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Outline

Models of rodent navigation

— Where is the path integrator?
Grid cells in entorhinal cortex

Grid cell models

- Fuhs & Touretzky (many bumps, one sheet)
- McNaughton et al. (one bump on a learned torus)
— Burgess et al. (oscillatory interference)

Outstanding questions about grid cells
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Path Integration in Rodents

Mittelstaedt & Mittselstaedt (1980): gerbil pup retrieval
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Where Is the Path Integrator?

« Early proposals put the path integrator in hippocampus.
« Problem: accurate path integration on one map is hard.
« Doing it on multiple co-existing maps is much harder!

- Not enough connections?
- Won't work for spontaneously created maps.

« Redish & Touretzky (1997) argued that the path integrator must
be independent of hippocampus.

e So where is it???
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Criteria for a Path Integrator
(Redish & Touretzky, 1997)

1) Receives input from the head direction system.

2) Shows activity patterns correlated with animal's position (and
doesn't remap across environments).

3) Receives information about self-motion from motor and
vestibular systems.

4) Updates the position information using self-motion cues.
5) Sends output to an area associated with the place code.
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Grid Cells in Entorhinal Cortex
(Fyhn et al., Science 2004)

l

May- Brltt and Edvard Moser,
2014 Nobel Laureates in
Physiology or Medicine

Hafting et al., 2005
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Grids are Hexagonal and
Independent of Arena Size
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Hafting et al., 2005
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Multiple Grids: Spacing Increases
From Dorsal to Ventral in
Discrete Steps
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Hafting et al., 2005

10/25/23

Computational Models of Neural Systems



More Grid Cell Properties

Nearby grid cells have different spatial phases.

Grids persist in the dark.

Grid structure is expressed instantly in novel environments.
Grids can have different orientations.

- The original reports from the Moser lab suggested that grids could have
different orientations

- Some subsequent reports indicated a common orientation.

- Later, more comprehensive studies show that the grid cell system is
modular (each grid is a module), and orientations can differ (Stensola et
al. 2012)
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More Grid Cell Properties

« Grids maintain alignment with visual landmarks.

 Different peaks in the grid have different amplitudes,
reproducible across trials. (Suggests sensory modulation.)
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Hafting et al., 2005

Trials A and A': cue card in normal position: firing fields are the same.

Trial B: cue card rotated 90 degrees: firing fields have rotated.

Shaded plot: firing rate map for condition B, rotated by -90 degrees,
closely matches the A and A' maps.
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Grid Encoding of Reward

 In a foraging task with a defined reward location, grid cells
showed higher firing rates near the reward location (Butler et al.,
2019)
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Fuhs & Touretzky Model:
Many Bumps on a Sheet

J. Neurosci. 26(16):4266-4276, 2006

« Concentric rings of

excitation/inhibition cause A B
circular bumps to form.

. Most efficient packing of circles f.% &
in the plane is a hexagonal LY |
array. ./

« Offset inhibition will cause
the bumps to move.

« Panels A-C: output weights;
panel D: input weights. f:r\ f;:'\
) &

Fuhs & Touretzky, 2006
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Velocity Input to Grid Cells
|s Based on Preferred Direction

« Fuhs & Touretzky used four
preferred directions.

« At every point where four pixels
meet, all four preferred directions

are represented. %

« Velocity tuning of cell must match
direction of inhibitory component of
weight matrix.
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The Bump Array, and The Grid

« A) A hexagonal array of . | |
bu mpS fo rms over the She et. A =Ne'twork Activity Pattern Formation and Translation

Inhibition around the
periphery allows bumps to
smoothly “fall off the edge”

« B) The firing fields of
individual cells show a
similar hexagonal grid
pattern as the bumps move
over the sheet.

B Spatial Firing Fields
Cell at 31,21 Cell at 31,31

Fuhs & Touretzky, 2006
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Conjunction of Multiple
Grid Scales Yields Place Fields
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McNaughton et al., 2006
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Resetting Only Some Grids
Causes Partial Remapping

>

Partial Remapping due to Partial Grid Reset
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Sensory Modulation of
Grid Cell Activity
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McNaughton et al. Model:
Bump on a Learned Torus

Nature Reviews Neurosci. 7:663-678, 2006
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McNaughton et al., 2006
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Toroidal connectivity
produces a
rectangular grid of
firing fields.
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How To Get A Hexagonal Grid
From A Torus
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Development Stage

« Hexagonal array of bumps *# Peveiermen o =gk N
forms spontaneously inthe __— —_—
“ . " Teaching/Turing layver =  — * f
Turing cell layer”. R —

Entarhinal

« Array drifts randomly but e iscesrr |
only by translation, not = = g t —
rOtatlon. Hidden layer L W

« Hebbian learning trains the
grid cells on the toroidal
topology induced by the
repeating activity patterns.

McNaughton et al., 2006
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Mature Stage: “Turing Layer” Gone;
Velocity Modulates Activity

€ Path integration
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Velocity Modulated Grid Cells

« Both models require that at least some grid cells must show
velocity modulation.

« Confirmed by Sargolini et al. (2006): some EC layer Il cells
are grid X head direction cells, and sensitive to running speed.
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McNaughton: Velocity Gain
Can Determine Grid Spacing

« Cells with tighter packed grids should show greater firing rate
variation with velocity.

« Some evidence for this in hippocampus: dorsal vs. ventral place
cells (Maurer et al., 2005)

McNaughton et al., 2006
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Differences Between

The Two Models

Fuhs & Touretzky (2006): McNaughton et al. (2006):

« No common grid orientation « Grids share same orientation
(confirmed by Stensola et al. due to common training
2012) signal

« Grids can rotate

o lIrregular patterns

« Grids are fixed by the wiring

« Hexagonal pattern enforced

(heptagons) are possible by torus

10/25/23
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Some QOutstanding Questions

1) Can grids shift relative to each other across environments?
If not, how do we keep them from shifting? (Boundary effects?)
2) If grids don't shift, how is the phase relationship enforced?

Familiar (F) Novel (N) Familiar (F"
. 10 min ID 3[] min_ ) 1D F‘:I'IEFI N
3) Does velocity = o - o

. &rf ﬂi'" *:. :
gain govern :

grid spacing? %Eﬁ? f

(Bump spacing &L ES
constant.)

4) Are heptagons real? ~“oomin_ 10-20mn  20-30mi
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Conclusions
The Moser lab has found the path integrator.

Use of multiple grids allows fine-grained representation of

position over a large area with a reasonable number of units.

- How many grids? There is room for at least a dozen.
How accurate is this integrator?

— Error must eventually accumulate.

- Even in the dark, rodents have sensory cues, so
limited accuracy of a pure integrator may be okay.

« The brain really does compute with attractor bumps!

- But Burgess et al. have a different view...
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Burgess et al. Oscillatory Interference Model

Burgess et al. (2007) proposed a radically different model of
grid cells based on interference patterns between oscillators.

The model is based on earlier work of theirs that attempts to
explain phase precession via a similar interference mechanism.

The somatic oscillator is located in the cell body (soma)
entrained to the theta rhythm, possibly driven by pacemaker
input from the medial septum.

The dendritic oscillator is an intrinsic oscillator with a slightly
higher frequency.
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Somatic and Dendritic Oscillators

« The sum of somatic and dendritic oscillations determines the
activation level of the cell, and the timing of spikes.

« The cell spike times precess relative to the peaks of the slightly
slower theta rhythm, shown as vertical lines below.

A SOTTTYRTTTTTIIITTT R
phase: o . *e
0 . L p
sum:
B
dendrite: T V= aqcos Wi 9)
soma. @iﬁ_ﬂ_ﬂ. Ve = @ oSl W, 1)
0 04 08 12 16 2 = Oy + 1)
time (s)
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Extension to a 2D Model

« Assume the period of the dendritic oscillator is modulated by the
animal's speed s and heading «.

. Let ¢, be the dendrite’s preferred direction, i.e., the direction
where the oscillation is fastest.

w, = w, + Bs-cos(¢—¢,)

. For headings perpendicular to ¢ , w = w_, and the two
oscillators remain in phase.
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Extending the Model to 2D
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Each Dendritic Oscillator Interferes with the
Somatic Oscillator

Spikes ono
Somatic theta input /\/\/\ !
Grid cell ? - |
r [}
Dendritic AVAVARS
subunits \/\/\/’\,

=
i A 'j

Linear interference patterns

MPQO = Membrane Potential Oscillator
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The Product of Interference Patterns
60° Apart Gives Hexagonal Bumps
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Separation by At Least 20° Suffices

A: cell with maximum firing rate; B: cell with median rate; C: cell with minimum rate.
Simulation using three dendritic oscillators with different combinations of preferred
directions.
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How to Maintain Grid Alignment

« Path integration is subject to drift due to accumulated error.

« This can be corrected by resetting the phases of the dendritic
oscillators when the rat is at a known location.

sensory input

via IEC
Place cell: J ' n!
Piace field
Grid cell /| Grld
Dendritic j
subunits

1 Spikes /\/‘\/\j

AN Somatic theta input Linear interference patterns
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s the Model Realistic?

« Stellate cells in layer Il of dorsomedial entorhinal cortex show
subthreshold oscillations.

« Giocomo et al. (2007) found that oscillation frequency correlates
with grid size.

« The frequency of the intrinsic oscillation depends on the time
constant of the h-current, which varies dorsoventrally.

« Grid cells in some layers of EC are modulated by head direction.
« The model also explains phase precession of grid cells.
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Unresolved Issues

« No evidence yet for independent oscillators with different
frequencies in different dendritic branches.

« The model treats each grid cell independently. Unlike the
attractor model, there is no required interaction between grid

cells.
— How should cells interact to stabilize the grid?
« |s the grid reset mechanism realistic?
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