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Probability: Bayes' Rule

We want to know if a patient has disease d. Test them.
They test positive. What conclusion should we draw?

- P(d) prior has the disease

« P(t&d) joint tests positive and has the disease

« P(t|d) likelihood  tests positive given has the disease

- P(d]|t) posterior has disease given test is positive

« P() evidence test is positive (aka “marginal likelihood”)
Bayes' Rule:




Cricket Cercal System Encodes Wind Direction
Using Four Sensory Neurons

terminal
ganglion

Max firing rate ~ 40 Hz; baseline 5 Hz. Assume a Poisson spike rate
distribution. Bayesian method gives lowest total decoding error.
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Population Vector

Term introduced by Georgopoulos to describe a method of
decoding reaching direction in motor cortex.

Given a set of neurons with preferred direction unit vectors v.
and firing rates r, compute the direction V encoded by the
population as a whole.

Solution: weight each preferred direction vector by its
normalized firing rate r/r

I max

llrmax

This is a simple decoding method, but not optimal when
neurons are noisy.
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Maximum Likelihood Estimator

« MLE uses information about the spike rate distribution to decide
how likely is a population spike rate vector r given stimulus
value s. For a Poisson spike rate distribution, where r.is the

spike count for true firing rate f:

r.At 1

P[r|s] Hexp Atl-(f,(s)At)" (r-At)!

« We can then use Bayes' rule to assign a probability to each
possible stimulus value. Assume that all stimulus values are
equally likely. Then:

P|r|s]
Plr|

Pls|r| =



Bayesian Estimator

 If we know something about the distribution of stimulus values
P[s], we can use this information to derive an even better
estimate of the stimulus value.

« For example: the cricket may know that not all wind direction
values are equally likely, given the behavior of its predators.

« From Bayes' rule:

Plr|s] - P|s]

Pls|r] = Pr]




Homogeneous Population Code for
Orientation in V1

A

« Gaussian tuning curves with o = 15°. 100
Baseline firing rate = 5 Hz.
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« Optimal linear decoder weights to
discriminate a stimulus s* — 8s from

a stimulus s* + 8s, where s* = 180°. 0
Note that the weight on the unit coding
for 180° is zero. B
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If t(r) > O conclude that stimulus > s.

t(r) = Z r.w,
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Cleaning Up Noise With Recurrent Connections

Construct an attractor network whose attractor states
correspond to perfect (noise-free) representations of stimulus

values.
- For a 1D linear variable, this would be a line attractor.

- For a direction variable like head direction, use a ring attractor.

The attractor network will map a noisy activity vector r into a
cleaner vector r* encoding the stimulus value that is most likely

being encoded by r.
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Basis Functions

You can think of the neurons' tuning curves as a set of basis
functions from which to construct a linear decoding function.

But instead of decoding, we can also use these basis functions
to transform one representation into another.

Or use them to do arithmetic.

Example: calculating head-centered coordinates from retinal
position plus eye position.
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Recurrent Network Maintains Proper Relationships
Between Retinal, Eye, and Head Coordinates
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Encoding Probability Distributions

The previous decoding exercise assumed that the activity vector
was a nhoisy encoding of a single value.

What if there were inherent uncertainty as to the value of a
variable?

The brain might want to encode its beliefs about the distribution
of possible values.

Hence, population codes might represent probability
distributions.
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Aperture Problem: In What Direction
Is the Bar Moving?
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Aperture Problem: In What Direction
Is the Bar Moving?
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C

Horizontal Direction Uniformly Distributed
Because No Information Available

High Contrast

Low Contrast
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Bayesian Estimation of Velocity:
Prior P(s) is a Gaussian Centered on Zero

Likelihood P[r|s]

e

Posterior P[s|r]

Low Contrast Case

High Contrast Case
Likelihood peaked at same
value but curve is
narrower, so estimated
velocity from posterior is
higher.
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Psychophysical Argument for Representing
Distributions Instead of Expected Values

People estimate velocities as higher when the contrast is
greater. How to account for this?

The Bayesian estimator produces this effect. Humans behave
as predicted by Bayes' law.

Why does this model work? Because:
— The width of the likelihood distribution is explicitly represented

Other psychophysical experiments confirm the view of humans
as Bayesian estimators.

This suggests that the nervous system utilizes probability
distribution information, not just expected values.
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Decoding Gaussian Signals with Poisson Noise

- Translation (blue) shifts the probability distribution but does not change
the shape from the original (green).

- Scaling down (red) broadens the variance.
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Convolutional Encodings

For other types of probability distributions we don't want to use
uniform Gaussian tuning curves. Instead, convolve the
probability distribution with a set of basis functions.

Fourier encoding (sine wave basis functions):
f.(P[sr]) = fds-sin(wl.s+c|>i)-P[s|r]
Gaussian kernels:

. 2
f.(P[slr]) = [ ds-exp (=)

201.2

Decoding of these representations is tricky.

-P|s|r]
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Ernst & Banks Experiment

Estimating the width of a bar
using both visual (V) and haptic
(H) cues.

Population codes are computed
by convolving with Gaussian
kernels.

P[w|V ,H] « P[V|w]-P[H|w]-P[w]

“Neural” model does three-way
element-wise multiplication.

In j[his way, we can plo inference
using noisy population codes.
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Ma et al. (2006): Bayesian Inference
with Population Codes
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Sensory Integration of Gaussians w/Poisson Noise
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Generalizing the Approach

Gaussians with Poisson noise are easy to combine: we can do
element-wise addition of firing rates, and the resulting
representation is Bayes-optimal.

Can we generalize to non-Gaussian functions and other types
of noise, and retain Bayes-optimality?

r,=r +r, is Bayes-optimal if p(s|r,) = p(s|r.) p(s|r,).

This doesn't hold for most distributions but it does for some that

are “Poisson-like”.
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Poisson-Like Distributions

P(rs,g) = &(r,.g,)exp(h'(s)r})

hI(S> — Z£1<Slgk)fl<slgk)
>, 1s the covariance matrix of r,

gain g, =K/ cri
f,.(s) is the tuning curve function

For identical tuning curves and Poisson noise

h(s) = logf(s)
b (Mo gi) = eXp(—cgk)H exp(r,;logg,)/r,.!
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Non-Identical Tuning Curves

. When tuning curve functions f_are not the same, h(s) is not the
same for all tuning curves. Simple addition doesn't work.

« But we can still combine tuning curves using linear coefficients
A, provided the h (s) functions are drawn from a common basis

setl.

AT T
r, = A1r1 + Azr2
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Combining Three Poisson-Like Populations Using
Different Types of Tuning Curves
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Simulation with Integrate-and-Fire Neurons

Inputs:
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Summary

Population codes are widely used in the brain (visual cortex,
auditory cortex, motor cortex, head direction system, place
codes, grid cells, etc.)

The brain uses these codes to represent more than just a scalar
value. They can encode probability distributions.

We can do arithmetic on probability distributions if the
population code satisfies certain constraints.

-~ Codes that are Poisson-like are amenable to this.

The population code serves as a basis set.

- Populations can be combined via linear operations, and in the simplest
case, element-wise addition.
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