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Synaptic Plasticity Is A Major Research Area

« Long Term Potentiation (LTP)
« Reversal of LTP

« Long Term Depression (LTD)
« Reversal of LTD

« Short-Term Potentiation

« and more...

Thousands of papers!
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Types of Plasticity in Hippocampus

‘ LTP ‘
NMDA receptor dependent ‘ ‘ NMDA receptor independent ‘
STP [ 1P, ] Paired-pulse facilitation |
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-S = epsp spike)

—>| Non-Hebbian LTP | —>| Mossy fiber LTP |

Bliss & Collingridge 1993
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Short-Term Plasticity

« Could serve a spike filtering function.

« Synapses with low probability of transmitter release are more
likely to show facilitation.

- Acts as a high pass filter: high frequency spike trains will be
transmitted more effectively.

« Synapses with a high probability of transmitter release are more
likely to show depression.

— Acts as a low pass filter: occasional spikes are transmitted without
change, but high frequency spike trains are attenuated.
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Properties of LTP

Input specificity
- Only active input pathways potentiate.
Associativity

— A strong stimulus on one pathway can enable LTP at another pathway
receiving only a weak stimulus.

— Baxter & Byrne called this “heterosynaptic” LTP
Cooperativity

- Simultaneous weak stimulation of many pathways can induce LTP.
Rapid induction

— Brief high-frequency stimuli can quickly potentiate a synapse.
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Cooperativity
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LTP in the Perforant Path of Hippocampus
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Specificity and Associativity
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The NMDA Receptor
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Magnesium block: very

little NMDA current
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Fluorescence Imaging of Calcium in Dendritic Spine

Calcium influx in a CA1 pyramidal
cell in response to HFS
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Response to Single Stimulus
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— Bliss & Collingridge 1993
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Response to High Frequency Spike Train

— Bliss & Collingridge 1993
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Evidence that NMDA Receptor Contributes to LTP

« Blocking NMDA receptors blocks LTP even
though the cell is firing.

- Activation of NMDA receptors causes Ca** i
to accumulate in dendritic spines.

« Buffering Ca** using calcium chelators
inhibits LTP.

 Adding Ca* directly to the cell enhances
synaptic efficacy, mimicking LTP.

« But stability of LTP may depend on other
mechanisms (MGIuR; 2™ messenger).
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Phases of LTP

Short Term Potentiation (STP): 10—60 minutes

Early stage LTP (LTP1): 1-3 hours

— blocked by kinase (phosphorylation enzyme) inhibitors but not protein
synthesis inhibitors

\

Late stage LTP2: several days

— blocked by translational inhibitors but

independent of gene expression dependent on

protein synthesis

Late stage LTP3: several weeks

— involves expression of
Immediate Early Genes (IEGS) v,
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Early Phase LTP
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AMPA Receptor trafficking

NMDAR AMPAR

NMDAR AMPAR

Citria & Malenka (2008)
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Calmodulin

« Calcium-binding protein involved in
many metabolic processes

« Small: approx. 148 amino acids
« Can bind up to 4 calcium atoms

e Ca* could come from NMDA
current or release from internal
stores

« The Ca®/calmodulin complex
activates CamKI|
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CaMKIllI

 Calcium/calmodulin-dependent
protein kinase Il: 2 rings of 6 subunits;
accounts for 1-2% of protein in the brain

« Activated by binding Ca**/calmodulin complex.

« Must be phosphorylated to induce LTP.

« Acts on AMPA receptors & many other things.

Inactive CaMKII Thr286 Psaudosubstrate = ﬁulﬂhhmw

segment segment 310 CHMEIn

W *- Catalytic
dormain
T site S siba
l 310

CaMEKIl activated by
Ca2*/calmodulin Gt eakmkibn

T site Active S site
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Figure 2. Reguiation of
CaMill. John Lisman et

al. Nature 2002° 3: 179-
190

At basal Calcium ion
cancentrations, the
Kinase will be blocked,
because the aufoinhibitory
domain stays bound to
the catalytic domain. Ca*/
Calmoduiin binding will
activate the kinase [2].
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CaMKIl Activation by Calmodulin
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O Caitcalmodulin
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Short-Term CaMKII Auto-Phosphorylation

o If intracellular concentration of Ca* is higher and

Ca**/calmodulin binds to two adjacent subunits, one can
phosphorylate the other. Lasts several minutes.
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Long-Term CaMKII Auto-Phosphorylation
Can Persist Independent of Calcium If
Auto-Phosphorylation Rate is High Enough

CaMKIl as a “molecular switch”s 7 |
a kind of memory device inside e
the dendritic spine.
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Retrograde Messengers as a Pre-Synaptic
Mechanism for LTP

NO = nitric oxide
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" AA = arachidonic acid
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Retrograde Transmission of Endocannabinoids

LTD of excitatory /
synapses onto medium f
spiny cells in striatum

resulting from

retrograde transmission

of an endocannabinoid Presynaptic
signal. terminal

Postsynaptic
cell
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Late Phase LTP
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LTP and LTD
« Most synapses that exhibit LTP also show LTD.

« Hypothesis: the balance between phosphatases and kinases
determines potentiation vs. depression.

Ca‘-'i'—vC?M
PP28B ®

& —11
ph

| ~—>PP1 =
(inactive} {acerve)

T ANE-—oell AN L1

low frequency (1 Hz)

Ca-—-CaM-—-CaMKII-@

{PRA] { oy ;

PP28 o
L.‘ ‘ ______ l | ‘?"—

PL! ------ PP1
(inactive| {active]

kinases dominate

high frequBmey

11/06/23 Computational Models of Neural Systems 27



Ocular Dominance Formation in Area 17 (V1)

« Most neurons in area 17 show some ocular dominance (OD)

o Critical period for OD formation in kittens: up to 3 months

« OD column formation depends on activity of visual receptors
- Demonstrated through ocular deprivation experiments

« Also depends on postsynaptic
activity; NMDA-dependent
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BCM Rule and Ocular Dominance in Area 17 (V1)

« Monocular deprivation experiments:

— Brief period of MD shifts A %0 B0
dominance to the open eye -

— OD changes take only a
few hours to start

80 +

20
XX 60

R

R 40 -
330
101k

— Deprived eye responses can be
restored withing minutes

20

Recorded neurons (%)

red wi | I
by bicucculine (GABA blocker) T2 3 s s 6 7 T2 s 4 s 6 7
Left eye §———@ Right eye Deprived eye -}————— Open eye

Ocular dominance

« Binocular deprivation (BD) does not decrease synaptic efficacy
iIn 2 month old kittens.
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Bear et al. Model of Synaptic Plasticity in Area 17

11/06/23

left eye

right eye

c = m.dl + m-d"

c = cortical cell activity
m = synaptic weights
d = presynaptic activty

dm

E - (I)<C,C>
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Sliding Threshold

When closed eye reopened,
OD distribution quickly Ay
restored.

Hypothesis: sliding threshold

for synaptic modification. 0

6, = <C*> -
B

Sign of weight change

depends on level of

postsynaptic activity. 6 0
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0,2
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BCM Rule
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BCM Rule Can Cause Increase or Decrease
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Need for Inhibitory Inputs

« Absence of presynaptic activity from deprived eye would cause
weights to go to 0; how could they ever grow again?

« Solution: inhibition from interneurons makes it appear that the
weights are zero, but in reality they're just small.

— [ 4l rogr
c = m-d + m'd +ZLUCJ.
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What Does This Model Explain?

« Binocular deprivation (BD) doesn't reduce synaptic efficacy
because the cortical cells aren't firing.

- Explanation: BCM learning requires at least some postsynaptic activity.

« Bicucculine (GABA blocker) restores deprived eye responses in
minutes.

— Explanation: synaptic strengths for deprived eye need not decrease to
zero. Just need to get low enough to be balanced by cortical inhibition.
Bicucculine shuts off this inhibition.
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How Might the Threshold 6 be Altered?

« Could level of CaMKIl auto-phosphorylation determine the
threshold 6_?

« Auto-phosphorylation increases the affinity of CaMKII for
calmodulin by 1000-fold.

— Could act as a calmodulin buffer

-—

A

Change in EPSP silope (%)

Frequency of conditioning stimulation (Hz)
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How Might the Threshold 6 be Altered?

. 0 Is supposed to be a function of postsynaptic cell spike rate,
not activity level local to the dendritic spine.

« So for this theory to be correct, spike rate information must
propagate back to all spines. How does it do it?
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Synaptic Tagging and Capture

How are synapses tagged for long term potentiation, which involves structural changes?

Weak tetanization: tagging but no PRPs, anly E-LTP expression
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Fostsynaptic
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Strong tetanization: tagging and PRPs, L-LTP expression

PRP = plasticity-related products

E-LTP = early-stage LTP Nature Reviews | Neuroscience
L-LTP = late-stage LTP Redondo & Morris (2011)
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Synaptic Tagging and Capture

Potentiation of a weakly-stimulated synapse can be rescued by PRPs transported
cell-wide as a result of strong stimulation at other synapses.

Weak tetanization
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11/06/23 Computational Models of Neural Systems 39

Nature Reviews | Neuroscience
Redondo & Morris (2011)




Spike-Timing-Dependent Synaptic Plasticity

« Markram et al., Science, 1997 A

« Pair of thick-tufted layer 5
pyramidal cells

« Synapses:
— black to red (green dots)
- red to black (blue dots)

« Paired pre- and postsynaptic
spiking (5 spike pairs at 10 Hz,
repeated 10 to 15 times spaced
4 seconds apart)
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Spike-Timing-Dependent Plasticity
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Timing Window for STDP
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