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Outline
● Anderson: parietal cells represent locations of visual stimuli.
● Zipser and Anderson: a backprop network trained to do parietal-

like coordinate transformations produces neurons whose 
responses look like parietal cells.

● Pouget and Sejnowski: the brain must transform between 
multiple coordinate systems to generate reaching to a visual 
target.

● A model of this transformation can be used to reproduce the 
effects of parietal lesions (hemispatial neglect).



The Parietal Lobe
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Inferior Parietal Lobule
● Four sections of IPL (inferior parietal lobule):

– 7a: visual, eye position
– 7b: somatosensory, reaching
– MST: visual motion, smooth pursuit

● medial superior temporal area
● 19/37/39 boundary in humans
● V5a in monkeys

– LIP: visual & saccade-related
● lateral intra-parietal area

Primary
somatosensory

cortex
Primary

Motor cortex
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Monkey and Human
Parietal Cortex
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Inferior Parietal Lobule
● Posterior half of the posterior parietal cortex.
● Area 7a contains both visual and eye-position neurons.
● Non-linear interaction between retinal position and eye position.

– Model this as a function of eye position multiplied by the 
retinal receptive field.

● No eye-position-independent coding in this area.
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Results from Recording in Area 7a (Anderson)
● Awake, unanesthetized monkeys shown points of light
● 15% eye position only
● 21% visual stimulus (retinal position) only
● 57% respond to a combination of eye position and stimulus pos.
● Most cells have spatial gain fields; mostly planar
● Approx. 80% of eye-position gain fields are planar
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Spatial Gain Fields

Incremental stimulus 
response over baseline

Baseline activity rate

Total stimulus response

Neuron response modulated by eye position 
relative to the head/body.
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Spatial Gain Fields of 9 Neurons
● Cells b,e,f:

– Evoked and background 
activity co-vary

● Cells a,c,d:
– Background is constant

● Cells g,h,i:
– Evoked and background 

activities are non-planar, 
but total activity is planar
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Types of Gain Fields

single peak

single peak with complexities

multi-peak complex

Eccentricity in deg.
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Neural Network Simulation

Retinal 
Position of 
Stimulus

Eye
Position

Head 
Position of 
Stimulus

monotonic

gaussian
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Simulation Details
● Three layer backprop net with sigmoid activation function
● Inputs: pairs of retinal position + eye position
● Desired output: stimulus position in head-centered coords.
● 25 hidden units
● ~ 1000 training patterns
● Tried two different output formats:

– 2D Gaussian output
– Monotonic outputs with positive and negative slopes
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Learned Hidden Unit Receptive Fields

No Units 
Found

Random weights; no training

Eccentricity in deg.

single peak

single peak with complexities
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Real and Simulated Spatial Gain Fields

Real Simulated
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Summary of Simulation Results
● Hidden unit receptive fields sort of look like the real data.
● All total-response gain fields were planar.

– In the real data, 80% were planar
● With monotonic output, 67% of visual response fields planar
● With Gaussian output, 13% of visual response fields planar
● Real data: 55% of visual response fields planar
● Maybe monkeys use a combination of output functions?
● Pouget & Sejnowski: sampling a sigmoid function at 9 grid 

points can make it appear planar.  Might be a sigmoid.



11/27/23 Computational Models of Neural Systems 16

Discussion
● Note that the model is not topographically organized.
● The input and output encodings were not realistic, but the 

hidden layer does resemble the area 7a representation.
● Where does the model's output layer exist in the brain?

– Probably in areas receiving projections from 7a.
– Eye-position-independent (i.e., head-centered) coordinates will probably 

be hard to find, and may not exist at a single cell.
– Cells might only be independent over a certain range.

● Prism experiments lead to rapid recalibration in adult humans, 
so the coordinate transformation should be plastic.
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Pouget & Sejnowski: 
Synthesizing Coordinate Systems

● The brain requires multiple 
coordinate systems in order to 
reach to a visual target.

● Does it keep them all separate?
● These coordinate systems can all 

be synthesized from an 
appropriate set of basis functions.

● Maybe that's what the brain 
actually represents.
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Basis Functions
● Any non-linear function can be approximated by a linear 

combination of basis functions.
● With an infinite number of basis functions you can synthesize 

any function.
● But often you only need a small number.
● Pouget & Sejnowski: use the product of gaussian and sigmoid 

functions as basis functions.
– Retinotopic map encoded as a gaussian
– Eye position encoded as a sigmoid
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Gausian-Sigmoid Basis Function
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Coordinate Transformation Network
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Can derive either head-centered or retinotopic representations from the same set of 
basis functions.  The model used 121 basis functions.
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Summary of the Model
● Not a backprop model.

– Input-to-hidden layer is fixed set of nonlinear basis functions
– Output units are linear; can train with Widrow-Hoff (LMS algorithm)

● Less training required than for Zipser & Anderson, but model 
uses more hidden nodes.

● Assume sigmoid coding of eye position, unlike Zipser & 
Anderson who use a linear (planar) encoding.

– But sigmoidal units can look planar depending on how they're measured.
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Evidence for Saturation (Non-Linearity)
● Cells B and C show saturation, supporting the use of sigmoid 

rather than linear activation functions for eye position.
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Sigmoidal Units Can Still Appear Planar
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Map Representations
● Alternative to spatial gain 

fields idea.
● Localized “receptive 

fields”, but in head-
centered coordinates 
instead of retinal 
coordinates.

● Not common, but some 
evidence in VIP
(ventral intraparietal 
area).
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Vector Direction Representations
● Unit's response is the 

projection of stimulus vector A 
along the units' preferred 
direction: dot product.

● Units are therefore linear in
a

x
 and a

y
; response to angle q

A
 

is a cosine function.
● 20% of real parietal neurons 

were non-linear.
● Motor cortex appears to

use this vector 
representation to
encode  reaching direction.
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Hemispatial Neglect
● Caused by posterior 

parietal lobe lesion 
(typically stroke).

● Can also be 
induced by TMS.

● Patient can't 
properly integrate 
body position 
information with 
visual input.
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Line Bisection and Clock Drawing Tasks
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Artist's Rendition of Left Hemisphere Neglect
(Depict Impaired Attention as Loss of Resolution)

Right parietal 
lesion
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Retinotopic Neglect Modulated
By Egocentric Position

x

Body straight        Body turned 20o left
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Stimulus-Centered Neglect

Note that target x is in 
same retinal position 
in C1 vs. C2.  Only 
the distractors have 
moved.



11/27/23 Computational Models of Neural Systems 32

Pouget & Sejnowski Model of Neglect

Basis
Functions

● Parietal cortex 
representations are biased 
toward the contralateral side.

● Similar model to previous 
paper, but...

● Neglect simulated by biasing 
the basis functions to favor 
right-side retinotopic and eye 
positions, simulating a right 
side parietal lesion (loss of 
left side representation).
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Selection Mechanism
● Present the model with two 

simultaneous stimuli, 
causing two hills of activity 
in the output layers.

● Select the most active hill as 
the response.  Zero the 
activities of those units to 
cause the model to move 
on.  Allow them to slowly 
recover.
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Simulation Results
● Right side stimuli are 

selected and activation set to 
zero.

● But stimuli eventually recover 
and are selected again.

● Left side stimuli have poor 
representations and are 
frozen out.
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Simulation Results

dashed line: C1 (looking straight ahead)
solid line: C2 (body turned to the left)

x

Strength of Encoding
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Simulation Results
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Discussion
● Neglect patients show a mixture of retinotopic, head-centered, 

trunk-centered, and object-centered effects.
● This argues for a representation that combines multiple types of 

information.
– Damage to that area could explain the mixture of effects.

● The proposed parietal basis function representation encodes  
information in a way that allows any desired reference frame to 
be extracted by a simple linear output layer.

● Tradeoff: to encode more information, the basis functions must 
be more complex.

– And you need more of them.
– And decoding becomes more complex (even if linear).
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Coordination of Saccades and Reaching
● Do eye movements and reaching movements use independent 

spatial representations?
● Dean et al. (Neuron, 2012): if so, then reaction times should be 

uncorrelated.  What do the data show?

Null hypothesis:
eye and arm 
movements use 
independent 
representations.

Alternative hypothesis:
eye and reaching 
movements share 
representations.
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Monkeys Performing (Reach and) Saccade Tasks

● Baseline: fixate and touch red/green start marker.
● Yellow target flashed briefly.
● Delay period.
● Go signal: red/green marker disppears. Monkey saccades and reaches to 

remembered target position.
● Target reappears; monkey must hold for 300 msec.
● Reward delivered.
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Results
● During Reach & Saccade tasks, LIP cells whose spiking was 

coherent with the local beta rhythm (15 Hz) were predictive of 
both saccade reaction time (SRT) and reach reaction time 
(RRT).

● Lower beta power = faster reaction times.
● Cells whose spiking was not

coherent with the beta rhythm
did not correlate with SRT or RRT.

● In the pure Saccade task, there
was no correlation between
beta power and SRT.
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Results (cont.)

Delay Period Whole Trial Whole Trial

Beta-coherent cells predicted RT only in the saccade+reaching trials, 
not in the pure saccade trials.
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