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Dynamical Control

The Marr-Albus models are static models that map a single
input pattern to a corresponding output pattern. They don't
address dynamics at all.

How can we provide smooth control of a physical thing (like a
limb) that has nontrivial dynamics, e.g., velocity and inertia?

The “setpoint” theory of control (e.g., E. Bizzi):

— Cortex/cerebellum specifies a series of positions for the limb

— Reflexes in the spinal cord cause the motor system to behave like a
“spring” and smoothly move each time the setpoint changes.

— Problem: this only works for “stiff” (high gain) actuators.
- Experiments show that the motor system is not stiff.

Alternative approach: use an inverse dynamics model.




Basics of Control Theory

Desired Controller Control .

state signals

?

Plant

Current state

The “plant” is the thing being controlled.
The controller translates desired states into control signals.
Control signals might be motor torques or muscle activations.

The current state could be just the joint positions, or it could
iInclude joint velocities, accelerations, load signals, etc.

Complications: actuators may be slow to respond; feedback

may be delayed.




Feedback Control

« A simple way to control a plant is to try to continuously reduce
the difference between its current state and the desired state.

« Simple example: control the height of a swinging arm by varying
the torque on a motor.
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Proportional Control

x(t) = current position
X desired position
e(t) x(t)—x error signal
torque = —k, - e(t)

. Larger error will generate more torque, proportional to kp.

« This is a spring model: F = -kx
« When error is zero, torque is zero.

— But error won't stay zero due to gravity pulling the arm down.



Proportional Control Is Unstable
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« Position oscillates and never converges
« Doesn't even oscillate around the target value.



Proportional-Derivative Control

« Oscillation occurs because inertia keeps the arm moving even
as the error (and applied torque) are reduced.

. Solution: introduce a braking factor k  multiplied by the
derivative of the error.

— If error is falling rapidly, apply the brakes so we don't overshoot.

Oe(t)
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torque = —k,e(t) — kg



PD Control Undershoots

« The arm asymptotes at a position where the force of gravity
exactly balances the torque from the residual error.
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Proportional-Integral-Derivative Control

« Need another term to counteract constant inputs to the system,
such as gravity pulling the arm down.

« Use an integral of the error term, so persistent error will
gradually be met with increasing force.



PID Control Works Better
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Demos

« Excel spreadsheet for PID control:
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« Video of P vs. PID control of a wheeled cart

« Video of 2-dof inverse pendulum controller.

11



Control Theory: General

Branch of engineering and mathematics dealing with dynamical
systems.

If we have a complete description of the system (mass
distribution, torques, friction) we can derive controllers for it
mathematlcally

— Differential equations describe the system.
— Many control strategies possible: linear, nonlinear, adaptive, ...

Model identification: learning the system description through
observation.

Machine learning can be used to learn an efficient controller
from experience.
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Plants With Complex Dynamics

Simple PID controllers won't work well for plants where
the actuators can interact and the
dynamics are complex.

Instead, we need a model
of the plant that captures these
complex dynamics.

Forward model: maps control

signals to predicted plant behavior.

Inverse model: maps desired behavior
to control signals that will produce that behavior.
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Wolpert et al.

« Simple feedback controllers (setpoint) won't work for animals
because biological feedback loops are slow and have small
gains (not stiff).

« Proposal: use an inverse model to anticipate what the plant will
do and generate appropriate control signals.

o But how do we train an inverse model?

- We don't know the correct control signals to start with.
— S0 how do we correct errors in the inverse model's output?
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Representations in Arm Control

« Sensory space

— Perceived location of the hand
— Could be in retinal coordinates (x,y), or body coordinates (Xx,y,z)

 Joint or motor command space

- Joint angles (shoulder, elbow, wrist, etc.) or ...
— Motor commands: one dimension per muscle

« Trajectory space

— Desired limb trajectory to accomplish an action (e.g., grasping)
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Training the Inverse Model

« Assume a feedback controller that can convert sensory signals
to control signal error.

« Use this error to train the inverse model.
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Does the Cerebellum Contain Inverse Models?
Kawato's CFBELM (Cerebellar Feedback-Error Learning Model)
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Apply this model to OFR (Optical Following Response).

17



Cerebellar Control of Eye Movements

« Assume each cerebellar “microzone” contains a separate inverse
model for some part of the body.

« Optical following response (OFR) generated in the tonsil
(ventral paraflocculus).
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Musculature of the Eye
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Ocular Following Response (OFR)
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Measured Purkinje Cell Responses

« Radial plot: angle = direction of moving stimulus.

- U =up, D =down, C = contralateral, | = ipsilateral

VPFL Purkinje cells

Vertical cells Horizontal cells

D
« Simple spike responses (parallel fiber inputs).
« Complex spike responses (climbing fiber input).
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Modeling Purkinje Cell Responses

Model used linear combination of eye

acceleration, velocity, and position. B
Sirr:uple spike _

Quantities were measured 10 ms
after simple spike measurement o
(accounts for conduction delay).

Good fit for Purkinje cells in VPFL.

So VPFL may be the inverse model
for ocular following response.
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What Do The Input Fibers Encode?

Parallel fibers:
« Eye movements : motor representation
« Retinal slip: sensory representation

Climbing fibers
« Motor error?
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Forward Models in the Cerebellum?

Why are forward models useful here?

- Sensory feedback has long time delays, so ...
— A forward model can allow us to make faster corrections.
A Smith predictor is a type of controller useful when there are delays in:

— Sensory processing
- Sensory-motor coupling
- Motor execution
The Smith predictor has two forward models:
- Forward dynamic model predicts future state of the plant
- Forward output model predicts future delayed sensory inputs

Wolpert proposes that the forward dynamic model has a faster adaptation
rate than the forward output model.
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Arguments for Multiple Controllers in Cerebellum

1. Human motor behavior is rich and complex.
- Unreasonable to expect everything to be captured by a single
inverse or forward model.

2. Assigning different behaviors to different modules allows them
to be learned independently, avoiding mutual interference.

3. If we have multiple controllers, we can take weighted
combinations of them to synthesize new control regimes.

— Controllers could serve as motor primitives.

4. Prism glasses de-adaptation and re-adaptation are faster than
adaptation, suggesting that there is switching going on.

But how do we decide which model(s) to apply?
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Multiple Paired Forward and Inverse Models?

Inverse model
specialized for a
particular behavioral
context.

Forward models help
determine “responsibility”
for their associated
inverse model in the
current context, based on
the goodness of their
sensory predictions.

Prior estimate comes
from a separate
responsibility predictor.
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Summary

Biological motor control is difficult due to sensory and motor
delays, and complex dynamics of the plant.

Eye movement is a good control problem to study because it's
relatively simple compared to reaching tasks.

— But there are actually several types of eye movements:
OFR, VOR, saccades, ...
We know that cerebellum learns, but what is it learning?

- Inverse model? Forward model? Something else?

Cerebellar circuitry appears to be uniform throughout. So how
does this theory account for cerebellar contributions to:

— Motion planning (cerebrocerebellum)
- Classical conditioning (timing of responses)
— Cognitive phenomena, including language tasks
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Essential Concepts

A feedback error controller generates control signals based
on the difference between the current state and a desired state.

An inverse model suggests control signals that should produce
a specified desired state.

A forward model predicts future state based on current control
signals.

Feedback control doesn’t work well when there is a long delay
in the feedback signal. To accommodate this, we can use
forward models to predict the feedback: either future state or
future sensory signals, or both (Smith predictor).
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