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Outline

« Theta rhythm and gamma rhythms

« Phase precession in hippocampus

« Theta and gamma in entorhinal cortex
« Lisman working memory proposal

« Hasselmo theory of EC as buffer
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Hippocampal Theta Rhythm

« 3-12 Hz oscillation in local field potential

- when the animal is moving or o
engaged in voluntary behavior:
frequency increases with
running speed
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« Entorhinal cortex also exhibits theta rhythm and is thg principal
source of hippocampal theta.

« The theta pacemaker is the medial septal nucleus, which has a
GABAergic projection to the hippocampal formation via the
fornix. (Also a significant cholinergic projection.)
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Gamma Rhythm

« Roughly 40 Hz oscillation (could be from 25 to 100 Hz)
- “Slow gamma” is 25-50 Hz; “fast gamma” is 50-90 Hz.’
« Gamma is superimposed on top of theta in hippocampus.

« There is speculation that gamma rhythm synchrony may play a
role in binding cortical areas together. Consciousness?
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Theta Sequenced Place

Theta Phase Precession
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Phase Precession In One
Hippocampal Place Cell
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Theories of Phase Precession

« Network theory: caused by interactions among cells; cells learn
to predict firing ahead of the rat.

« Oscillator interference mechanism:
slightly faster cellular
oscillator beats against

the theta rhythm. SRR AT AT '. T
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Problems for Both Theories

« Network theory depends on learning, but phase precession has
been observed on the first pass through a firing field.

« The oscillator interference model depends on a specific phase
relationship between the intrinsic oscillator and the rat's
location. But some cells with multiple overlapping firing fields
will fire spikes at both phases of the theta cycle, which a simple
oscillator couldn't do.
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Mice In a Virtual R

Harvey et al.
Nature 2009
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Sub-Threshold Membrane

Firing rate

N
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Intracellular Oscillations

« Harvey et al. recorded intracellularly from place cells in mice
running on a treadmill.

« QObservations as the animal proceeds through the field:

- Ramp-like depolarization of baseline membrane potential
- Increasing amplitude of membrane potential theta
— Phase precession of intracellular theta relative to LFP

- Spike times advance relative to LFP but not relative to
intracellular theta

« Most compatible with a somato-dendritic interference model of
phase precession.
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Why Is Phase Precession Useful?

« At any given location, place cells behind the rat fire earlier in the
theta cycle than place cells ahead of the rat.

« This sets up the necessary conditions for Hebbian learning: if
cell A fires before cell B, strengthen the A — B connection.

« On each theta cycle the hippocampus is playing a short
sequence of activity representing a slice of its current trajectory.
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Hippocampal EEG
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Theta vs Replay Sequences
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Lisman & Idiart (1995): Working Memory

« Hippocampal cells undergo a gradually increasing
afterdepolarization (ADP) that re-excites the cell after firing.

e

258

« Could this be the basis of a working memory mechanism?

« Sternberg: reaction time on list search task goes up by 38 ms
per list item; hypothesize serial scan process.

« Assume true scan time is 25 ms/item (plus 13 ms/item for other
“costs”, yielding observed 38 ms/item). Can fit seven 25 ms
gamma cycles into one theta cycle.
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How It Works

« Each cell receives sub-threshold oscillatory input at the theta
frequency.

« Cells that are above threshold due to oscillator plus ADP fire.

« Rapid inhibitory feedback prevents less active cells from firing
right afterward; divides up the theta cycle into a set of discrete
gamma slots.

« 7 gamma cycles = 175 ms = 5.7 Hz = time for one theta cycle
« SO memory capacity is 7 items.
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Lisman & ldiart Working Memory Model
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Persistent Activity in EC Neurons

« Pyramidal cells in EC layer |l exhibit ADP and persistent firing in

the presence of the neuromodulator ACh.
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Koene & Hasselmo Buffer Model

« Input phase plus reactivation phase of theta cycle
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Limited Number of Memory Slots (e.g., 2)
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FIFO Replacement; Capacity = 4 ltems
Variable ltem Size

a spikes
(@) (7 spikes)
E (3 spikes)
D (4 spikes)

(8 spikes)

|

L
|
0
A AB

il

FIFO = First In, First Out

LIFO = Last In, First Out
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Membrane Potential
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Inhibitory Interneuron Deletes First ltem
Before Inserting New Item Into a Full Buffer
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Inserts at the Beginning of the Theta Cycle
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Inserting At the Front of the Buffer
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Reverse FIFO Buffer With Replacement

first reactivation of new item
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Summary

« The theta rhythm introduces temporal structure to hippocampal
activity patterns.

« Theta phase precession of place cell firing encodes spatial
information in the temporal pattern.

« ADP could allow cells in hippocampus or EC to serve a working
memory function.

« The Koene & Hasselmo model can store items with different
numbers of active units; only phase matters.

» |Is the gamma cycle really a discretization of theta into multiple
working memory “slots” for storing discrete items?

 |s the somato-dendritic interference model compatible with the
theta/gamma working memory model?
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