Cerebellar Timing and Classical Conditioning

Computational Models of Neural Systems
Lecture 2.4

David S. Touretzky
September, 2023



Feedback vs. Feedforward Control
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Sensors tell us the system state
Control requires an internal model that
includes timing information.



Pavlovian Eyeblink Conditioning
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Eyeblink Conditioning in Humans

« Measure cognitive development

- Impaired by mental disorders: Eyeblink Conditioning System
: %gltl)zophrema from San Diego Instruments

« Fetal alchohol syndrome



Delay vs. Trace Conditioning

Delay conditioning: CS stays on until US arrives (up to 4 secs)

CS
us ]

Trace conditioning: CS comes on and then goes off again.
US must be associated with the memory trace of the CS. Trace
can be up to 2 secs in duration.

CS
Trace

us L]

Trace conditioning takes about 5x as many trials to learn.

Trace conditioning (but not delay conditioning) is disrupted by
lesions of hippocampus or medial prefrontal cortex.




Effect of Inter-Stimulus Interval (1SI)

IS must be 100-3000 msec  © .
(ideal is 200-500 msec) 1 Mossy fiber Eyelid response

. Climbing fibar Cerebellum f—=
The learned CR (blink)is ~ — Pulfy Climbin g fiber L ............. IngWAW

timed to just precede the US  ®

(air puff). 100 -l . ,:.l._!

_ = sod Cew
Several hundred trials > |/
required for long ISIs .,
Long ISls also generate a 0] | |
broader response

ITI (Inter-Trial Interval) is the T e
time between successive
trials. Should be long and

somewhat random.
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Mixing 200 ms and 700 ms ISI Trials
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Eyelid Conditioning Circuitry

Parallal fiber
Climbing fiber
Mossy fiber

Cerebellum
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Effects of Lesions
Lesioning the cerebellar cortex disrupts response timing but
does not abolish the response entirely.

« Associative learning can still occur, but responses have very
short latency (timing is off).

a) Rabbit b) Simulated

Pre-Lesion Pre-Lesion

Post-Lesion

Post-Lesion

v v

CS us

« Conclusion: two sites of Pavlovian learning in the cerebellum:

— Interpositus nucleus learns to respond to the CS (mf — nuc)
— Cerebellar cortex fine tunes the temporal response (pf — Pk)
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Medina & Mauk (2000) Simulation

600 mossy fibers
10,000 granule cells
900 Golgi cells

60 basket/stellate cells FIBERS
20 Purkinje cells

6 nucleus cells

> 300,000 synapses

CLIMBING /-

after learmning

eyealid position

I nucleus activi
-

C

CsS + US = Eyelid Response
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More Simulation Details in the J.Neurosci. Paper

MOSSY FIBER INPUT SIMULATION NUCLE ELL OUTPUT
C

Aitkin & Boyd Simulated Simulated (raster examples)
Cerebeliar cortex

PHASIC (3%)
R C— .
oty

McCormick & Thompson Simulated

-
»

Untrained Trained

CLIMBING FIBER INPUTS

Sears & Steinmetz Simulated Yoot s
.. : .' . "i
us UsS >

Realistic mossy and climbing fiber
inputs based on experimental data.
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Response Timing in the Model
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LTP + LTD

« Granule cells exhibit a
variety of broad temporal
responses

« LTD alone produces an
overly broad CR (right).

o But LTP + LTD together
produces a precisely
timed response by
combining inputs from
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Time Course of Learning and Response Shaping
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Learning With LTP Disengaged:
Response Timing is Poor
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Recovery After Partial Lesion to Cerebellar Cortex
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Recovery After Lesioning Cerebellar Cortex
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Why Do Long ISls Prevent Learning?
Hypothesis: Too Much LTP Overwhelms LTD
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Scaling Up to 1 Million Granule Cells

« Lietal. (2013) scale up model using a GPU (NVIDIA GTX 580).
- 1024 mossy fibers
- 2% =1,048,567 granule cells (vs. 50 billion in humans)
- 32 Purkinje cells (each with 32,768 granule cell synapses)
- 128 basket cells, 512 stellate cells; 1024 Golgi cells
« Results for eyeblink:

— Oiriginal model couldn't handle 1000 msec IS
- New model can (sort of) handle 1000 msec ISI
— New model still can't handle 1150 msec IS
 Results for cart-pole balancing task: P

- Mossy fibers encode pole angle, angular velocity,
and acceleration

— Two groups of opposed output cells, for left and
right motion

- Sort of works, with no special tuning
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Cerebellar Cortex As a Liquid State Machine

Yamazaki and Tanaka, Neural Networks ,20(3):290-297, April 2007
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Rich Variety of Granule Cell Activity Patterns
(Medina & Mauk Noted This Too)
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Similarity Index: Granule Cell Activity Patterns
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Slices through the graph at left at
t=200, =500, and t=800 show
that similarity changes smoothly.
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Cerebellum = Liquid State Machine + Perceptron

Liguid state machina
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Fiala et al. Spectral Timing Model

Fiala, Grossberg, and Bullock, J. Neurosci. 16(11):3760-3774, 1996

PF

locus of
timing

adaptive
weights

CR 10

Summary: there could be a set of delay lines
built into every Purkinje cell's dendritic tree.
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Metabolic Transmission Pathway
in Purkinje Cell Dendrites

DAG = diacylgycerol

G = guanine nucleotide-binding protein

mGluR1 = metab. glutamate receptor

PKC = phospholipase C

PIP, = phosphatidylinositol
4,5-biphosphate

IP, = inositol 1,4,5-triphosphate,

a second messenger
IP_R = IP_ receptor
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Basic Story

Glutamate binds to mGIuR1 receptors, causing second
messenger IP, to bind to IP_R receptor.

IP_R receptor causes release of calcium from storage in the
endoplasmic reticulum (ER).

Ca** activates calcium-

dependent potassium channels, | _
hyperpolarizing the dendrite and IP_R Open
pausing the cell. 0s | Probability

Vi

>

When Ca** concentration gets os |
too high, the IP_R receptor % |

closes again.

0.01 0.1 | 10
[Ca** ]y, (M)
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Spectral Timing
Calcium level in the dendrite builds slowly as IP, accumulates.
Positive feedback on IP_ production and IP_R channel opening
results in a rapid rise in calcium level.

But when Ca®* level high enough, IP_R channels close again.

The speed at which this happens depends on the number of
mG@GluR1 receptors in the synapse.

Different concentrations of mGIuR1 receptors produce different
timing characteristics.

High calcium level hyperpolarizes the dendrite through calcium-
dependent potassium channels and inhibits firing.
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Spectral Timing: Calcium Concentration Profiles

M-
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Fiala et al. simulation: responses to 50 msec glutamate
application produced by varing B__ parameter.
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Learning Performance of the Model
Using a Population of Purkinje Cells
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30 trials; ISI = 500 msec
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Learning in Purkinje Cell Dendrites
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Problems with Spectral Timing Models

« Fiala et al. assume that each Purkinje cell (or each dendrite)
has a fixed number of mGluRs, giving a fixed latency value.

- But Jirenhed & Hesslow (2011) show that any Purkinje cell can
learn any CS-US interval.

 Alternative model by Steuber and Willshaw (2004) assumes that
learning modulates the number of mGluRs. This predicts that
CR latency should decrease as learning proceeds.

- But Jirenhed et al. (2007) found that while CR magnitude increases
with learning, CR latency remained constant.

- Changing the CS-US interval should cause a gradual shift in
latency, but experiments show simultaneous extinction and
acquisition.

- Model can't account for double peak CRs seen in animals.
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Summary

Two sites of cerebellar learning for eyeblink conditioning:

— Cells in interpositus nucleus learn to respond to tone CS
— Purkinje cells in cerebellar cortex learn timing of the response

Purkinje cells require both LTP and LTD to produce temporally
accurate responses.

Granule cells have diverse response profiles

Multiple hypotheses about how the cerebellum keeps time:
delay lines, spectral timing, oscillators, liquid state machines

Two hypotheses for why learning fails at long ISls:

- Medina et al: long period of LTP overwhelms LTD

- Medina & Mauk recurrent network (= LSM) model: granule cell
activity sequence gradually diverges
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Are All These Models Wrong?

Hesslow et al. (2013) find problems with all existing models:

— Purkinje cells have an intrinsic spiking mechanism that does not
depend on parallel fiber input, so LTD of the pf— Pk synapse
should not be sufficient to silence the cell.

— The time course of LTD does not agree with that of eyeblink
conditioning. (But in vitro slice experiments aren't a direct match
for behavioral experiments.)

- @Granule cells may not have the rich variety of temporal responses
these models assume.

— A single Purkinje cell can learn a range of CS-US timings, so
spectral timing models that assign a specific delay to each
Purkinje cell cannot be correct.

— Models that learn by adapting a cell's delay value cannot account
for dual-peak responses, or for the fact that changing the ISI after
training simultaneously extinguishes the old CR latency and
potentiates a new one; it does not gradually shift the latency.
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Hesslow et al.'s Proposal (2013)

« Each Purkinje cell has a family of “timer units” with different
latencies.

« Learning CR timing is done by selecting the units with the
correct latency value.

« Once atimer is activated (by parallel fiber input), it runs
autonomously and triggers hyperpolarization with its
characteristic latency.

« Double-peak responses are explained by having more than one
set of timer units selected.

Lots of open questions:

- What is the neurophysiological basis of timer units?
- How do timer units become selected?

- How do timers become activated?
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A New Proposal

« Hesslow et al. (2013) theorize about a new mechanism:

Doesn't depend on parallel fiber input timing.
Mechanism is intrinsic to the Purkinje cell or interneurons.

After training, pf input activates a molecular mechanism with a
particular constant time delay that turns on a hyperpolarizing
response for a specific duration.

The delay is fixed, not adjustable.

There is a family of these “timer units”, and the learning process
selects the appropriate timer to use.

Once a timer has been activated, it runs its course independent of
further inputs, so extending the duration of the CS will not affect
the CR.
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Recent Advances

« Suvrathan et al. (2016) showed that Purkinje cells in the
flocculus, involved in learning the VOR, have a preferred PF-CF
interval of about 120 msec for LTD. But Purkinje cells in the
vermis, which implement a variety of different behaviors, have
preferred interval varying from 0 to 150 msec.

— Conclusion: different regions of cerebellum have different timing
characteristics based on the behavior being controlled.

« Boele et al. (2018) show that two mechanisms contribute to
learned Purkinje cell responses: (1) LTD of PF-to-PC synapses,
and (2) inhibition from molecular layer interneurons (stellate and
basket cells).

- Both mechanisms must be knocked out by genetic manipulation in
order to severely impair eyeblink conditioning.

39



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

