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Marr and Computational Neuroscience

In 1969-1970, Marr wrote three major papers on
theories of the cortex:

- A Theory of Cerebellar Cortex
— A Theory for Cerebral Neocortex
- Simple Memory: A Theory for Archicortex

A fourth paper, on the input/output relations between
cortex and hippocampus, was promised but never
completed.

* Subsequently he went on to work in computational
vision.

* His vision work includes a theory of lightness
computation in retina, and the Marr-Poggio stereo
algorithm.
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Introduction to Marr's Archicortex Theory

 The hippocampus is in the “relatively simple and
primitive” part of the cerebrum: the archicortex.

- The piriform (olfactory) cortex is also part of archicortex.

 Why is archicortex considered simpler than neocortex?

- Evolutionarily, it's an earlier part of the brain.
- Fewer cell layers (3 vs. 6)
- Other reasons? [connectivity?]

 Marr claims that neocortex can learn to classify inputs
(category formation), whereas archicortex can only do
associative recall.

- Was this conclusion justified by the anatomy?

10/02/23 Computational Models of Neural Systems 4



What Does Marr's Hippocampus Do?

« Stores patterns immediately and efficiently, without
further analysis.

* Later the neocortex can pick out the important features
and memorize those.

* It may take a while for cortex to decide which features
are important.

- Transfer is not immediate.

* Hippocampus is thus a kind of medium-term memory
used to train the neocortex.

10/02/23 Computational Models of Neural Systems



An Animal's Limited History

* If 10 fibers out of 1000 can be active at once, that gives
C(1000,10) possible combinations = 2.6 x 10~.

* Assume a new pattern every 1 ms.
- Enough combinations to go for 10** years.

* S0: assume patterns will not repeat during the lifetime
of the animal.

* Very few of the many possible events (patterns) will
actually be encountered.

* So events will be well-separated in pattern space, not
close together.
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Numerical Contraints

Marr defined a set of numerical constraints to determine
the shape of simple memory theory:

. Capacity requirements

. Number of inputs

. Number of outputs

. Number of synapse states = 2 (binary synapses)
. Number of synapses made on a cell

. Pattern of connectivity

. Level of activity (sparseness)

00 N O U1 o W N -

. Size of retrieval cue
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N1. Capacity Requirements

A simple memory only needs to store one day's worth of
experiences.

 They will be transferred to neocortex at night, during
sleep.

 There are 86,400 seconds in a day.

A reasonable upper bound on memories stored is:

100,000 events per day
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N2. Number of Inputs

« Too many cortical pyramids (10°): can't all have direct
contact with the hippocampus.

* Solution: introduce indicator cells as markers of activity
in each local cortical region, about 0.03 mm?.

* Indicator cells funnel activity into the hippocampal
system.

Neocortex

VTV

Hippocampus
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Indicator Cells

Indicator cells funnel information into hippocampus.

Don't we lose information?

- Yes, but the loss is recoverable if the input patterns aren't too
similar (low overlap).

 The return connections from hippocampus to cortex
must be direct to all the cortical pyramids, not to the
Indicator cells.

« But that's okay because there are far fewer
hippocampal axons than cortical axons (so there's room
for all the wiring), and each axon can make many

synapses. VW '\if 4’{?’ .iif. .\if

10
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Dendritic Arborization of Principal Cells

Figure 3-15. Dendritic arborization of — T
[ J _.I’ {1/
the principal cells in the rat dentate gyrus ./-/ a600 "\ [}/, \
(granule cells) and hippocampus proper ' .\ |
(pyramidal cells). See the text for details. / w
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,/ AR Total
2500 \
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How Many Input Fibers?

« Roughly 30 indicator cells per mm? of cortex.

« Roughly 1300 cm? in one hemisphere of human cortex,
of which about 400 cm? needs direct access to simple
memory. Thus,

About 10° afferent fibers enter simple
memory.

* This seems a reasonable number.
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N3. Number of Outputs

Assume neocortical pyramidal cells have fewer than 10°
afferent synapses.

Assume only about 10* synaptic sites available on the
pyramidal cell for receiving output from simple memory.

Hence, if every hippocampal cell must contact every

cortical cell, there can be at most 10* hippocampal cells
In the memory. Too few!

- 1f 100,000 memories stored, each memory could only have 10
cells active (based on the constraint that each cell participates
in at most 100 memories.) Too few cells for accurate recall.

Later this constraint was changed to permit 10° cells in
the simple memory.
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N4. Binary Synapses

 Marr assumed a synapse is either on or off (1 or 0).

* Real-valued synapses aren't required for his associative
memory model to work.

- But they could increase the memory capacity.

 Assuming binary synapses simplifies the capacity
analysis to follow.
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Types of Synapses

 Hebb synapses are binary: on or off.

* Brindley synapses have a fixed component in addition
to the modifiable component.

(.
/TN

Hebb synapses Brindley synapses

* Synapses are switched to the on state by simultaneous
activity in the pre- and post-synaptic cells.

* This is known as the Hebb learning rule.
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N5. Number of Synapses

* The number of synapses onto a cell is assumed to be
high, but bounded.

 Anatomy suggests no more than 60,000.

 |n most calculations he uses a value of 10°.
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N6. Pattern of Connectivity

 Some layers are subdivided into blocks, mirroring the
structure of projections in cortex, and from cortex to
hippocampus.

* Projections between such layers are only between
corresponding blocks.

« Within blocks, the projection is random.
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N7. Level of Activity

« Activity level (percentage of active units) should be low
so that patterns will be sparse and many events can be
stored.

* Inhibition is used to keep the number of active cells
constant.

« Activity level must not be too low, because inhibition
depends on an accurate sampling of the activity level.

e Assume at least 1 cell in 1000 is active.
e Thatis, oo > 0.001.
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N8. Size of Retrieval Cue

Fraction of a previously stored event required to
successfully retrieve the full event.

Marr sets this to 1/10.
This constitutes the minimum acceptable cue size.

If the minimum cue size is increased, more memories
could be stored with the same level of accuracy.
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Marr's Two-Layer Model

Event E is on cells a....a -\ _Neocortex Hippocampus

1 N 7
(the cortical cells) ;. ;

Codon formation on bl...bM

(evidence cells in HC) - . .
T~ \ 7

Inputs to the bj use
Brindley synapses . "v
Codon formation is a type || |\

of competitive learning :
(anticipates Grossberg, . ;. o

L
Kohonen) o

Recurrent connections to Y
the a use Hebb synapses :
- »

~
.
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Simple Representations

* Only a small number of afferent synapses are available
at neocortical pyramids for the simple memory
function; the rest are needed for cortical computation.

* |n order to recall an event E from a subevent X:

- Most of the work will have to be done within the simple memory
itself.

- Little work can be done by the feedback connections to cortex.

 No fancy transformation from b back to a.

* Thus, for subevent X to recall an event E, they should
both activate the same set of b cells.

10/02/23 Computational Models of Neural Systems 21



Recalling An Event

 How to tell if a partial input pattern is a cue for recalling
a learned event, or a new event to be stored?

 Assume that events E to be stored are always much
larger (more active units) than cues X used for recall.

 Smaller pattern means not enough dendritic activation
to trigger synaptic modification, so only recall takes
place.
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Codon Formation

« Memory performance can be improved by
orthogonalizing the set of key vectors.

- The b cells do this. How?

* Project the vector space into a higher dimensional
space.

 Each output dimension is a conjunction of a random
k-tuple of input dimensions (so non-linear).

* In cerebellum this was assumed to use fixed wiring. In
cortex it's done by a learning algorithm.

* Observation from McNaughton concerning rats:

- Entorhinal cortex contains about 10° projection cells.
- Dentate gyrus contains 10° granule cells.
- Hence, EC projects to a higher dimensional space in DG.
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Codon Formation

 For each input event E, different b cells will receive
different amounts of activation.

* Activation level depends on which a cells connect to
that b cell.

 We want the pattern size L to be roughly the same for
all events.

* Solution: choose only the L most highly activated b cells
as the simple representations for E.

e How to do this?

- Adjust the thresholds of the b cells so that only L remain active.
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Inhibition to Control Pattern Size

S and G cells are inhibitory
interneurons. _. e ¥

* S cells sample the input
lines and supply feed- =
forward inhibition to the
codon cells.

* G cells' modifiable
synapses track the number
of patterns learned so far,
and raise the inhibition
accordingly. They sample
the codon cell's output via
an axon collateral.
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Threshold Setting

« Two factors cause the activation levels of b cells to vary:

1) Amount of activity in the a cells (not all patterns are of the
same size, due to partial cues)

2) Number of potentiated synapses from a cells onto the b cell.
This value gradually increases as more patterns are stored.

- More cells can become active as more weights are set.

 Solution:

1) S-cells driven by codon cell afferents compute an inhibition
term based on the total activity in the a_ fibers.

Assumes no synapses have been modified.

2) G-cells driven by codon cell axon collaterals use negative
feedback to compensate for effects of weight increases.

 Together, S and G cells provide subtractive inhibition to
maintain a pattern size of L over the b units.
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Recall From a Subevent

* If subevent X is fully contained in E, the best retrieval
strateqgy is to lower the codon threshold until roughly L
of the b cells are active.

« But if X only partially overlaps with E, some spurious
Input units will have synapses onto codon units. A
better strateqgy is for codon cells to take into account
the fraction f of their A active synapses that have been
modified by learning (meaning they are part of some
previously-stored pattern).

 Unmodified synapses that are active during recall can
only be a source of noise.

 Thus, a b cell should only fire if a sufficient proportion f

of its active synapses have been modified, meaning
they are part of at least one stored pattern — perhaps

the correct one, E.
10/02/23 Computational Models of Neural Systems
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Recall From a Subevent

A cell should only fire if it's being driven by enough
modified synapses.

A = number of active synapses.
f = fraction of synapses that have been modified.

The cell's division threshold is equal to fA.

Let S be the summed activation of the cell:

S = Zaiwi

The cell should fireif S > fA, or S/ (fA) > 1.
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D-Cells

D cells compute fA and pass it
as an inhibitory input to the

pyramidal cells.

D cells apply their inhibition

directly to the cell body, like
basket cells in hippocampus.

This type of inhibition causes a
division instead of subtraction.

McNaughton: division can be
achieved by shunting
Inhibition, e.qg., the chloride-
dependent GABA, channel.
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Dual Thresholds

* Cells have two separate thresholds:

- The absolute threshold T, controlled by inhibition from S and G

cells, should be close to the pattern size L, but must be reduced
when given a partial cue.

- The division threshold fA, controlled by inhibition from D cells.

* Marr's calculations show that both types of thresholding
are necessary for best performance of the memory.

 How to set these thresholds? No procedure is given.

- Willshaw & Buckingham try several methods, e.q., staircase
strategy: start with small f and large T. Gradually reduce T until
enough cells are active, then raise f slightly and repeat.
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3 Layer Model: A Simple Memory
With Output Cells

cells

\Q:

). codon cells

Output cells
(from 3-layer model)
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Inadequacy of the Simple Model

« Assume that N = 10° a afferents.

« Assume each neocortical pyramid can accept 10*
synapses from the bj cells.

 Assume upper bound of 200 learned events per cell,
due to limitation on number of afferent synapses. (Marr
derived this from looking at Purkinje cells in
cerebellum.)

- Use 100 events/cell as a conservative value.

 If capacity n = 10° events, and each b cell participates
in 100 of them, then activity a = 1072. With 10* b cells,
only 10 can be active per event.

- Too few for reliable representation. Threshold setting would be
too difficult with such a small sample size.
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What's Wrong With This Argument?

 The simple model is inadequate because the activity
level is too low: only 10 active units per stored event.

« But this is because Marr assumes only 10* evidence
(codon) cells. Why?

- Limited room for afferent synapses back to the cortical cells.

 This is based on the notion that every evidence (codon)
cell must connect back to every cortical cell.

* Later in the paper he relaxes this restriction and
switches to 10° evidence cells.
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Combinatorics 1: Permutations

How many ways to order 3 items: A, B, C?

Three choices for the first slot.
Two choices left for the second.
One choice left for the third.

B A C

Total choices = 3x2x1 = 3! =6.
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Combinatorics 2: Choices

« How many ways to choose 2 items from a set of 57

5

= C(5,2)?
2

In formal notation, what is the value of

 Five choices for first item. Four choices for the second.

 Permutations of the chosen item are equivalent:
combination B,E is the same as combination E,B

* So total ways to choose two items is (5 x 4)/(2!) = 10.

* Since5!'=5x4x3x2x1, wecanget 5x4 from 5!/3!

5\ s z
_ Ny = 0
ol T 3 3121
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Choices (continued)

« How many ways to choose k=2 items from n=57?

* Allocate 5 slots giving n! = 120 permutations:

k! (n-k)!

* All permutations of the k chosen items are equivalent,
so divide by k! = 2.

* All permutations of the (n-k) unchosen items are
equivalent, so divide by (n-k)! = 6.

n!

k! - (n—k)!

n

k
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Review of Probability

 Suppose a coin has a probability z of coming up heads.

 The probability of tails is (1-z).
« What are the chances of seeing h heads in a row?

h
<

 What are the chances of seeing exactly h heads in a
row, followed by exactly t tails?

Zh . (1_Z>t
 What about seeing exactly h heads total in N tosses?

N

h (N—h)
.oz (1_Z>
h
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Binomial Distribution

* How many heads should we expect in N=100 tosses of
a biased (z=0.2) coin?

- Expected value is E<h> = Nz = 20.

 What is the probability of a particular sequence of
tosses containing exactly h heads?

P[<t1,t2,...,tN>] — P (I_Z)N_h

 The probability of getting exactly h heads in any order
follows a binomial distribution: E—

7
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Marr's Notation

Population of cells.

Number of cells in population Pi

Number of active cells for a pattern in P
Fraction of active cells: Li/ N.

Threshold of cells in Pl,

Number of afferent synapses of a cellin P,

l

Contact probability: likelihood of synapse from cell 1n Pi_ o P,

l

Probability that a particular synapse in P has been modified

Expected (mean) value of x

Number of stored memories
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Response to an Input Event

- Assume afferents to P_distribute uniformly with
probability Z..

- L = number of active afferents.

 What is the expected pattern size in this population?

L

i—1 Liymr

(z)-(1-Z)

I l

« What do the terms in this formula mean?

10/02/23 Computational Models of Neural Systems
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Response to an Input Event

E(L) = Z yo(-z)

P My a_ani active input fibers

\ T/
probability a unit has AT LEAST R active input fibers (so is active)

One term of the summation is the probability that a cell
will receive an input of size exactly r, given L active

fibers in the preceding layer.

r is number of active fibers: R,- IS the threshold.

Must have r = R in order for the layer i cell to fire. Also,
r =L _, the pattern size for layer /-1.

Large R. keeps us on the tail of the binomial distribution.

« The value of o = L,-/N,- will be small.
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Counting Active Synapses

cells; L are active

o0 O @ T

= L IN
%1 i—1 -1
\

Q S . synapses; X are active
l

Number of active synapses x 1s binomially distributed.

S. S —x
Plx) = [ 1]« (o )" (1—a )"
E{x) = o _ S
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Constraint on Modifiable Synapses
Activity « =L IN

i—1 i—1

Proportion of synapses active at each active cell of P 1s at least equal to

the mean X because the active cells are on the tail of the distribution.

The amount by which it exceeds this decreases as S

I 1

| grows.

Probability that a (pre,post)-synaptic pair of cells 1s simultaneously

active 1S o RS
1 — l

After n events, probability that a particular synapse of Pi 1s facilitated 1s:

[1. = 1—(1—0Li_10(,)”

l l

It X 1s small, then X o 1s smaller, so this gives roughly

Hl_ ~ l—exp(—n(xi_l(xl_)

because for small €, (1—¢)" ~ exp(—ne)
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Constraint on Modifiable Synapses

 For modifiable synapses to be useful, not all should be
modified after n events are stored.

- Otherwise we could just make all of them fixed.

 Suppose we want at most 1 - (1/e) of them to be
modified, which is about 63%.

1. <1 — (1/e)

=1 — exp(—1)

~ 1 — exp(—n(xi_lo(i)

 Thus we have computational constraint C1:

nx o <1
i—1 i
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Condition for Full Representation

- Activity in P must provide an adequate representation
of the input event.

 Weak criterion of adequacy: change in input fibers
(active cells in P_) should produce a change in the cells

that are firing in P..

- Cells in P just above threshold — losing one input will
shut off the cell.
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Condition for Full Representation

Probability P that an arbitrary mput fiber doesn't contact any
active cell of P, (so P, doesn't care 1f it's shut off) 1s:

P=(l-z)"* L = aN,
(1—€)" =~ exp(ne( I - 7 = S/N 1
l l l—
P

~ exp(—ocl.Nl.-Sl./Ni_l)

Let's require P < e % (about 2 X 10_9). Then with a
little bit of algebra we have computational constraint C2:

S.a.N. =2 20N._,
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Summary of Constraints

* To store lots of memories, patterns must be sparse.

Constraint Cl: no o < 1

I 1i—1

* For the encoding to always distinguish between input
patterns, outputs must change in response to any input
change.

- There must be enough units and synapses to assure this.

Constraint C2: Sl_(xiNi > 2ONZ__1

* Assumes output cells are just above threshold so losing
1 input fiber will turn them off. They must be on the tall
of the binomial distribution for this to hold.
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What's Next?

 Move to a larger, three-layer, block-structured model.
* Add recurrent connections.

 Derive conditions under which recurrent connections
Improve recall results.

 Map this model onto the circuitry of the hippocampus.

10/02/23 Computational Models of Neural Systems

48



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

