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Two Layer Model Insufficient?

● Marr claimed the two layer model could not satisfy all 
the constraints he had established concerning:

– number of stored memories n

– number of cells

– sparse activity:  n a
i 
a

i-1
 ≤ 1

– but patterns not too sparse for effective retrieval

– number of synapses per cell:   S
i 
a

i 
N

i
 ≥ 20 N

i-1

● But this was really because he assumed the number of 
output cells was just 104.

● He switched to a three layer model, with neocortical 
cells, evidence cells (codons), and output cells.

● The output cells had recurrent collaterals.
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The Three-Layer Model

P
1
: 1.25 × 106

Input Cells

P
2
: 500,000

Evidence Cells (Codons)

P
3
: 100,000

Output Cells

P
1
 and P

2
 each 

divided into 25 
blocks

Representation
of event E

0

Noisy cue X

Pattern C induced 
by collaterals

50,000 units 20,000 units
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The Collateral Effect

● Let P
i
 be a population of cells forming a simple 

representation.

● Each cell can learn about 100 input events.

● Population as a whole learns n = 105 events.

● Hence a
i
 must be around 10-3.

● We require n a
i
 a

i-1
 to be at most 1.

Estimated value based on the above is 0.1.

● Hence we can let P
i-1

 = P
i
 and use recurrent collaterals 

to help clean up the simple representation.

● Result: external input to P
i
 need not be sufficient by 

itself to reproduce the entire simple representation.
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Parameters of the Three-Layer Model

● P
1
 has 1.25 × 106 cells divided into 25 blocks of 50,000.

● P
2
 has 500,000 cells divided into 25 blocks of 20,000.

● P
3
 has a single block of 100,000 cells.

● Let number of synapses/cell S
3
 = 50,000.

● Let x
i
 be number of active synapses on a cell, i.e., the 

number used to store one event.

● x
i
 / S

i
 is the likelihood a particular synapse is active.

● n a
i
 is the expected number of events a cell encodes.

● Probability of a synapse being potentiated is:


i

= 1 − 1−x
i
/S

i

n

i
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Parameters of the Three-Layer Model

● P
I
(r) is the probability that a cell in layer i  has exactly r 

active afferent synapses.

● From the above, we have L
3
 = a

3
N

3
 = 217, and 

a
3
=0.002.

● If we want useful collateral synapses in P
3
, must have

n(a
3
)2 ≤ 1.

● So with n = 105 events, we have a
3 
= at most 0.003.


i

= 1 − 1−x
i
/S

i

n

i

x
i

= ∑
r≥R

i

P
i
r ⋅r
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Retrieval With Partial/Noisy Cues
● Let P

30
 be the simple representation of E

0
 in P

3
.

● Let P
31

 be the remaining cells in P
3
.

● Let C
0
 be the active cells in P

30
 representing subevent X.

● Let C
1
 be the active cells in P

31
 (noise).

● Note that C
0
+C

1
 = pattern size L

3
.

P
31

C
1
 :  

noise

P
3

P
30

C
0 

 : 

 good cue
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Collateral Connections

● The statistical threshold is the ratio C
0
:C

1
 such that the 

effect of collaterals is zero: C
0
:C

1
 = C

0‘
:C

1‘

● Collaterals help when statistical threshold is exceeded.

● Calculating C
0‘
:C

1‘
 is a bit tricky because there is both a 

subtractive and a divisive threshold; see Marr §3.1.2.

C
0

C
1

P
3

C
0‘

P
3‘

C
1‘
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● Let b be an arbitrary cell in P
3‘
 .

● Z
3'
 is probability of a recurrent synapse onto b.

● Number of active recurrent synapses onto b is distributed 

as Binomial(L
3
; Z

3'
) with expected value L

3
Z

3'
.

● Probability that b has exactly x active synapses onto it:

● b is either in P
30

 or not.  We'll consider each case:

P
3
x = L

3

x  ⋅ Z3
x
⋅ 1−Z 3

L3−x

Collateral Effect in P
3'
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● Suppose b is in P
31

, so not in P
30

.

● Of the x active synapses onto b, the number of 

facilitated synapses r is distributed as Binomial(x; P
3‘
).

● Probability that exactly r of the x active synapses onto 
b have been modified when b is in P

31
 is:

Q
31

r  = x
r  ⋅ 

3
r

⋅ 1−
3

x−r
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● Suppose b is in P
30

.

● All afferent synapses from other cells in P
30

 onto b will 

have been modified.

● Active synapses onto b are drawn from two 
distributions:

– Binomial(C
0
; Z

3'
) for cells in P

30
 – modified with probability 1

– Binomial(C
1
; Z

3'
) for cells in P

31
 – modified with probability P

3'

● Approximate this mixture with a single distribution for 
the number of modified active synapses:

– Binomial(x; (C
0
+C

1
P

3‘
)/(C

0
+C

1
))
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● Let C be the expected fraction of synapses onto b in the 
subevent X that have been modified:

● Probability that r of x active synapses have been 
modified when b is in P

30
 is:

● Note: this differs from Marr's formula 3.3.

C =
C

0
 C

1


3

C
0

 C
1

Q
30

r  = x
r  ⋅ C r

⋅ 1−C 
x−r
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● If all cells in P
3‘
 have threshold R, then:

● Statistical threshold is the ratio where 

subject to

C
0

= L
3
⋅ ∑

r≥R
∑
x=r

L
3

P
3
 xQ

30
r 

C
1

= N3−L3 ⋅ ∑
r≥R

∑
x=r

L
3

P
3
x Q

31
r 

C
0

: C
1

= C
0

: C
1

C
0
C

1
= C

0
C

1
≈ L

3

Prob. that a cell in P
30

 

has enough active 
modified synapses to 
be above threshold

Size of the simple 
representation P

30
 

Number of potential 
P

31
 noise cells

Prob. that a cell in P
31

 

has enough active 
modified synapses to 
be above threshold
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Dealing With Variable Thresholds

● In reality, cells in P
3
 do not have fixed thresholds R.

They have:

– A subtractive threshold T

– A divisive threshold f

● Combined threshold:

     R(b) =  max(T, fx)

● Can calculate C0* and C1* using R(b) instead of R.

● Details are in Marr §3.1.2.
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Results

● More synapses help: Z
3'
 = 0.2 gives a statistical 

threshold twice as good as Z
3'
 = 0.1.

● Good performance depends on adjusting T and f.
(f should start out low and increase; T should decrease 
to compensate.)

● Collaterals can have a big effect.

● Recovery of E
0
 is almost certain for inputs that are more 

than 0.1 L
3
 above the statistical threshold.

● Example: Marr table 7:  L
3
 = 200, threshold is 60:140.

● In general: collaterals help whenever na2 ≤ 1.

(Sparse patterns; not too many stored memories.)
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Marr's Performance Estimate

● Input patterns: L
1
 = 2500 units active out of 1.25 million 

(25 blocks of 50,000; 100 active units in each block)

● Output patterns: L
3
 = 217 units out of 100,000.

● With n = 105 stored events, accurate retrieval from:

– 30 active fibers in one block, all of which are in E
0

– 100 active fibers in one block, of which 70 are in E
0
 

and 30 are noise

● With n = 106 stored events, accurate retrieval from:

– 60 active fibers in one block, all of which are in E
0

– 100 active fibers in one block, of which 90 are in E
0
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Willshaw and Buckingham's Model

● Willshaw and Buckingham implemented a simplified 
1/100 scale model of Marr's architecture

● Didn't bother partitioning P
1
 and P

2
 into blocks.

● P
1
 = 8000 cells, P

2
 = 4000 cells, and P

3
 = 1024 cells.

● For two-layer version, omit P
2
.

● Performance was similar for both architectures.

● Memory capacity was roughly 1000 events.

– Partial cue of 8% gave perfect retrieval 66% of the time.

– In two-layer net, 16% cue gave perfect retrieval 99% of the time.

– In three-layer version, 25% cue gave 100% perfect retrieval.
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Three-Layer Model Parameters


1
=0.03 

2
=0.03 

3
=0.03

N
1
=8000 N

2
=4000 N

3
=1024

S
2
=1333 S

3
=2666

  calc.:
L1=240 L2=120 L3=30

Z
2
=0.17 Z

3
=0.67


2
=0.41 

3
=0.41
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Two vs. Three Layers

● Dashed line is two layer; solid is three layer.

● Open circles: partial cue.  Solid circles: noisy cue.

● Two and three layer models perform similarly.
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Effects of Memory Load

Two Layer

Three Layer

50% genuine bits in cue

25% genuine bits in cue

8% genuine bits in cue
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Division Threshold

● I cell supplies divisive inhibition based on the number of 
active input lines that synapse onto the pyramidal cell, 
independent of whether they've been modified.

● P cell measures number of active synapses that have 
been modified, S. Has absolute threshold T (not shown).

● Cell should fire if S > f A and S > T.



10/04/23 Computational Models of Neural Systems 23

How to Set the Thresholds?

● Maximal similarity strategy: choose T and f  that cause 
the smallest number of cells to be in the wrong state. 
(May not be biologically realizable.)

● Staircase strategy: start with small f and high T.  Lower 
T until enough cells become active. Then raise f slightly 
and lower T to restore the activity level.  Repeat until 
can no longer maintain activity level or f = 1.

● Competitive strategy: set f = 0 and lower T until the 
required activity level is reached.  This is a k-winner-
take-all strategy.

● Measure performance as: # of perfectly recalled 
patterns divided by total # of patterns.  Used 1000 
patterns in most experiments.
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Comparing Threshold Setting Methods

Two Layer

Three Layer

 - max similarity
 - staircase
 - competitive
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Effect of Collaterals

● Marr estimates that the collaterals should have made 
their full contribution to recovering the event in about 3 
cycles.  Additional cycles would provide no benefit.

● McNaughton's commentary:

– Oscillating cycle of excitation and inhibition in hippocampus, 
known as the theta rhythm: around 7 Hz (140 msec cycle).

– Hippocampal cell output is phase-locked to the theta rhythm.

– Assume pattern completion takes place in the ¼ cycle where 
excitation is increasing: 35 msec window.

– Conduction delay and synaptic delay total 6–8 msec.

– This leaves room for just 4–6 cycles in that 35 msec window:
very close to Marr's prediction.



10/04/23 Computational Models of Neural Systems 26

Assessment of Marr's Theory

● Strong points:

– Sparse, topographic connectivity: more biologically realistic.

– Multiple inhibitory mechanisms: subtraction and division.

– Predicts when recurrent collaterals will help retrieval.

– Anticipated many important findings: LTP, division operations, 
information transfer during sleep.

● Weak points:

– Ignores the trisynaptic circuit (EC → DG → CA3 → CA1). It seems 
like P

1
 is neocortex, P

2
 is EC or DG, and P

3
 is CA3.

– P
2
 has more cells than P

3
, like DG has more than CA3

– But mossy fiber projection to CA3 is too sparse for P
2
 → P

3

– Claim that three layers of cells are necessary was unjustified.

– Unanswered question: how are memories transferred from 
hippocampus to the neocortex?
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