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Outline

● Parts of a neuron

● Ionic basis of the resting potential

● Ionic basis of the action potential (spikes)

● Ligand-gated channels

● Synaptic transmission

● Second messengers

● Properties of dendritic trees
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Neurons Come in Many Shapes

Nichols et al., From Neuron to Brain
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Parts of a Neuron

1.Cell body (soma)

2.Dendrites

3.Axon

● Some cells lack dendrites, e.g., dorsal root ganglion 
cells in the spinal cord.

● Some cells lack axons, e.g., some types of amacrine 
cells in the retina.

● What is the difference between axon and dendrite?
● Presence of spikes

● Distribution of channel types

● Pre- vs. post-synaptic structures
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Strucure of a Synapse

Gordon Shepherd, The Synaptic Organization of the Brain
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Properties of Typical Cortical Neurons

1.Resting potential of -60 to -75 mV.

2.Sums inputs in a non-linear, temporal-dependent way.

3.Produces a spike (or burst of spikes) as output.

4.Only spikes if input is above threshold.

5.On the downward side of the spike, the cell can hyper-
polarize: membrane potential drops as low as -90 mV.

6.Post-spike refractory period in which cells are much 
harder to excite.

7.Behavior can change in response to prolonged or 
repeated stimuli: “habituation”, “mode switching”, 
“fatigue”, etc.

8.Post-inhibitory rebound: if hyperpolarized by an 
inhibitory input, removing the input can result in a 
spike.
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The Action Potential
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(Intra/Extra)-Cellular Ion 
Concentrations

Values are in mM, for typical CNS neurons:

       Extracellular Intracellular
Na+        150  30
K+       3     140
Ca2+       1.2    0.1
Cl –   130    8
A –     25     162

Positive and negative charges balance, inside & outside.

The cell membrane is a lipid bilayer: acts as an insulator.

K+

Na+
Cl –

A–

cytoplasm cell membrane
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Passive Ion Channels

Nichols et al., From Neuron to Brain
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Passive Ion Channels
● Membrane contains channels selectively permeable to 

K+. Concentration gradient favors K+ flowing out of cell.

         [K+]
i
 = 140 mM [K+]

o
 = 3 mM

● K+ ions continue to flow out until the cell's membrane 
potential V

m
 is -96 mV.

● Now the outward concentration gradient for K+ is 
exactly counterbalanced by the inward electrical force.

● The cell's negative internal charge attracts positive 
ions, but only K+ can pass through the channel.

● Positive charges cluster along the outer wall of the 
membrane; negative charges cluster along inner wall.

K+

Na+ Cl –

A –
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Reversal Potential for K+

● The Nernst Equation defines the equilibrium potential:

● R = thermodynamic gas constant;
T = temperature in oK;
z = valence (+1 for K+); F = Faraday's constant

● k = RT/zF = 25 mV at room temperature;  E
K
 = –96 mV

● The cell membrane is only 50 Angstroms thick, so a -96 
mV potential is like 192,000 V across a 1 cm 
membrane.

E
K

=
RT

zF
ln
[K ]

o

[K ]
i

K+

Cl –-

A –

Na+

+  +  -  +             +  +  -  +  +  +  +  +  +  +  -  +  +  +   +  +  -  +

 -  +  -  -              -  -  -  -  +  -  -  -  -  -  -  -  -  -  +  -  -  -  -  -  -  -
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Manipulating the Reversal Potential

● By changing the extracellular concentration of K+, we 
can change the reversal potential.

● Example: we want E
K
 to go from -96 mV to -75 mV.

● This is exactly 3 times the RT/zF value of 25 mV.

● Calculate the K
o
 that will produce this reversal potential.

● Solution: increase extracellular K+ from 3 mM to 7 mM.

K
o
= exp 

E
K

RT / zF
⋅K

i
= exp−3⋅140 mM = 7 mM
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Two Other Ionic Currents

● Passive sodium channels allow inward sodium leakage.

● Passive chloride channels allow an inward Cl– leakage.
E

Cl
 = –75 mV.

● There is a simultaneous flow of K+, Na+, and Cl– ions into 
and out of the cell.

pump

Nichols et al., From Neuron to Brain

E
Na

= 25 mV⋅ln
[Na]

o

[Na ]
i

= 25mV⋅ln 150 mM

30 mM
= 40 mV



 
14

The Resting Potential
● The cell's membrane potential V

m
 is a weighted 

combination of the K+, Na+, and Cl– reversal potentials.

● The different ion channels have different conductances: 
g

K
, g

Na
, and g

Cl
.

● The Goldman-Hodgkin-Katz Equation:

● For typical cortical neurons the resting potential V
r
 is in 

the range of –60 to –75 mV.

● V
r
 is bounded from below by E

K
 and from above by E

Na
.

● How could we increase g
K
?

– Modify the channel structure

– Add more channels to the membrane

V
m
=

E
K
×g

K
 E

Na
×g

Na
 E

Cl
×g

Cl

g
K
 g

Na
 g

Cl
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The Sodium Pump

● Why doesn't the 
cellular battery run 
down?

● Electrogenic pumps 
maintain the cell's 
ionic balance.

● The sodium pump 
takes in 2 K+ ions and 
expels 3 Na+ ions on 
each cycle.

● The pump is powered 
by ATP (adenosine 
triphosphate).

From Mathews and van Holde: Biochemistry 2/e. The Benjamin/Cummings Publishing Co., Inc.
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The Action Potential

Suppose V
m
 rises above –55 

mV (the spike threshold).

1. Voltage-gated Na+ channels 
begin to open.

2. This increases g
Na

, so more Na+ 

ions enter the cell. The 
membrane beomes further 
depolarized, causing more 
channels to open and even 
more Na+ ions to enter the cell.

3. Sodium channels become 
refractory and incoming Na+ 
current stops.
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The Action Potential (cont.)
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The Action Potential (cont.)

● Why are spikes sharp?

2. As V
m
 rises, voltage-gated K+ 

channels begin to open.

3. Rise in gk is slow at first, then 
speeds up, so K+ ions leave the 
cell at a high rate.

4. The membrane potential drops.

5. Since g
K
 is higher than normal, V

m
 

can even temporarily drop to 
below V

r
 (but not below E

K
).

(This is the cause of after-
 hyperpolarization.)

6. As V
m
 drops, the voltage-gated K+ 

channels gradually close, and the 
passive current flows bring the 
cell back to V

r
.
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Sodium Channel States

Kandel, Schwartz, and Jessel, Princples of Neural Science, 4th ed

gating current from channel 
conformation change

ionic current from flow of Na+ ions 
through the channel
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Channel Behavior

● The sodium channel has 
several states: open, closed 
(with several substates), and 
inactive.

● Each state corresponds to a 
movement of charge within 
the channel, causing a 
conformational change in the 
protein.

● A series of 3-4 conformational 
changes bring the channel 
from the closed to the open 
state.

● Once the channel is open, the 
inactivation gate can close, 
blocking ion flow again.
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Channel Behavior

● State changes are stochastic, influenced by V
m
.

Nichols et al., From Neuron to Brain
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Post-Inhibitory Rebound
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The Hodgkin-Huxley Model

● The voltage-
gated sodium 
channel has 3 
activation 
subunits (m) and 
one inactivation 
subunit (h).

● All subunits must 
be in the “open” 
state for Na+ ions 
to flow.

● Conductance is 
proportional to 
m3h.
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The Hodgkin-Huxley Model

● The voltage-
gated potassium 
channel as 4 
activation 
subunits (n).

● All subunits must 
be in the “open” 
state for K+ ions 
to flow.

● Conductance is 
proportional to 
n4.



 
25

Hodgkin-Huxley Spiking
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Types of Ionic Currents

● There are more than a dozen voltage-gated ion 
currents.

● Each has a different time course of activation and 
inactivation.

● I
Na,t

 is the fast, transient sodium current responsible for 

action potentials.

● I
K
 is one of several currents responsible for 

repolarization after an action potential.

● I
AHP

 is a slow potassium current triggered by Ca2+ influx, 

responsible for adaptation of the action potential with 
repeated firing.

● Complex spike patterns in some cells are thought to 
involve as many as 10 distinct ion currents.
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Parabolic Bursting

● Parabolic bursting in rat sciatic nerve:

● Aplysia R15 parabolic cell: parabolic bursting involves 
at least 7 different channel types.

Yong et al. (2003) Parabolic bursting induced by veratridine in rat injured sciatic nerves.
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Propagation of the Action Potential

● A region of membrane is depolarized due to Na+ 
channels opening.

● The depolarization spreads to nearby patches of 
membrane as ions flow into the cell.

● Channels in these new patches then begin to open.

● The “spike” is a traveling wave that begins at the soma.

● It can travel in either direction along an axon: 
prodromic or antidromic.

● Normally it only travels forward.

● Why doesn't it reflect backward when it gets to the end 
of the axon?
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Propagation of the Action Potential

Nichols et al., From Neuron to Brain
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What About Calcium?

● Ca2+ is present in only small amounts in the cell: 0.1 mM 
compared to 140mM for K+.

● Extracellular concentration is also small: 1.2 mM.

● Thus, Ca2+ doesn't contribute significantly to the resting 
potential or the normal (sodium) axonal spike.

● It can, however, contribute to some types of spikes.

● Ca2+ is crucial for triggering many important operations 
in neurons, such as transmitter release.

● Thus, when a little bit of extra calcium does enter the 
cell, it has a big effect.

● If a cell is overstimulated, too much Ca2+ can enter, 
which could poison it.

– This is why epileptic seizures can cause brain damage.
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Transmitter Release

● The synaptic bouton contains voltage-sensitive Ca2+ 
channels that open when the spike depolarizes the 
membrane.

● Calcium enters the bouton and triggers metabolic 
reactions that result in transmitter release.

● A vesicle fuses with the membrane surface and dumps 
its transmitter into the synaptic cleft.

● This is a probabilistic process. A single spike may only 
result in release of a packet of transmitter 10% of the 
time.

● Some cells can release more than one type of 
transmitter. This was only discovered recently.
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Transmitter Release (cont.)

Gordon Shepherd, The Synaptic Organization of the Brain
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Neurotransmitters

● A few neurotransmitters you should know about:

 glutamate excitatory; pyramidal cells

GABA inhibitory interneurons

ACh neuromuscular junction (excit.)
heart cells (muscarinic inhib.)
hippocampus (modulatory)

● Dozens of substances can act as neurotransmitters , 
including both simple molecules (glutamate, GABA, 
ACh, dopamine, norepinephrine) and proteins 
(enkephalin, substance P.)

● Many kinds of channels can be sensitive to the same 
neurotransmitter.
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Neurotransmitters (cont.)

● GABA = gamma aminobutyric acid

● GABA
A
 receptor: fast shunting inhibition via Cl– channel.

● GABA
B
 receptor: slow, long-lasting inhibition via a K+ 

current. Not directly coupled to a single ion channel.

● Some receptors are named after substances that 
enhance or block their response (agonists/antagonists):

– Muscarinic vs. nicotinic ACh receptors

– NMDA vs. AMPA glutamate receptors

NMDA = N-methyl-d-aspartate

AMPA = a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid
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Ligand-Gated Ion Channels

● In the dendrites and soma there are receptors sensitive 
to particular neurotransmitters.

● In the simplest case, the receptor and ion channel are 
parts of the same complex. This is a ligand-gated ion 
channel.

● When transmitter binds to the receptor, the channel 
opens and ions flow.

● Whether a channel is excitatory or inhibitory depends 
on the kinds of ions it passes.

● For some inhibitory channels, binding of 
neurotransmitter prevents the channel from opening.
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Ion Channels Are Proteins

Kandel, Schwartz, and Jessel, Princples of Neural Science, 4th ed

Na+ 
channel

Ca2+ 
channel

K+ channel
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ACh Receptor
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Ion Channels Are Proteins

● A channel is typically a single protein strand that passes 
through the membrane multiple times, forming a pore 
through which ions can pass.

● Modifications to the amino acid sequence result in slight 
changes to the channel characteristics, e.g., 
conductance, activation voltage, open/close time.

● Human and cow neurons both have ion channels, but 
their characteristics are slightly different.

● Cells continually make new channels and reclaim 
existing ones.

● By modulating the rates of creation and reclamation, a 
cell can dynamically adjust the distribution of channels 
over the surface of its membrane.

● Some types of learning may be implemented this way.
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Second Messenger Systems

● Instead of being directly coupled to a channel, a 
receptor can be coupled to a G-protein.

● When transmitter binds to the receptor, this allows GDP 
(guanosine 5'-diphosphate) bound to the a subunit to 
be converted to GTP (guanosine 5'-triphosphate).

● The GTP-a subunit complex then detaches from the 
receptor and can interact with a variety of targets, 
including ion channels.

● This mechanism allows a single receptor to control 
several intracellular processes at once.

● The GABA
B
 receptor is an example of a second 

messenger system.
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Second Messengers
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Properties of Dendrites

● Passive current flow?  Can have Ca2+ spikes.

● The cable equation defines how current flows in 
dendritic segments.

– Must deal with resistance, capacitance, multiple current 
sources, branched dendritic trees.

● Many synapses in the brain are made onto dendritic 
spines. Why are there spines?

– small diameter neck gives 
high input impedance

– mini-chemical reactors

● Spines can change shape
with experience; another
mechanism of learning?

Dennis D. Kunkel;  http://www.pbrc.hawaii.edu/sfnhawaii/
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Dendritic Information Processing

● Local interactions in the dendritic 
tree are non-linear.

● Active membrane areas have been 
found in some dendrites, permitting 
dendritic spikes to occur.

● “Cold spots” are regions where 
shunting inhibition suppresses 
distal epsps, preventing them from 
traveling further toward the soma.

● AND gates, OR gates, and even
AND-NOT gates are possible.

● What do neurons compute? Possibly 
very complex functions, since there 
can be 10,000 synapses coming 
into a pyramidal cell.

Gordon Shepherd, The Synaptic
Organization of the Brain
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apical 
dendrite

Miscellaneous Items

● Terms to know:

epsp and ipsp
shunting inhibition
pyramidal cell
glutamate
GABA (g-amino butyric acid)
GABA

A
 v. GABA

B
 receptor

● How neuroscientists draw 
pyramidal cells:

Basal
dendrite

axon

basal 
dendrite
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