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Why Is the Cerebellum Attractive for Modeling?

« Simple circuit diagram, compared to cerebral cortex.

- Only a few cell types, and cerebellar cortex has just three layers.
— Regqular structure: parallel fiber beams, unique climbing fibers
-~ Computation is local: no long-range connections (?)

« Uniform throughout.

— All portions have the same wiring pattern.
- Suggests that all portions are performing the same computation.

« We think we know what it's doing (motor control, timing) but...

“The range of tasks associated with cerebellar activation ... includes
tasks designed to assess attention, executive control, language,
working memory, learning, pain, emotion, and addiction.”

- Strick, Dum, and Fiez (2009)
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First Look

cerebellum
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Lateral View
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Ventral View
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Basic Facts About the Cerebellum

 Latin for “little brain”.
« An older brain area, with a simple, regular architecture.

« Makes up 10% of human brain volume, but contains > 50% of the
brain's neurons and 4X the neurons of the cerebral cortex.

- In the elephant brain, 97.5% of neurons are in the cerebellum.
« Huge fan-in: 40X as many axons enter the cerebellum as exit from it.

« Necessary for smooth, accurate performance of motor actions.
« Example: moving your arm rapidly in a circle.

- Involves many muscles in the arm, trunk, and legs.

« People can still move without a cerebellum, but their actions will not
be coordinated. There can be overshoots and oscillations.
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Cortical Projections
to Cerebellum

Macaque
monkey
brain
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From Strick et al., Annual review of Neuroscience (2009),
adapted from Glickstein et al. (1985) J. Comparative
Neurology
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Corticopontine Projections in Monkey
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Three Cerebellar Lobes

« Anterior (divided into 3 lobules)
« Posterior (divided into 6 lobules)
« Flocculonodular

Flocculonodular

Medulla lobe

-
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Vermis, and Intermediate and Lateral Zones
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Zones and Input Pathways

DCST CCT OCT

DCST CCT OCT
I PCT (from primary motor cortex)

OCcT

PCT (from posterior
parietal cortex)

DCST - dorsal spinocerebellar tract
CCT - cuneocerebellar tract
YCT - vestibulocerehellar tract
OCT - olirocerehellar tract
PCT - pontocerebellar tract

« OCT VCT

http://www.neuoanatomy.wisc.edu/cere/text/p3/zones.htm
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Spinocerebellum, Gerebrocerebellum, and
Vestibulocerebellum

B Outputs
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Control of Movement

Planning and programming
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Deep Cerebellar Nuclei
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Cooling the Dentate and Interpositus
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Vestibulocerebellum

« Located in the flocculonodular node.
« Responsible for balance, eye movements, head movements.
« Modulates the VOR (Vestibulo-Ocular Reflex).

— Experiment: push your eyeball with your finger.

« Receives input from the vestibular nuclei in the medulla and
projects directly back to them, instead of deep cerebellar nuclei.

« Also receives direct input from the semicircular canals and
otolith organs.

« Receive some visual information from lateral geniculate nucleus
(thalamus), superior colliculi, and striate cortex, mostly relayed
through the pons.
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Spinocerebellum

« Located in the central portion of the anterior and posterior lobes.
Consists of the vermis and intermediate zone. Diverse inputs.

« Responsible for adjusting ongoing movements:

— The vermis is concerned with balance and with proximal motor control.
It projects to the fastigial nucleus.

- The intermediate zone is concerned with distal motor control. It projects
to the interposed nuclei (globose and emboliform).

« Contains two somatotopic
maps of the body.

Anterior lobe
Jrrm————— b =
/ \

 Inputs from spinal cord: Audtory anc
touch, pressure, limb
position, motor efference copy.

|

e-— Posterior
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Homunculus in Motor Cortex
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Fractured Somatotopy
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Cerebrocerebellum

Located in lateral portions of anterior and posterior lobes.
Responsible for planning of limb movements.

Receives input from sensory and motor cortices, including
secondary motor areas (premotor and posterior parietal
cortices), via the pontine nuclei.

Projects to the dentate nucleus, which in turn projects back to
thalamic nuclei which project back to cortex.

Lesions to the cerebrocerebellum produce delays in movement
initiation, and in coordination of limb movement.

May play a more general role in timing. Some patients with
lesions in this area have difficulty producing precisely timed
tapping movements
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Cerebro-Cerebellar Circuit
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Output Pathways of CC, SC, and VC
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Cerebellar Peduncles: Large Fiber Tracts

Cerebellar peduncles: Flocculonodular lobe:
Superior Nodulus
Middle Flocculus

Inferior

N\

Tonsil Postrolateral
fissure
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Cerebellar Peduncles

« Superior cerebellar peduncle

— Contains most of the cerebellum's efferent (output) fibers, including all of
those from the dentate and interposed nuclei.

— (Contains one afferent pathway: ventral spinocerebellar tract, carrying
information from the lower extremity and trunk.

« Middle cerebellar peduncle

— Carries input information from cerebral cortex via the pons.

« Inferior cerebellar peduncle

— Carries afferent information from spinocerebellar pathways.
— Carries olivocerebellar fibers (from inferior olive)
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The Structure of
Cerebellar Cortex
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Purkinje Cells

« Cortex has three layers: granule, Purkinje, and molecular.
« Seven cell types:

1. Purkinje cells: the largest cells in the brain. Principal cells of cerebellar
cortex. 200,000 synapses each. Provide the only output pathway from
cerebellar cortex.

Purkinje cell
drawn by Cajal

Purkinje cells are inhibitory and
use GABA as their neurotransmitter.
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Granule Cells

2. Granule cells are the input cells of the cerebellar cortex. The
are the most numerous cells in the brain. Their axons form the
parallel fibers that innervate the Purkinje cells. About 50 billion
granule cells in the human brain.

-

A

A cerebellar “beam” — .

Parallel
fibers
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More Views of the Beam

Parallel fibers

so[o/ole

Granule cells

Mossy fibers
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Inhibitory Interneurons

3. Golgi cells: receive input from mossy and parallel fibers, and
inhibit the mossy fiber to granule cell synapses, thus modulating
the signal on the parallel fibers.

4. Basket cells: receive input from parallel fibers and inhibit the
Purkinje cell bodies, providing a kind of gain control. Long-
range, possibly off-beam inhibition.

5. Stellate cells make inhibitory synapses onto Purkinje cell
dendrites. Apparently similar feed-forward inhibitory function as
basket cells. Short-range, within-beam inhibition.
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Circuitry of Cerebellar Cortex
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More Interneurons

6. Lugaro cells receive input from 5-15 Purkinje cells and project to
basket, stellate, and Golgi cells.

7. Unipolar brush cells. Excitatory
interneurons using glutamate as the
neurotransmitter. In the rat cerebellum,
these outnumber Golgi cells by 3:1 and
are roughly equal in number to the
Purkinje cells.

dendriﬂles/
(brush) \

unipolar brush cell

Fig. 7. Az Double-labeling studies show that anti-calbindin (yellow-
grean) and Cat-301 (red) recognize mutually exclusive sets of newrons.
This is a photograph of a double-labeled section double-exposed under
separate FITC and Texas red filters. The Cat-301 positive Lugaro cell
is red and the calbindin-positive Purkinje cells are yellow-green.

Sahin M. and S. Hockfield. (1990). Molecular
identification of the Lugaro cell in the cat

cell body cerebellar cortex. J.Comp.Neurol. 301, 575-584.
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Inputs to Cerebellar Cortex

1. Mossy fibers from various sources (pons, medulla, reticular
formation, vestibular nuclei) provide input to the granule cells,
which in turn provide input to the Purkinje cells via the parallel
fibers. (They also synapse onto Golgi cells.)

2. Climbing fibers from the inferior olivary nucleus contact Purkinje
cells directly. Each Purkinje cell receives input from just one
climbing fiber, but through 300-500 synapses. Complex spikes.

3. Modulatory projections from several brain areas (raphe nucleus,
locus ceruleus, and hypothalamus). Neurotransmitters include
serotonin, noradrenaline, and histamine.
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Output From Cerebellar Cortex

« Purkinje cells provide the only output of cerebellar cortex.

« Purkinje cells are inhibitory: they inhibit the cells in the deep
cerebellar nuclei, and each other (via recurrent collaterals).

« The deep cerebellar nuclei project downward to pons, medulla,
and spinal cord or upward to cortical motor areas via thalamus.

« The mossy fibers that project to granule cells also project to the
corresponding cerebellar nuclei.

« The climbing fibers that project to Purkinje cells also project to the
corresponding cerebellar nuclei.

« Hence, the nuclel integrate the inputs to cerebellar cortex (mossy
and climbing fibers) with the outputs (Purkinje cell axons).
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Learning in Purkinje Cells

« Parallel fiber input:

- 200,000 synapses
— generates simple spikes

« Climbing fiber input:

— projection from inferior olive

— each PC contacted by only 1 CF

- “teaching signal”
- generates complex spikes

— causes LTD at parallel fiber synpases

plasticity hete_rosynap_tic
parallel fiber Interaction
Purkinjeh
cell
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granule
cell

o

mossy’
fiber

v

®

in. out.

climbing
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Effects of Cerebellar Disease

A) Delayed onset of movement A 6o
relative to normal subjects. l /

Normal

Abnormal

B) Inaccurate estimates of range and

direction, and unsmooth movement e
with increasing tremor as finger
approaches the tip of the nose. B % e

i_—~Normal
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Cerebellar Activation in Language Tasks

« Articulatory rehearsal: working memory for:

- words
— letters
- not figures, Korean characters (for non-Korean speakers)

« Verb generation

- banana — “peel”
— produces activation in right lateral cerebellum
— not seen for noun generation
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Functional MRI of Cerebellum in Verbal WM

Marvel & Desmond, 2010:

« Medial regions of anterior
cerebellum support overt
speech.

 Lateral portions of superior
cerebellum support speech :
planning and preparation " Inferior Lobe
(e.g., covert speech)
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What Does the Cerebellum Do?

1) Real-time motor control

- Fine-tuning the vestibular-ocular reflex (VOR), an open-loop control
system (just three synapses), and ocular following response (OFR).

- Recalibration of saccadic eye movements
— Cerebellar lesions impair motor coordination but don't cause paralysis.

2) Motor learning

- Marr-Albus pattern associator theory of cerebellar cortex (next lecture)
- Learning muscle combinations to effect desired movements
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What Does the Cerebellum Do?

3) Classical conditioning

— Thompson: rabbit eyeblink conditioning

- Conditioning is abolished by cerebellar lesion but can eventually be
recovered even with cerebellum absent.

— Korsakoff's patients acquire the eyeblink response but can't remember
the training procedure, which they underwent just the day before.

4) Possible role in higher level cognition?

— Much of the cortex projects to the cerebellum, although the heaviest
projections are from motor and somatosensory areas.

- Some patients with cerebellar lesions exhibit language difficulties.

« Tasks for patient studies: articulatory rehearsal; verb generation

« Imaging studies show differential cerebellar
activation for nouns vs. verbs

10/07/23
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The Cerebellum and Cognition

« “The lateral and posterior portions of the human cerebellum are
disproportionately expanded in humans compared to apes and co-
activate with cortex across a vast array of control-related functions
supported by the frontoparietal network, including error processing,
task switching, and language processing.

« Seminal transneuronal tracing studies have shown that the lateral
posterior regions of the cerebellum form closed-looped circuits with
regions of the premotor, prefrontal, and posterior parietal cortex in
macaques, providing an anatomical framework for a putative role in
adaptive feedback mechanisms for behavioral modification of
movement and cognitive processes.

« Thus, the characterization of the cerebellum purely as a conserved
motor structure is antiquated and inaccurate.”

Scott Marek et al., Neuron (100):977-993, 2018.
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