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Outline

The bee brain

Classical conditioning in honeybees

— identification of VUMmx1 (ventral unpaired median neuron maxillare 1)
— properties of VUMmx1

Bee foraging in uncertain environments

- model of bee foraging
- theory of predictive Hebbian learning

Dopamine neurons in the macaque monkey

— activity of dopamine neurons
— generalized theory of predictive Hebbian learning
- modeling predictions
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The Bee Brain

« Honeybees have about one million neurons in about 1 mms3.

— Fruit flies have only about 100,000 neurons
— Ants have about 250,000 neurons.

« The mushroom bodies are thought to be involved in learning
and memory.
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Where Is memory located in the
honey bee brain?

http://web.neurobio.arizona.edu/gronenberg/nrsc581
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Anatomy of the Bee Brain

« MB: Mushroom body
« AL: Antenna lobe

« KC: Kenyon cells

« 0SN: Olfactory sensory
neurons

« MN17: motor neuron involved
in PER
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Questions

« What are the cellular mechanisms responsible for classical
conditioning?

« How is information about the unconditioned stimulus (US)
represented at the neuronal level?

« What are the properties of neurons mediating the US?

- Response to US
- Convergence with the conditioned stimulus (CS) pathway
- Reinforcement in conditioning

« How to identify such neurons?
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Experiments on Honeybees

« Bees fixed by waxing dorsal thorax
to small metal table.

« Odors were presented in a
gentle air stream.

« Sucrose solution applied briefly
to antenna and proboscis.

« Proboscis extension was seen
after a single pairing of
the odor (CS) with sucrose (US).
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Measuring Responses

« Proboscis extension reflex (PER) was recorded as an
electromyogram from the M17 muscle involved in the reflex.

« Neurons were tested for responsiveness to the US.

ViMmx 1

M 17 .

: 20 mVy
Sucrose solution rsJ
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VUMmx1 Responds to US

« Unique morphology: arborizes in
the suboesophageal ganglion
(SOG) and projects widely in
regions involved in odor (CS)
processing

« Responds to sucrose with a long
burst of action potentials which
outlasts the sucrose US.

« Neurotransmitter is octopamine:
related to dopamine.

OE = Oesophagus
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VUMmMx1

Nature Reviews | Neuroscience
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Stimulating VUMmx1 Simulates a US

« Introduce CS then inject depolarizing current into VUMmx1 in
lieu of applying sucrose.

« Try both forward and backward conditioning paradigms.
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Learning Effects of VUMmx1 Stimulation

 After learning, the odor alone stimulates VUMmx1 activity.

« Temporal contiguity effect: forward pairing causes a larger
increase in spiking than backward pairing.

« Differential conditioning effect:

— Differentially conditioned bees respond strongly to an odor (CS+)
specifically paired with the US, and significantly less to an unpaired

odor (CS-).
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Differential Conditioning of Two Odors

(carnation and orange blossom)

a
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Discussion
« Main claims:

- VUMmx1 mediates the US in associative learning

- A learned CS also activates VUMmx1.

— Physiology is compatible with structures involved in complex forms of learning.
« Questions:

- Is VUMmx1 the only neuron mediating the US?

« Serial homologue of VUMmx1 has almost identical branching pattern.

« Response to electrical stimulation is less than response to sucrose, so perhaps
other neurons also contribute to the US signal.

- Can VUMmx1 mediate other conditioning phenomena, e.g., blocking,
overshadowing, extinction?

- It's know that honeybees can exhibit second order conditioning and negative
patterning (configural learning). Is VUMmx1 involved?

- Do different CS or US stimuli induce similar responses?
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Bee Foraging

« Real's (1991) experiment:
- Bumblebees foraged on artificial blue and yellow flowers.

— Blue flowers contained 2 ul of nectar.

- Yellow flowers contained 6 ul in one third of the flowers and no nectar in
the remaining two thirds.

- Blue and yellow flowers contained the same average amount of nectar.

« Results:

- Bees favored the constant blue over the variable yellow flowers even
though the mean reward was the same.

- Bees forage equally from both flower types if the mean reward from
yellow is made sufficiently large.
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Montague, Dayan, and Sejnowski (1995)

« Model of bee foraging behavior based on VUMmx1.
« Bee decides at each time step whether to randomly reorient.

a
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Neural Network Model

Sensory
input 1o -
02/

0 2 4 6 8 10 12

Nectar volume (PD

Nectar

S: sucrose sensitive neuron; R: reward neuron;
P: reward predicting neuron; &: prediction error signal
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TD Equations

5(t) = r(t) + yVI(t) — V(t-1)
Let y = 1: no discounting

S(t) = r(t)+ V(t) - V(t-1)
= r(t) + V(t)
V(t) = Zilwl.xi(t)

V(t) = Zj:wi[xi(t) - x(t-1)
= Zi:wl.xl.(t)

S(t) = r(t) + Zwixi(t)
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Bee Foraging Model

Xy,Xg,X, encode change in scene

V(t) = wyx,(t) + w x (t) + w, x,(t)

C

Nectar ﬁsensmy
input
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Parameters

wg and w, are adaptable; w, fixed at -0.5

1

Probability of reorienting: P (8(t)) = T+oxp(m-5(£)+D)

Q

1.2

Learning rate A = 0.9

Volume of nectar reward
determined by empirically
derived utility curve.

Probability of reorienting
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Theoretical Idea

« Unit P is analogous to VUMmx1.
« Nectar r(t) represents the reward, which can vary over time.

« At each time t, 6(t) determines the bee's next action: continue
on present heading, or reorient.

« Weights are adjusted on encounters with flowers: they are
updated according to the nectar reward.

« Model best matches the bee when
A =0.9.

« Graph shows bee response to switch
In contingencies on trial 15.

of visits to blue
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An Aside: Honeybee Operant Learning

Honey bees can learn visual
cues associated with nectar
rewards
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http://web.neurobio.arizona.edu
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Dopamine and Classical Conditioning
In Primates
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Dopamine

to basal ganglia to striatum

e Involved in:

_ Addiction nigostriatal
- Self-stimulation

— Learning

— Motor actions

- Rewarding situations

to
frontal
cortex

mesolimbic
system

tubero-
infundibular
system

posterior
hypothalamus

ventral
tegmental
area

substantia
nigra

©)CNSforum.com
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Responses of Dopamine Neurons in Macaques

« Burst for unexpected No prediction
reward I

« Response transfers to

reward predictors Reward occurs
MLMLWMM
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1 3
Cs (no R)-
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Correct and Error Trials
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Predictive Hebbian Learning Model

A

Cortex Modality i

Intermediate
layer

reward
eye movements __l‘(t)_.
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Model Behavior

40

. 45
timestep 5¢
55
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TD Simulation 1 — Trial 6

TD Learning Simulation
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TD Simulation 1 — Trial 40

TD Learning Simulation
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Relevant

weights

at time
t=5
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TD Simulation 2 — Trial 40

TD Learning Simulation
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Card Choice Task

1
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Magnitude of reward is a function of the % choices from deck A in the last 40 draws.
Optimal strategy lies to the right of the crossover point, but human subjects generally
get stuck around the crossover point
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Card Choice Model

r(t)

“Attention” alternates between decks A and B. Change in predicted reward
determines P, the probability of selecting the current deck. The model tends to get

stuck at the crossover point, as humans do.
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Conclusions

« Specific neurons distribute a signal that represents information
about future expected reward (VUMmx1; dopamine neurons).

« These neurons have access to the precise time at which a
reward will be delivered.

- Serial compound stimulus makes this possible.

« Fluctuations in activity levels of these neurons represent errors
in predictions about future reward.

« Montague et al. (1996) present a model of how such errors
could be computed in a real brain.

« The theory makes predictions about human choice behaviors in
simple decision-making tasks.
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