� to �

by a �fth� In this case� by changing � from ���� to ����� Finally� note that
the associative strengths� Vi � represent predictions of future areas� that is�
of sums of future � values� Sampling time more �nely means there will be
proportionally more � values to add up in the same amount of clock time�
This means that associative strengths learned using di�erent time scales
can only be compared if the time scale is taken into account� For example�
�gure �� shows associative strengths under optimal conditions reaching val�
ues of approximately ���� If a �ve times smaller time step was used� then
the associative strengths would instead reach approximately ����� � ��� �
All of these adjustment rules are only approximate� but should give good
results as long as the time step is kept small�

Notes

�� Wagner
s ������ SOP model is a notable exception�

�� We drop the US�dependent constant � in discussing reinforcement terms because we

generally consider only a single US�


� One may ask� �what is the US
s association with�� The US can either be considered

to be associated with itself� just as the CSs are associated with the US� or both US

and CSs can be considered to be associated with the response produced by the US�

In either case� it makes sense for the US
s association to be large and permanent�

�� For this purpose we ignore changes in the individual associative strengths�

	� Klopf ������ actually proposed a time course of eligibility that was inverted�U shaped�

like the empirical ISI dependency� However� for our purposes this di�erence is prob�

ably not signi�cant�

�� See the appendix for speci�cation of the TD model with explicit reference to time and

for a listing of the parameter values used in the simulation experiments that follow�

�� Klopf and Morgan �personal communication� have recently obtained results for the

DR model that in some cases parallel those presented here�
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�� The outcomes of the experiments previously described are not a�ected by this rede��

nition of �V � because none of them involved inhibitory associations�
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