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QOutline

Anderson: parietal cells represent locations of visual stimuli.

Zipser and Anderson: a backprop network trained to do parietal-
like coordinate transformations produces neurons whose
responses look like parietal cells.

Pouget and Sejnowski: the brain must transform between
multiple coordinate systems to generate reaching to a visual
target.

A model of this transformation can be used to reproduce the
effects of parietal lesions (hemispatial neglect).
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Inferior Parietal Lobule

« Four sections of IPL (inferior parietal lobule):

: " Primary
— 7a:visual, eye position somatosensory
, _ cortex
- 7b: somatosensory, reaching Primary
Motor cortex S

- MST: visual motion, smooth pursuit

« medial superior temporal area
« 19/37/39 boundary in humans
« V5a in monkeys

— LIP: visual & saccade-related

- lateral intra-parietal area
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Monkey and Human
Parietal Cortex
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Inferior Parietal Lobule

« Posterior half of the posterior parietal cortex.
« Area 7a contains both visual and eye-position neurons.
« Non-linear interaction between retinal position and eye position.

- Model this as a function of eye position multiplied by the
retinal receptive field.

« No eye-position-independent coding in this area.
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Results from Recording in Area 7a (Anderson)

« Awake, unanesthetized monkeys shown points of light
« 15% eye position only

o 21% visual stimulus (retinal position) only

e 57% respond to a combination of eye position and stimulus pos.
« Most cells have spatial gain fields; mostly planar

« Approx. 80% of eye-position gain fields are planar
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Spatial Gain Fields

Neuron response modulated by eye position
relative to the head/body.
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Spatial Gain Fields of 9 Neurons
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« Cells a,c,d:

- Background is constant

« Cells g,h,i:
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but total activity is planar
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Neural Netywork Simulation
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Simulation Detalls

« Three layer backprop net with sigmoid activation function
o Inputs: pairs of retinal position + eye position

« Desired output: stimulus position in head-centered coords.

« 25 hidden units
« ~ 1000 training patterns
 Tried two different output formats:

- 2D Gaussian output
— Monotonic outputs with positive and negative slopes
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Learned Hidden Unit Receptive Fields

10 Eccentricity in deg. 20 30 40

No Units
= Found

Random weights; no training
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Real and Simulated Spatial Gain Fields
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Summary of Simulation Results

« Hidden unit receptive fields sort of look like the real data.
« All total-response gain fields were planar.

- In the real data, 80% were planar
« With monotonic output, 67% of visual response fields planar

« With Gaussian output, 13% of visual response fields planar
« Real data: 55% of visual response fields planar
« Maybe monkeys use a combination of output functions?

« Pouget & Sejnowski: sampling a sigmoid function at 9 grid
points can make it appear planar. Might be a sigmoid.
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Discussion

« Note that the model is not topographically organized.

« The input and output encodings were not realistic, but the
hidden layer does resemble the area 7a representation.

« Where does the model's output layer exist in the brain?

— Probably in areas receiving projections from 7a.

- Eye-position-independent (i.e., head-centered) coordinates will probably
be hard to find, and may not exist at a single cell.

— Cells might only be independent over a certain range.

« Prism experiments lead to rapid recalibration in adult humans,
so the coordinate transformation should be plastic.
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Pouget & Sejnowski:
Synthesizing Coordinate Systems

. ) . Visual Target
« The brain requires multiple |
coordinate systems in order to [ r— ]
reach to a visual target. coordinates
. -
« Does it keep them all separate? FEn )
. Head-centered
« These coordinate systems can all [ coordinates j
be synthesized from an Sl J
appropriate set of basis functions. EB o j
O }’n(ﬁt?tt €1
. Maybe that's what the brain o e
actually represents. position 1
[ Arm-~centered ]
coordinates
pration 1
[ Joint j
coordinates

l

Movement
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Basis Functions

« Any non-linear function can be approximated by a linear
combination of basis functions.

« With an infinite number of basis functions you can synthesize
any function.

« But often you only need a small number.

« Pouget & Sejnowski: use the product of gaussian and sigmoid
functions as basis functions.

- Retinotopic map encoded as a gaussian
— Eye position encoded as a sigmoid
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Gausian-Sigmoid Basis Function
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Coordinate Transformation Network
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Head-Centered Retinotopic
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Can derive either head-centered or retinotopic representations from the same set of
basis functions. The model used 121 basis functions.
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Summary of the Model

« Not a backprop model.

- Input-to-hidden layer is fixed set of nonlinear basis functions
— Qutput units are linear; can train with Widrow-Hoff (LMS algorithm)

« Less training required than for Zipser & Anderson, but model
uses more hidden nodes.

« Assume sigmoid coding of eye position, unlike Zipser &
Anderson who use a linear (planar) encoding.

- But sigmoidal units can look planar depending on how they're measured.
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Evidence for Saturation (Non-Linearity)

« Cells B and C show saturation, supporting the use of sigmoid
rather than linear activation functions for eye position.

00® eer
cos 335
°c © @ i s @
C@- o o (e
@ e - o @ (o)
00 ©®@®(

11/27/23 Computational Models of Neural Systems



11727723

Sigmoidal Units Can Still Appear Planar
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Map Representations

 Alternative to spatial gain
fields idea.

« Localized “receptive
fields”, but in head-
centered coordinates
instead of retinal
coordinates.

« Not common, but some
evidence in VIP
(ventral intraparietal
area).
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Vector Direction Representations

« Unit's response is the
projection of stimulus vector A
along the units' preferred
direction: dot product.

. Units are therefore linear in \&
a and a ; response to angle 6,

IS a cosine function.

« 20% of real parietal neurons
were non-linear.

« Motor cortex appears to
use this vector -
representation to
encode reaching direction.
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Hemispatial Neglect

« Caused by posterior
parietal lobe lesion
(typically stroke).

« Can also be Patient A Patient B

induced by TMS. g

- Patient can't
properly integrate
11/27/23 Computational Models of Neural Systems 27

body position
information with
visual input.

Copies of a clock and a daisy
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Line Bisection and Clock Drawing Tasks
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Artist's Rendition of Left Hemisphere Neglect
(Depict Impaired Attention as Loss of Resolution)

Right parietal
lesion
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Retinotopic Neglect Modulated
By Egocentric Position

A

oo &

1 4 Right
-g Stunulus
o
G
U / Stxmulus
32

50
C2

Body straight Body turned 20° left

Computational Models of Neural Systems

30



Stimulus-Centered Neglect

-

Note that target x is in
same retinal position
in C1 vs. C2. Only
the distractors have
moved.
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Pouget & Sejnowski Model of Neglect

« Parietal cortex

representations are biased A
toward the contralateral side. saccadic Eye Movements Reaching
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Selection Mechanism

« Present the model with two
simultaneous stimuli,
causing two hills of activity
in the output layers.

« Select the most active hill as
the response. Zero the
activities of those units to
cause the model to move
on. Allow them to slowly
recover.
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Simulation Results

« Right side stimuli are
selected and activation set to

Zero. A
« But stimuli eventually recover o
and are selected again. o 1 o \;‘:’\
« Left side stimuli have poor \M/\““ X 1 X
representations and are / +

frozen out.
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Simulation Results

A Strength of Encoding
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Discussion

« Neglect patients show a mixture of retinotopic, head-centered,
trunk-centered, and object-centered effects.

« This argues for a representation that combines multiple types of
information.

— Damage to that area could explain the mixture of effects.

« The proposed parietal basis function representation encodes
iInformation in a way that allows any desired reference frame to
be extracted by a simple linear output layer.

« Tradeoff: to encode more information, the basis functions must
be more complex.

- And you need more of them.
- And decoding becomes more complex (even if linear).
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Coordination of Saccades and Reaching
« Do eye movements and reaching movements use independent

spatial representations?

« Dean et al. (Neuron, 2012): if so, then reaction times should be

uncorrelated. What do the data show?

i ? Increasing
-:Eu’ :".  saccade
2 Jv " preparation
Null hypothesis: Saccade e
eye and arm representation Saccade RT
movements use
independent Reach .
representations. DGR . Fiait |
representation Increasing
S reach
Qa:‘g 5 preparation
Saccade RT
Alternative hypothesis: . S
eye and reachin , = 3 emdsng
y h 9 Coordinated S ki =, coordinated
movements share - S preparation
representations. representation B
Saccade RT
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Monkeys Performing (Reach and) Saccade Tasks

ad Reach and Saccade Task b Saccade Only Task
g [
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« Baseline: fixate and touch red/green start marker.
« Yellow target flashed briefly.
« Delay period.

« (o signal: red/green marker disppears. Monkey saccades and reaches to
remembered target position.

« Target reappears; monkey must hold for 300 msec.

« Reward delivered.
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b Saccade Only Task
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Results

« During Reach & Saccade tasks, LIP cells whose spiking was
coherent with the local beta rhythm (15 Hz) were predictive of
both saccade reaction time (SRT) and reach reaction time
(RRT).

« Lower beta power = faster reaction times.

« Cells whose spiking was not
coherent with the beta rhythm
did not correlate with SRT or RRT.

 In the pure Saccade task, there
was no correlation between
beta power and SRT.

Reach RT

100 :
100 200 300 400 50 100

Saccade RT (ms)
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Results (cont.)

Reach and saccade

Saccade only

a b e
® 16 1.6 2
T ae — fast SRT A — fast RRT — fast SRT
O 25141 4 ---slow SRT 1.4} | .-+ slow RRT ==+ slow SRT
e w [ i :
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C . d f
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— 58" " 1 1.6 fast SRT
S = 81| ¥ —fastSRT  , , — fast RRT A — fast
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S E
,,g g 1 1 1.2
o 08 0.8 i
0O 20 40 60 80 100 0 20 40 60 80 100 O 20 40 60 80 100
Frequency (Hz) Frequency (Hz) Frequency (Hz)
Delay Period Whole Trial Whole Trial
Beta-coherent cells predicted RT only in the saccade+reaching trials,
not in the pure saccade trials.
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