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The Beam Hypothesis (Eccles)

 Activation of granule cells
should lead to activation
of a beam of Purkinje cells
along the parallel fiber
axis.
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velocity.
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« But people haven't found
these beams.
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Testing the Beam Hypothesis
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In vivo

Purkinje Cell Response to Lip Stimulation: No Beam
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« Activates a 500 x 500 um patch of granule cells: about 30,000
inputs to each PC.

« Strong PC response immediately above the active granule cells,
but no response further along the beam.
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Alternative Explanations for Lack of Beam Response

« Desynchronization of parallel fiber activity due to varying
conduction velocities? (Llinas 1982)

- Distal PCs don't get enough simultaneous activation to fire.
« Insufficient synaptic input? (Braitenberg et al. 1997)
- Distal PCs don't get enough total activation to fire: not enough

granule cells were stimulated.

« Feedforward inhibition! (Santamaria et al., 2007)
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Can FF Inhibition Eliminate the Beam Response?

« Santamaria et al., J. Neurophys. 97:248-263, 2007

« Hypothesis: feedforward inhibition from basket and stellate cells
suppresses activation of Purkinje cells along the beam.

« Modeling:

- Use computer simulations to see if they can reproduce the effects the
hypothesis purports to explain.

« EXxperiment:

- Use GABA, receptor blockers to remove inhibition and see what
happens.
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Granule Cell, Purkinje Cell, and Molecular Layers
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Synapses from Granule Cells Are Present
Throughout the Molecular Layer
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Scaling Issues

Real Purkinje cells have around 150,000 synapses.
The simulation used only 1,600 granule cells / parallel fibers.

How to maintain realistic Purkinje cell responses?

— Scale the synaptic input to compensate.
- In this case, the firing rate of parallel fiber synapses was increased.

The model also used 1,695 inhibitory interneurons.

- Close to a realistic value, so no scaling required.
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Distribution of Stellate and Basket Cells

Basket cells proximal to the Pk cell bodies; stellate cells distal.
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AP Propagation Along Granule Cell Axons

« AS: ascending segment

« 80 cells distributed over
50 um?, firing
simultaneously

« Volley is increasingly
desynchronized as time
progresses due to:

— time to travel along
ascending segment to
reach bifurcation point

— parallel fiber propagation
velocity varying with
depth
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Propagation Time vs. Distance Traveled
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W/o inhibition

Network Simulation Using Wide Range of
Conduction Velocities
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« Strong response immediately above the active granule cells.

« But cells further down the beam do respond. Doesn't fit the
experimental data.
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With inhibition

Adding Feedforward Inhibition to the Model
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Feedforward inhibition eliminates the beam response.
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In vivo

Comparison To Real Data
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Granule Cell Responses to Upper Lip Stimulation

Recordings from Crus lla A o
« CUL = Contralateral Upper Lip — Bioveuline. Crus 1@
« |UL = Ipsilateral Upper Lip v Medial
« ILL = Ipsilateral Lower Lip -
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« Ul = Upper Incisor m‘ L_Jm._

Granule cells are unaffected by
bicucculine (GABA  blocker).
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Purkinje Cell Response 1400 um Away
(IUL Stim.)
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Inhibition Before Adding GABAzine
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Estimating Propagation Velocities Using Two PCs
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Estimating Propagation Velocities
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Blocking GABA, Receptors Doesn't Increase
Purkinje or Granule Cell Excitability: Bicuculline
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Blocking GABA, Receptors Doesn't Increase
Purkinje or Granule Cell Excitability: Gabazine
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Simulation Parameters

« Purkinje cell conductances (from previously published model)
« Range of granule cell axon propagation times (0.15 to 0.5 m/s)

« Number of basket cell synapses as a function of distance from
the active granule cells

« Number of stellate cell synapses as a function of distance from
the active granule cells

« Temporal delays for basket and stellate cell activation
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Table S1
Conductances for the voltage and Ca.- dependent channels in the PC model.

Parameters A, F, and H are in mV. For KC and BK factor z is in uM and B in ms.

) NAME Vr | Gate | P A Bl C| D E F G H
D NaF 45 m 3 35 0| 5 | -10 7 0 65 20
@)

- h 1 0.23 11801 10 75 0 3 18
..CE NaP 45 m 3 200 118 | -16 25 1 58 8
@)

S CaP 135 m 1 85 1] 8 |-125| 35 1 74 145
©O h 1 | 150x10= | 1] 29 | 8 |55x10=]| 1 23 8
C

@) CaT 135 m 1 26 1|21 | B 0.18 1 40 4
O h 1 | 250x10= | 1| 40 | 8 0.19 1 50 10
T) Kh 30

( ) Kdr 85

D KM 85

= m—

(- KA 85 m 4 14 | 2F | 12 | D49 1 30 4
' h 1 | 1.75x10= | 1| 50 | 8 13 1 13 10
L

- KC | 8 | m | 1 o5 a1 OIS 011 | 0 | 35 | 149

z 2 4 10
v~ K2 -85 m 1 25, a,, is constant 7.5%10. 0 5 10
z 2 02 |10
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Propagation Times, and Purkinje Cell Responses

Fastest pf conduction velocity: 0.5 m/s
Slowest pf conduction velocity: 0.15 m/s

A 16 I
Propagation I
Time (ms) JIISIERET S -
0! B e — T T S I |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
B 150
PC 10 4§,
response
(Hz) 9 “\M —— % S z & N
0 | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Each symbol denotes a parameter set that was run for 250 trials.
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Exploring the Parameter Space

Parameter

Range

Notes

Minimum granule
cell layer activation

2% of total number
of granule cells

Activates a PC beam along the full length of
parallel fibers if not compensated by feed-forward
inhibition. Could be smaller when using higher
numbers of parallel fibers in the simulation (Figure
S1).

Basket cell synapses | 1-16 Fast decay as distance increases from site of
stimulation.

Stellate cell 0-30 Increasing as a function of the distance to site of

synapses stimulation. Not always required on top of
stimulation site.

Basket cell synaptic | 1-5 ms Shorter as distance increases from site of

delay stimulation.

Stellate cell synaptic | 1-5 ms Wide range outside the areas closest to site of

delay

stimulation.
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C 20

BC-type 1
synapses

Basket Cell Synapses and Delay

Number of BC synapses needed to replicate physiological data.

Symbols denote different parameter sets.
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Range of temporal delays between pf excitation and
activation of feedforward basket-type inhibition.
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Stellate Cell Synapses and Delay

Number of SC synapses needed to replicate physiological data.

E Symbols denote different parameter sets.
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Distribution of Synapses Onto Purkinje Cells
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Notice that parallel fiber skew increases with distance.
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PC Dendritic Conductances Along A Beam

granule cell, basket cell (short range inhibition), stellate cell (long range inhibition)
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0 um 400 pm 800 um 1200 um

Firing rate (Hz)
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« 15,000 parallel fibers; 0.5% are stimulated

« Used slower conduction velocities for rats: 0.20 to 0.27 m/s

« Random excitation/inhibition to cause 40 Hz spontaneous firing
« Conduction delay and # of BC & SC synapses are shown.

« Same results as for 0.15 m/s to 0.5 m/s conduction velocities.
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Conclusions

Ascending segment excitation arrives too quickly to be blocked
by feed-forward inhibition, so PCs directly above the active
granule cells will fire due to PF inputs.

Further along the beam, parallel fiber excitation is blocked by
feed-forward inhibition, at 0-400 um by basket cells, and further
out by stellate cells.

— Aside: although all vertebrates possess a cerebellum, basket-type
inhibitory connections are found only in birds and mammals,
which have the highest granule cell to Purkinje cell ratios.

Granule cell synapses made by the ascending segment vs. the
parallel fiber segment should be viewed as functionally distinct.
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Activation and Modulation

SC -

How does modulation work?

The present model does not

address the interaction of
simultaneously active
ascending segment and

parallel fiber synapses onto

the same Purkinje cell
dendrite.
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Santamaria et al.'s Conclusions

« Why have parallel fibers synapse onto PCs if their effects are
blocked by feedforward inhibition?

« Hypothesis:

- Unlike the ascending segment synapses, parallel fiber synapses are not
intended to make the PC fire.

- Parallel fibers modulate the state of the Purkinje cell dendrite and control
its response to excitation from ascending segment synapses.

« A similar hypothesis has been offered for cortical pyramidal cells:

- Perhaps the majority of cortical excitatory synapses serve to modulate
dendritic dynamics rather than drive somatic output.

« The paper is a powerful illustration of how modeling and
experiments can interact.
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D'Angelo et al. (2016): Modeling the
Cerebellar Microcircuit

« More realistic models are feasible now, due to:

- Dbetter data about cell types, connectivity, physiology
- Increased computer power

« Zebrin stripes not considered in earlier models:

— Different types of Purkinje cells, distinguished by molecular markers
such as zebrin, form anatomical subregions (striations) and have
different response and learning properties

— Z+ Purkinje cells have slower spontaneous firing (40Hz) than Z-
cells (90-100 Hz).

- Z+ and Z- cells have different pf-PC synaptic plasticity
characteristics (response to pf stimulation frequency).

- Golgi cell somata and dendrites are restricted to the same zebrin
stripe of Purkinje cells.
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Zebrin Stripes in Mouse Cerebellum

Dasterd;ji et al. (2012) Frontiers
in Neuroanatomy
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Cerminara et al. (2015) Nature Reviews Neuroscience.
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Zebrin Staining in Wallaby Cerebellum

Marzban, Hassan & Hoy, Nathan & R Marotte,
Lauren & Hawkes, Richard. (2012). Antigenic
Compartmentation of the Cerebellar Cortex in an
Australian Marsupial, the Tammar Wallaby
Macropus eugenii. Brain, behavior and
evolution.

A
A
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D'Angelo et al. (2016): Modeling the
Cerebellar Microcircuit (cont.)

« More than 15 types of plasticity in cerebellum
 Oscillations in inferior olive, granule cell layer
« Waves of activation across Pk cells?

« Gap junctions between nearby Golgi cells, 10 cells, stellate cells
can lead to synchronization of oscillations

« Recurrent connections DCN<->GrC and DCN<->I10

pf
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Conclusions

« Cerebellum anatomy and physiology are more complex than
early models assumed.

« The cerebellum'’s circuitry is not as uniform as originally
assumed. There are regional differences:

- In distribution of cell types.
— In Purkinje cell learning properties.

« Temporal dynamics (oscillations, frequency response) play an
important role that early models don't address.
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