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Probability: Bayes' Rule

We want to know if a patient has disease d.  Test them.
They test positive. What conclusion should we draw? 
● P(d) prior has the disease
● P(t&d) joint tests positive and has the disease
● P(t|d) likelihood tests positive given has the disease
● P(d|t) posterior has disease given test is positive
● P(t) evidence test is positive (aka “marginal likelihood”)

Bayes' Rule:

P(d∣t ) =
P(d& t)
P (t )

=
P(t∣d) ⋅ P (d )

P(t )
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Cricket Cercal System Encodes Wind Direction
Using Four Sensory Neurons

Tuning Curves

Max firing rate ~ 40 Hz; baseline 5 Hz. Assume a Poisson spike rate
distribution. Bayesian method gives lowest total decoding error.

Error relative to 
population vector.
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Population Vector
● Term introduced by Georgopoulos to describe a method of 

decoding reaching direction in motor cortex.
● Given a set of neurons with preferred direction unit vectors v

i
 

and firing rates r
i
, compute the direction V encoded by the 

population as a whole.
● Solution: weight each preferred direction vector by its 

normalized firing rate r
i
/r

max
.

● This is a simple decoding method, but not optimal when 
neurons are noisy.

V =
1
N∑

i=1

N r i
rmax

⋅vi
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popvec demo
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Maximum Likelihood Estimator
● MLE uses information about the spike rate distribution to decide 

how likely is a population spike rate vector r given stimulus 
value s. For a Poisson spike rate distribution, where r

i
 is the 

spike count for true firing rate f
i
:

● We can then use Bayes' rule to assign a probability to each 
possible stimulus value.  Assume that all stimulus values are 
equally likely.  Then:

P [r∣s] = ∏
i=1

N

exp[− f is t ]⋅ f is t 
r i t 1

r i t !

P [s∣r ] ≈
P [r∣s]
P [r ]
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Bayesian Estimator
● If we know something about the distribution of stimulus values 

P[s], we can use this information to derive an even better 
estimate of the stimulus value.

● For example: the cricket may know that not all wind direction 
values are equally likely, given the behavior of its predators.

● From Bayes' rule:

P [s∣r ] =
P [r∣s] ⋅ P [s]

P [r ]
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Homogeneous Population Code for 
Orientation in V1

● Gaussian tuning curves with s = 15o.
Baseline firing rate = 5 Hz.

● Optimal linear decoder weights to
discriminate a stimulus s* – ds from
a stimulus s* + ds, where s* = 180o.
Note that the weight on the unit coding
for 180o is zero.

If t(r) > 0 conclude that stimulus > s.

t r  = ∑
i

r iwi
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Cleaning Up Noise With Recurrent Connections
● Construct an attractor network whose attractor states 

correspond to perfect (noise-free) representations of stimulus 
values.
– For a 1D linear variable, this would be a line attractor.
– For a direction variable like head direction, use a ring attractor.

● The attractor network will map a noisy activity vector r into a 
cleaner vector r* encoding the stimulus value that is most likely 
being encoded by r.
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Basis Functions
● You can think of the neurons' tuning curves as a set of basis 

functions from which to construct a linear decoding function.
● But instead of decoding, we can also use these basis functions 

to transform one representation into another.
● Or use them to do arithmetic.
● Example: calculating head-centered coordinates from retinal 

position plus eye position.
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Recurrent Network Maintains Proper Relationships 
Between Retinal, Eye, and Head Coordinates
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Encoding Probability Distributions
● The previous decoding exercise assumed that the activity vector 

was a noisy encoding of a single value.

● What if there were inherent uncertainty as to the value of a 
variable?

● The brain might want to encode its beliefs about the distribution 
of possible values.

● Hence, population codes might represent probability 
distributions.
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Aperture Problem: In What Direction
Is the Bar Moving?
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Aperture Problem: In What Direction
Is the Bar Moving?
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Horizontal Direction Uniformly Distributed
Because No Information Available

Some uncertainty 
about vertical 
velocity yields a 
distribution of 
possible values.

High Contrast

Low Contrast
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Bayesian Estimation of Velocity:
Prior P(s) is a Gaussian Centered on Zero

Likelihood P[r|s]

Posterior P[s|r]

Low Contrast Case

High Contrast Case
Likelihood peaked at same 
value but curve is 
narrower, so estimated 
velocity from posterior is 
higher.
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Psychophysical Argument for Representing 
Distributions Instead of Expected Values

● People estimate velocities as higher when the contrast is 
greater. How to account for this?

● The Bayesian estimator produces this effect.  Humans behave 
as predicted by Bayes' law.

● Why does this model work?  Because:
– The width of the likelihood distribution is explicitly represented

● Other psychophysical experiments confirm the view of humans 
as Bayesian estimators.

● This suggests that the nervous system utilizes probability 
distribution information, not just expected values.
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Decoding Gaussian Signals with Poisson Noise
– Translation (blue) shifts the probability distribution but does not change 

the shape from the original (green).
– Scaling down (red) broadens the variance.
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Convolutional Encodings
● For other types of probability distributions we don't want to use 

uniform Gaussian tuning curves.  Instead, convolve the 
probability distribution with a set of basis functions.

● Fourier encoding (sine wave basis functions):

● Gaussian kernels:

● Decoding of these representations is tricky.

f iP [s∣r ] = ∫ds⋅sinwisi⋅P [s∣r ]

f iP [s∣r ] = ∫ds⋅exp−s−si
2

2 i
2 ⋅P [s∣r ]
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Ernst & Banks Experiment

Estimating the width of a bar 
using both visual (V) and haptic 
(H) cues.

Population codes are computed 
by convolving with Gaussian 
kernels.

“Neural” model does three-way 
element-wise multiplication.

In this way, we can do inference 
using noisy population codes.

P [w∣V ,H ] ∝ P [V∣w ]⋅P [H∣w]⋅P [w ]
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Ma et al. (2006): Bayesian Inference
with Population Codes

Lower amplitude means broader variance.
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Sensory Integration of Gaussians w/Poisson Noise

3 =
2

2

1
2
2

2
1 

1
2

1
2
2

2
2

1

3
2

=
1

1
2


1
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Generalizing the Approach
● Gaussians with Poisson noise are easy to combine: we can do 

element-wise addition of firing rates, and the resulting 
representation is Bayes-optimal.

● Can we generalize to non-Gaussian functions and other types 
of noise, and retain Bayes-optimality?

● r
3
 = r

1
 + r

2
 is Bayes-optimal if   p(s|r

3
) = p(s|r

1
) p(s|r

2
).

● This doesn't hold for most distributions but it does for some that 
are “Poisson-like”.
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Poisson-Like Distributions

P r k∣s ,g = rk ,gk⋅exphT sr k

h 's = k
−1

s ,gk f 's ,gk

    k is the covariance matrix of r k

gain gk=K /k
2

f ks is the tuning curve function

For identical tuning curves and Poisson noise:

   hs = log f s
   krk ,gk = exp−cgk∏

i

exprki loggk/rki!
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Non-Identical Tuning Curves

● When tuning curve functions f
k
 are not the same, h(s) is not the 

same for all tuning curves.  Simple addition doesn't work.

● But we can still combine tuning curves using linear coefficients 
A

k
, provided the h

k
(s) functions are drawn from a common basis 

set.

r3 = A1
T r1  A2

T r2
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Combining Three Poisson-Like Populations Using
Different Types of Tuning Curves

Inputs:

Outputs:
Black dots 
obtained from 
Bayes rule

Solid line: mean activity. 
 Circles: activity on a 
single trial.

Blue:
   gaussian
Red/Green:
   sigmoidal
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Simulation with Integrate-and-Fire Neurons

Output units are 
correlated. Diagonal is 
suppressed in this 
graph.

Inputs: 
   m

1
 = 86.5

   m
2
 = 92.5

Simulates 
cue conflict.

Combined estimate is Bayes-optimal!
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Summary
● Population codes are widely used in the brain (visual cortex, 

auditory cortex, motor cortex, head direction system, place 
codes, grid cells, etc.)

● The brain uses these codes to represent more than just a scalar 
value.  They can encode probability distributions.

● We can do arithmetic on probability distributions if the 
population code satisfies certain constraints.
– Codes that are Poisson-like are amenable to this.

● The population code serves as a basis set.
– Populations can be combined via linear operations, and in the simplest 

case, element-wise addition.
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