Marr's Theory of the Hippocampus
Part |l: Effect of Recurrent Collaterals

Computational Models of Neural Systems
Lecture 3.4

David S. Touretzky
October, 2023



Two Layer Model

* Neocortex Hippocampus

.
J
] b,
4

P . o '
/
Evidence
Event , . 4 .
Representation 1 " Cells

: o bo
-




Two Layer Model Insufficient?

 Marr claimed the two layer model could not satisfy all
the constraints he had established concerning:

number of stored memories n

number of cells

sparse activity: no o =1

but patterns not too sparse for effective retrieval
number of synapses per cell: S o N =20N_

* But this was really because he assumed the number of
output cells was just 10°.

 He switched to a three layer model, with neocortical
cells, evidence cells (codons), and output cells.

 The output cells had recurrent collaterals.
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The Collateral Effect

- Let 2 be a population of cells forming a simple
representation.

 Each cell can learn about 100 input events.

« Population as a whole learns n = 10° events.

. Hence a. must be around 107,

- We require n o. a., to be at most 1.
Estimated value based on the above is 0.1.

- Hence we can let 2 = 2 and use recurrent collaterals
to help clean up the simple representation.

- Result: external input to £ need not be sufficient by
itself to reproduce the entire simple representation.
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Parameters of the Three-Layer Model

. 2 has 1.25 x 10° cells divided into 25 blocks of 50,000.
- 2 has 500,000 cells divided into 25 blocks of 20,000.
- 2, has a single block of 100,000 cells.

- Let number of synapses/cell S, = 50,000.

- Let x. be number of active synapses on a cell, i.e., the
number used to store one event.

- X /S is the likelihood a particular synapse is active.
 no is the expected number of events a cell encodes.
* Probability of a synapse being potentiated is:

[1 =1 — (1—xl_/Sl_

)I’ZO(,
l
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Parameters of the Three-Layer Model

M o=1- (1-x/s)"

l

- P(r) is the probability that a cell in layer i has exactly r
active afferent synapses.

« From the above, we have L3 = oc3N3 = 217, and
a3=0.002.

- If we want useful collateral synapses in 2, must have
n(OLB)Z < 1.

« So with n = 10° events, we have o, = at most 0.003.
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Retrieval With Partial/Noisy Cues

- Let P_ be the simple representation of E_in ..

. Let P_, be the remaining cells in 2,.

- Let C be the active cells in P__ representing subevent X.
. Let C, be the active cells in P_  (noise).

- Note that C +C_ = pattern size L..

T3
30 )
C, : c.
good cue 1
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Collateral Connections

« The statistical threshold is the ratio CO:C1 such that the
effect of collaterals is zero: C,C =C.C,

* Collaterals help when statistical threshold is exceeded.

« Calculating C,.:C. Is a bit tricky because there is both a
subtractive and a divisive threshold; see Marr §3.1.2.
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Collateral Effect In P3,

 Let b be an arbitrary cell inP_, .

« Z_, is probability of a recurrent synapse onto b.

 Number of active recurrent synapses onto b is distributed
as Binomial(L_; Z_) with expected value L Z_..

* Probability that b has exactly x active synapses onto it:

L —x

X 3
75 (1-2,)

b is either In P30 or not. We'll consider each case:
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- Suppose bisinP_,sonotinP_.

 Of the x active synapses onto b, the number of
facilitated synapses r is distributed as Binomial(x; IL,,).

* Probability that exactly r of the x active synapses onto
b have been modified when b is in P__ is:

X—r

3

ST (1—H3,
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. Suppose bisinP_.
- All afferent synapses from other cells in P_ onto b will
have been modified.

« Active synapses onto b are drawn from two
distributions:

- Binomial(C; Z_) for cells in P_ - modified with probability 1
- Binomial(C; Z_) for cells in P_ - modified with probability TI_

* Approximate this mixture with a single distribution for
the number of modified active synapses:

- Binomial(x; (C,+C,I1_)/(C +C.))
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* Let C be the expected fraction of synapses onto b in the
subevent X that have been modified:

c + C II_,
c = 1773

CO—|—C1

* Probability that r of x active synapses have been
modified when b isin P__is:

. Cl" . (1_C)X r

 Note: this differs from Marr's formula 3.3.
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o If all cells In P3, have threshold R, then:

Size of the simple -
representation P_ N Prob. that a ceII. inP_,
has enough active
C Z Z P r) modified synapses to
P_ noise cells —a .
Cl’ — (N3—L3) : Z Z P3’<x>Q3,1<r)FPrOb. that a ceIIlln P_,
r=R x=r has enough active

modified synapses to

« Statistical threshold is the ratio where be above threshold

CO : C1 = CO, : C1'
subject to
Cc +C =C +C =~ L
0 | 0 1
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Dealing With Variable Thresholds

In reality, cells in 2, do not have fixed thresholds R.
They have:

- A subtractive threshold T
- A divisive threshold f

Combined threshold:

R(b) = max(T, fx)
« Can calculate CO" and C1" using R(b) instead of R.

« Details are in Marr §3.1.2.
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Results

 More synapses help: Z,, = 0.2 gives a statistical

threshold twice as good as Z_, = 0.1.

 Good performance depends on adjusting T and f.
(f should start out low and increase; T should decrease
to compensate.)

* Collaterals can have a big effect.

- Recovery of E_ is almost certain for inputs that are more
than 0.1 L, above the statistical threshold.

- Example: Marr table 7: L, = 200, threshold is 60:140.

* In general: collaterals help whenever no® < 1.

(Sparse patterns; not too many stored memories.)
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Marr's Performance Estimate

Input patterns: L, = 2500 units active out of 1.25 million
(25 blocks of 50,000; 100 active units in each block)

Output patterns: L, = 217 units out of 100,000.

With n = 10° stored events, accurate retrieval from:

- 30 active fibers in one block, all of which are in E0

— 100 active fibers in one block, of which 70 are in EO
and 30 are noise

With n = 10° stored events, accurate retrieval from:

- 60 active fibers in one block, all of which are Iin EO

— 100 active fibers in one block, of which 90 are in EO

10/04/23 Computational Models of Neural Systems 17



Willshaw and Buckingham's Model

* Willshaw and Buckingham implemented a simplified
1/100 scale model of Marr's architecture

- Didn't bother partitioning # and #, into blocks.
. 2 = 8000 cells, 2 = 4000 cells, and 7, = 1024 cells.
- For two-layer version, omit 2,.

* Performance was similar for both architectures.

« Memory capacity was roughly 1000 events.

— Partial cue of 8% gave perfect retrieval 66% of the time.
- In two-layer net, 16% cue gave perfect retrieval 99% of the time.
- In three-layer version, 25% cue gave 100% perfect retrieval.
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Three-Layer Model Parameters

«, =0.03 x,=0.03 0(320.03
N =38000 N,=4000 N3=1024
§,=1333 S3=2666

calc.:
L1:24O L2=12() L3:3O

Z2=().17 Z3:O.67
H220.41 H3:O.41
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Two vs. Three Layers

 Dashed line is two layer; solid is three layer.

* Open circles: partial cue. Solid circles: noisy cue.

 Two and three layer models perform similarly.
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Effects of Memory Load
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* | cell supplies divisive inhibition based on the number of
active input lines that synapse onto the pyramidal cell,
Independent of whether they've been modified.

* P cell measures number of active synapses that have
been modified, S. Has absolute threshold T (not shown).

e Cell should fireifS>fAandS >T.
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How to Set the Thresholds?

 Maximal similarity strategy: choose T and f that cause

the smallest number of cells to be in
(May not be biologically realizable.)

the wrong state.

« Staircase strategy: start with small f and high T. Lower
T until enough cells become active. Then raise fslightly
and lower T to restore the activity level. Repeat until

can no longer maintain activity leve

orf=1.

« Competitive strategy: set f = 0 and lower T until the
required activity level is reached. This is a k-winner-

take-all strategy.

 Measure performance as: # of perfectly recalled
patterns divided by total # of patterns. Used 1000

patterns in most experiments.
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Comparing Threshold Setting Methods
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Effect of Collaterals

 Marr estimates that the collaterals should have made
their full contribution to recovering the event in about 3
cycles. Additional cycles would provide no benefit.

 McNaughton's commentary:

10/04/23

Oscillating cycle of excitation and inhibition in hippocampus,
known as the theta rhythm: around 7 Hz (140 msec cycle).

Hippocampal cell output is phase-locked to the theta rhythm.

Assume pattern completion takes place in the % cycle where
excitation is increasing: 35 msec window.

Conduction delay and synaptic delay total 6-8 msec.

This leaves room for just 4-6 cycles in that 35 msec window:
very close to Marr's prediction.
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Assessment of Marr's Theory

« Strong points:

Sparse, topographic connectivity: more biologically realistic.
Multiple inhibitory mechanisms: subtraction and division.
Predicts when recurrent collaterals will help retrieval.

Anticipated many important findings: LTP, division operations,
information transfer during sleep.

 Weak points:

- Ignores the trisynaptic circuit (EC - DG —» CA3 - CAl). It seems

10/04/23

like 2 is neocortex, 2, is EC or DG, and 2, is CA3.
- 2 has more cells than 2,, like DG has more than CA3
- But mossy fiber projection to CA3 is too sparse for 2, - P,

Claim that three layers of cells are necessary was unjustified.

Unanswered question: how are memories transferred from
hippocampus to the neocortex?

Computational Models of Neural Systems
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