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Place Cells Are Found
Throughout the Hippocampal System
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The Hippocampus as a Cognitive Map

* Psychologist E. C. Tolman coined the term “cognitive
map” to describe an animal's mental representation of
space. N _

- Tolman, EC (1948) Cognitive maps in == = |c———j
rats and men.
Psych. Review 55(4):189-208. (= ==

{From H. C. Bladgett, The effect of the introduction of mward upoa
the mazme pecformance of rats. Theiv. Calif. Fabl. Pryckel, 1929, &, No, 8,
L 117.)

« O'Keefe and Nadel's book about place cells
drew its title from Tolman's phrase.

- O'Keefe, ) and Nadel, L. (1978) The Hippocampus as a
Cognitive Map. Oxford University Press.

- Now online at
https://discovery.ucl.ac.uk/id/eprint/10103569/
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https://discovery.ucl.ac.uk/id/eprint/10103569/

Properties of Place Fields

 Appear instantly in a new environment, but take
10-20 minutes to fully develop.

 Can be controlled by distal visual cues. (Rotate the
cues and the fields will rotate.)

* Persist in the dark - so not dependent on visual input.

- Driven by path integration?

 Only about 1/3 of place cells have fields in a typical
small environment.

 Cells have unrelated fields in different environments.
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Place Fields in a Cylindrical and

Sguare Arena
 Roughly gaussian

 Modest peak firing rates (5-10 Hz)

* Largely unrelated fields in the two environments
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Place Fields On A Maze
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Neural activity
during behavior

)
=
S
=
©
c
L.,
€
®
f5
O

Time (one left lap)

Slide courtesy of Anoopum Gupta 7



Theta Phase Precession

fields
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Theta Sequenced Place
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Decoded Paths
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Brown et al., 1998
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Eleanor Maqguire:
Spatial Memory in Humans

 London cab drivers undergo 2-3 years of training to
learn “The Knowledge” of London's complex streets.

 Cab drivers have larger posterior hippocampi than
controls. Experienced drivers show greater
enlargement than new drivers.

« When remembering complex routes,
drivers show elevated activity in right
posterior hippocampus; no increase
when answering questions about
historical landmarks.
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Head Direction Cells (Ranck, 1989)
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Place and Head Direction Systems

Areas which contain Thalamus
Place Cells

- Areas which contain Areas not yet examined

Head Direction Cells for spatial signals

Sharp (2002)

10/23/23 Computational Models of Neural Systems 12



Rodent Navigation Circuit

Place cells
EC —» DG |« l
I >
1 CA3 |« l
PR Ctx Al
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Unimodal/ Amaral, 1998)
Polymodal I e ——
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PaS | | |
Head direction RSP Cix [«—
cells v Par/Oc Cix

Frontal Ctx |-

PR: perirhinal cortex; POR: postrhinal cortex; EC: entorhinal cortex; PrS: presubiculum;
PaS: parasubiculum; DG: dentate gyrus; CA: Cornu amonis; S: subiculum; RSP:
retrosplenial cortex; Par/Oc: parietal/occipital cortex
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Path Integration in Rodents

Mittelstaedt & Mittselstaedt (1980): gerbil pup retrieval
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Redish & Touretzky Model

of Rodent Navigation

Place cells learn and maintain the correspondence
between local view representations and path integrator
coordinates.

Heading direction
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Redish (1997)
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Hippocampal State:
A Moving Bump of Activity

Activity packet reconstructed
from firing patterns of around
100 cells recorded
simultaneously by Wilson &
McNaughton (1993)

Samsonovich & McNaughton (1997)
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2D Attractor Bump Simulation

* In 1972, Amari, and Wilson & Cowan demonstrated
continuous attractor bumps in a recurrent network.

« 25 years later: Samsonovich & McNaughton (1997):
2D attractor bump model of place cells.

« Bumps are easy to simulate and visualize in MATLAB.
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How to make a bump (1D version)

Local excitation plus global inhibition:

W, = exp

fi:max(O,—wEIngZ wf )
J

g=max(0,— Wﬂg"'z Wif))
| J
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How to make a bump (1D version)

Same weights for every unit (shifted):
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Gothard et al. (1996): bump jumps
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Watch the bump jump!
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Cross-correlation plots of the ensemble activity patterns
show a “jump” on the map as a discontinuity.

From (Gothard et al., 1996)
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Samsonovich & McNaughton Model

| Visual input
W |
| ‘ X,
Head direction P I
system 4 . |
=
- I
WWHR P “WVH I
Ft [=—— H |1||'||||"'.|'F'
- Place cells
WRH
Awrn i P
H | offset connections
I WIF
| Integrator cells
| e ———
l T R i A
Motor L - — —
system M

10/23/23 Computational Models of Neural Systems 22



Where is the Path Integrator?

* Early theories (McNaughton) placed it in hippocampus.

 Redish & Touretzky: it can't go there, because multiple
maps make it too hard to update position.

* Fyhn et al. (Science, 2004) found the PI in medial
entorhinal cortex: “grid” cells.

May- Brltt and Edvard Moser,
2014 Nobel Laureates in
Physiology or Medicine
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Multiple Maps in Hippocampus

Samsonovich & McNaughton's “charts” proposal:
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How to make multiple maps

D case)
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Multiple Maps Can Co-Exist

In An Attractor Network

Because activity patterns are sparse, the weight matrix is
also sparse. Interference isn't too bad.

Iteration 892: Peak 0.909 at 10062 Width=24
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Skaggs & McNaughton (1998): Partial
Remapping in Identical Environments
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(Skaggs & McNaughton, 1998)
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Task-Dependent Hippocampal
Remapping

Oler and Markus (2000) recorded from DG,
CA3, and CA1 while animals ran either on a
Figure-8 or Plus maze.
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Task-Dependent Remapping
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Experience-Dependent Remapping

In some circumstances, rats don't remap right away:

« Onset may be delayed.

- So cannot be direct result of a sensory change.

- Must reflect some internal change in the rat's
representation of its environment: learning.

« Rate may be gradual.

- The time course of remapping tells us something about
the experience-dependent learning process.

 Extent may be partial or complete.

 What learning algorithm is reponsible for these
experience-dependent changes?
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Delayed Abrupt

Bostock et al. (1991)
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Tanila et al. (1997): Gradual Remapping

* Discordant responses: some cells followed local cues,
some followed distal, some remapped. The extent of
remapping appeared to increase over several days.
(Based on data summed over rats.)

* |s the rat becoming more certain that the two

environments are reliably different?
Shopping bags

Curlains

Double
Standard Rotation

——y

Aluminum foil
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Does Remapping Matter?

 Masters & Skaggs: remapping coincides with insight
Into a task:

Brain stim.
Reward
location

* One rat quickly remapped & learned the task; one
never did. One rat didn't remap until day 11, when it
suddenly “got” the task. Cause or effect?
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Theta vs Replay Sequences

Theta

v LTI

Occur during attentive behavior
Theta oscillation is present

Tied to the animal’s location
Forward sequence

Few neurons are active
Relatively short paths
represented

Experience encoding and recall

Slide courtesy of Anoopum Gupta
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Highly variable path lengths
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Forward Replay
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Backward Replay

backward

Gupta, van der Meer, Touretzky, Redish, 2010




Configural Learning

* Sutherland and Rudy suggested that hippocampus
learns complex configurations of cues.

» After lesion, animals can still do tasks that depend on
only one cue at a time.

* But tasks that depend on relationships among cues are
Impaired. Examples:

- eight-arm radial maze
- Morris water maze

10/23/23 Computational Models of Neural Systems
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Spatial Working Memory

« Apparatus: 8-arm radial
maze with food cups at
each arm end

« All food cups are baited
at the beginning of each
trial

* During each trial, rats
must remember which
arms have already been
visited. A second arm
visit provides no reward.

« Rats with hippocampal
lesions are severely
iImpaired at this task
(Neave et al., 1997)
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Morris Water Maze

Large pool filled with milky
(opaque), cold water.

A submerged platform is
located at a fixed position in .
the pool.

Distal landmarks outside
the pool are located around
the room; they never move.

The rat is released from a
random starting position
and must swim to the
platform to get out of the
water.

C
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Morris Water Maze

Sutherland and Rudy

(1988):

 Rats with fornix lesions
can still navigate to a

visible platform.

 But they are impaired at
learning to find the

hidden platform.

* Finding the hidden
platform presumably
requires recognizing a
configuration of cues.
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Morris Water Maze Revisited

« Rats with 48 training trials prior to lesioning the
hippocampus showed no deficit (Morris et al.,
1990).

Hippocampal lesion causes a learning deficit!

* Lesioned rats can gradually learn to find a hidden
platform using successively smaller platforms
(Schallert et al., 1996):

BRI K

Hippocampal lesions cause impairment
only when learning the whole path at once!
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Sequence Learning

Sequence presentation Probe
Odors A through E i i Sequential order i i Recognition
1 1 ] i
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H [ _ + _1i ! _ + _ 1
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What Does the Hippocampus Do?

* Builds sparse random representations of
complex configurations of sensory and
behavioral information.

* Learns spatiotemporal associations between
these, within appropriate context, e.qg., for:

- Learning paths to a goal
- Learning odor sequences

* Retains representations for later use /
consolidation.

- Replay of paths during sleep

- Recall of task state after delay:
« DMS and DNMS tasks

* Trace conditioning
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