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Overview

* Pattern separation

- Pulling similar patterns apart reduces memory interference.

* Pattern Completion

— Noisy or incomplete patterns should be mapped to more
complete or correct versions.

« How can both functions be accomplished in the same
architecture?

- Use conjunction (codon units; DG) for pattern separation.
- Learned weights plus thresholding gives pattern completion.

- Recurrent connections (CA3) can help with completion as in
Marr's model, but aren't used in the model described here.
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Information Flow
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* Cortical projections from many areas form an EC
representation of an event.

 EC layer Il projects to CA3 (both directly and via DG),
forming a new representation better suited to storage
and retrieval.

 EC layer Ill projects to CA1, forming an invertible
representation that can reconstitute the EC pattern.

 Learning occurs in all these connections.
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Features of Hippocampal Organization

Local inhibitory interneurons in each region.

- May requlate overall activity levels, as in a KWTA network.

CA3 and CA1 have less activity than EC and subiculum.
DG has less activity than CA3/CAL.
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Connections Iin the Rat

 EC layer Il (perf. path) projects diffusely to DG and CA3.

- Each DG granule cell receives 5,000 inputs from EC.

- Each CA3 pyramidal cell receives 3750-4500 inputs from EC.
This is about 2% of the rat's 200,000 EC layer Il neurons.

DG has roughly 1 million granule cells.
CA3 has 160,000 pyramidal cells; CA1 has 250,000.

DG to CA3 projection (mossy fibers) is sparse and
topographic. CA3 cells receive 52-87 mossy fiber
synapses.

« NMDA-dependent LTP has been demonstrated in
perforant path and Schaffer collaterals. LTP also
demonstrated in mossy fiber pathway (non-NMDA).

 LTD may also be present in these pathways.
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Model Parameters

* O'Reilly & McClelland investigated several models,
starting with a simple two-layer k-WTA model (like Marr).

- N,N_ = # units in the layer Fandin F = 9

o Hits H = 4
. k,k = # active inputs =
In one pattern

EWTA Regulated Sparse Activity

e o,0 = fractional
i .o . . ) ol I D oy T g
activity in the layer; égf %@?SE CA3(0)

OCO — kO/ No Ndiv& Input
ﬂUnits
e F = fan-in of units A

. - [
in the output layer @DQE:S@‘:’E/EC(D

(mUSt be < NI) Hits =~ Input Layer

Random

e

Connections

- H_= # of hits for pattern A
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Measuring the Hits a Unit Receives

« How many input patterns?

N N;j
ki
« What is the expected number a
of hits H_for an output unit?
k.
(H) = —F = o F
a Nl l
 What is the distribution
of hits, P(H ) 7

Hypergeomtric (not binomial; we're drawing without replacement)
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Hypergeometric Distribution

- What is the probability of getting exactly H_ hits from an
input pattern with k active units, given that the fan-in is
F and the total input size is N7

- C(k, H ) ways of choosing active units to be hits

- C(N-k, F-H ) ways of choosing inactive units for the remaining
ones sampled by the fan-in

- C(N, F) ways of sampling F inputs from a population of size N.

k \|N —k # of ways to wire an
! ! ! <« output cell with Ha hits
H |\F-H
a a
P<Ha | ki’Ni’F) =
N # of ways to wire an

! < output cell

F
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Determining the KWTA Threshold

« Assume we want the output layer to have an expected

d

ctivity level of a. .

* Must set the threshold for output units to select the tail
of the hit distribution. Call this Hat.

« Use the summation to choose Hat min k., F)
to produce the desired value of a.. &, = 2. P(H)
H =H'

P(H )
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Pattern Overlap

* In order to measure pattern separation properties of the
two-layer model, consider two patterns A and B.

- Measure the input overlap Q = number of units in common.

- Compute the expected output overlap Q_as a function of Q.

. If Q < Q the model is doing pattern separation.

- To calculate output overlap we need to know H_, the

number of hits an output unit receives for pattern B
given that it is already known to be part of the
representation for pattern A.
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Distribution of Hab

 For small input overlap, the patterns are virtually
independent, and H_ is distributed like H_.

- As input overlap increases, H moves rightward (more
hits expected), and narrows: output overlap increases.

P(H 3

* But the relationship
IS nonlinear. t

Input Overlap _.
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Visualizing the Overlap

a) Hits from pattern A. b) H = overlap of A&B hits

N; Reg 4 N;
(not Reg 1,2,3)

Reg 3 (F not H))

F
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Prob. of b Hits And Specific Values
forH,H_ ,H_ Given Overlap Q

P(H,Q, H 6 H
b a i ab

| B 2 11 3 4 | =

# of ways of o o 1, # of ways of achieving
achieving Ha F Ha kl- Ha Nl- kl- F+Ha k. —H_non-hits given
H, hits given overlap €
overlap € H H Q—H k—Q —H
ab ab i ab I I ab
N
k N —k !

# of ways of
achieving overlap @ » O E—QO

Note: Hb — Hab + Hab

To calculate P(H,) we must sum P,
over all combinations of H,,H,,,H,
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Estimating Overlap for Rat
Hippocampus

- We can use the formula for P_ to calculate expected
output overlap as a function of input overlap.

* To do this for rodent hippocampus, O'Reilly &
McClelland chose numbers close to the biology but
tailored to avoid round-off problems in the overlap
formula.

Area 5% N Fro FEpg
EC 6.25% 200,000 o e
DG | 0.30% 850,000 4,006 e
CA3 | 2.42% 160,000 4,003 64
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Estimated Pattern Separation

Pattern Separation
Rat-Sized Monosynaptic CA3

e P2 2 =
L=t | oo L= =
R ST R s Ve ) p

Output Pattern Overlap
© 2 © o ©
e o8] ‘ad £= tn

=
o
T T

00 01 02 03 04 05 06 07 08 09 10
Input Pattern Overlap

10/10/23 Computational Models of Neural Systems

In CA3

15



Sparsity Increases Pattern Separation

Pattern separation
performance of a
generic network
with activity levels
comparable to EC,
CA3, or DG.
Sparse patterns
yield greater
separation.
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Activity Levels and Pattern Separation
Rat-Sized DG, Monosynaptic CA3, and EC
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Fan-In Size Has Little Effect

Fan-in Size and Pattern Separation

Rat-Sized Monosynaptic CA3
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Adding Input from DG

« DG makes far fewer connections (64 vs. 4003), but they
may have higher strength. Let M = mossy fiber

stren gth - Mossy Fiber Strength and Pattern Separation

Rat-Sized CA3 w/Mossy and Perforant Path Inputs

e SeparationinDG (*)is +*[

. | [c—OCA3IM=0 #
better than in CA3 09 T |G 0Ca3 M=10 P b
without DG (0). N e | ]
g 07 A —ACA3IM=25 .
O o6 L |7 CA3M=50 /.
- - |+——+CcA3MOnl )
- DG connections help  § os i _
for M = 15. % 0.4 -
203 y
S 02 |
 With M=50, DG i | i

projection alone (+) is

0 - ‘; * L . | i L R I | N LA N L L
as good as DG+EC (v). 00 01 02 03 04 05 06 07 08 09 10
Input Pattern Overlap

10/10/23 Computational Models of Neural Systems 18



Combining Two Distributions

 CA3 has far fewer inputs from DG than from EC.
 But the DG input has greater variance in hit distribution.

« When combining two equally-weighted distributions, the
one with the greater variance has the most effect on
the tail.

 For 0.25 input overlap:

- DG hit distribution has std. dev. of 0.76
- EC hit distribution has std. dev. of 15.
- Setting M=20 would balance the effects of the two projections.

* In the preceding plot, the M=20 line appears in
between the M=0 line (EC only) and the “M only” line.
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Without Learning, Partial Inputs Are
Separated, Not Completed

Less separation
between A and
subset(A) than
between patterns A
and B, because
there are no noise
inputs.

But Q is still less
than Q
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Pattern Completion vs. Separation
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Pattern Completion

Without learning, completion cannot happen.

Two learning rules were tried:

- WI: Weight Increase (like Marr)
- WID: Weight Increase/Decrease

WI learning multiplies weights in H_ by (1+L_ ).

e

WID learning increases weights as per WI, but also
exponentially decreases weights to units in F-H_ by

multiplying by (1-L ).

Result: WID learning improves both separation and
completion.

rate
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WI Learning and Pattern Completion

a) WI Learning and Pattern Completion
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WI Learning Reduces Pattern
Separation

b) WI Learning and Pattern Separation
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WI Learning Hurts Separation

ngggirgl of Separation/Completion Trade-off
improvemge}f\ Rat-Sized Monosynaptic CA3 and DG
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WID Learning Has A Good Tradeoftf

a) WID Learning and Pattern Separation
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WI vs. WID Learning

b) Separation/Completion Trade-off: WI vs. WID
Rat-Sized Monosynaptic CA3 and DG
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Hybrid Systems

Multiple completion stages don't help (cf. Willshaw &
Buckingham's comparison of Marr models.)

- With noisy cues, completion produces a somewhat noisy result
which would lead to further separation at the next stage.

MSEPO — mossy fibers only for separation (learning).

- Perhaps partial EC inputs aren't strong enough to drive DG.

FM —fixed mossy system: no learning on these fibers.

- Learning reduces pattern separation. Real mossy fibers
undergo LTP, but it's not NMDA-dependent (so non-Hebbian).

FMSEPO — combination of FM + SEPO.

- Optimal tradeoff between separation and completion.
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Performance of Hybrid Models
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What Is the Mossy Fiber Pathway
Doing?

Adds a high variance signal to the CA3 input, which...

Selects a random subset of CA3 cells that are already
highly activated by EC input.

This enhances separation when recruiting the
representations of stored patterns.

* But it hurts retrieval with partial or noisy cues.
- So don't use it. Use MSEPO or FMSEPO.

10/10/23 Computational Models of Neural Systems
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Conclusions

e The main contribution of this work is to show how

separation and completion can be accomplished in the
same architecture.

 The model uses realistic figures for numbers of units
and connections.

* Fan-in size doesn't seem to matter.

 WID learning is necessary for a satisfactory tradeoff
between separation and completion.

DG contributes to separation but perhaps not to
completion.
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Limitations of the Model

 Simplified anatomy: the model only included EC—CA3
and EC-DG—-CA3 connections.

* No CA3 recurrent connections.
« No CAl.

 Only a single pattern stored at a time:

— Store A, measure overlap with B.
- No attempt to measure memory capacity.

A more realistic model would be too hard to analyze.

10/10/23 Computational Models of Neural Systems

31



A OUTPUT

Possible Different Functions
of CA3 and CAl

L eiitgabstl. Expose rats to two environments 30
minutes apart. Environments can be
(i) identical , (ii) similar but with

CAS changes to local or distal cues, or (iii)
completely different.

Vazdarjanova
& Guzowski

Lee et al.

Vazdarjanova
& Guzowski

Entorhinal Cortex

current
event/space

a0 ———

encoding current sequence &
novelty detection (STDP)

| pattern completion | pattern separation | e 4

A INPUT CA3

Measured by IEG (Immediate Early Genes): N
Arc/H1a catFISH method

rapid development (STDP)

& storage of novel sequence
Guzowski, Knierim, and Moser (2004)
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Hasselmo's Model: Novelty Detection

e B B REN B N ROR B B BB B N

.-.II.-.Illlr--ll---l'

fimbria/fornix

Medial
Septum

Acetycholine reduces synaptic efficacy (prevents
CA3 from altering CA1 pattern) and enhances

synaptic plasticity.
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Pattern Separation in Human Hippocampus

 Bakker et al., Science, March 2008: fMRI study

* Subjects were shown 144 pairs of images that differed
slightly, plus additional foils. Asked for an unrelated
judgment about each image (indoor vs. outdoor object).

R I ¢ A
"8 ;g '

* Three types of trials: (i) new object, (ii) repetition of a
previously seen object, (iii) slightly different version of a
previously seen object: a lure.
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Eight ROIs Found
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Couldn't resolve DG vs. CA3 so treated as one region.
Regions outlined above: CA3/DG CAl Subiculum
Areas of significant activity within MTL shown in white.

1st Repeat Lure

New objects, repetitions, and lures were reliably
discriminable. Generally, repetitions — lower activity.
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Bias Scores for ROIs

 bias = (first - lure) / (first - repetition)
e Scores close to 1 —» completion; 0 — separation.

« CA3/DG shows more pattern separation than other
areas.
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