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Marr's Theory

« Marr suggested that the cerebellum is an associative memory.
« Input: proprioceptive information (state of the body).

« QOutput: motor commands necessary to achieve the goal
associated with that context.

« Learn from experience to map states into motor commands.
« Wants to avoid pattern overlap, to keep patterns distinct.
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Albus' Theory

« Albus suggested that the cerebellum is a function approximator.

- Similar to an associative memory, but uses pattern overlap and
interpolation to approximate nonlinear functions.

« Could explain how the cerebellum generalizes to novel input

patterns that are similar to those for previously practiced
motions.
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Associative Memory: Store a Pattern
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The input and output patterns don't have to be the same length, although
in the above example they are.
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Associative Memory: Retrieve the Pattern
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Associative Memory: Unfamiliar Pattern
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Input patterns

must be dissimilar:

orthogonal or
nearly so. (lIs this
a reasonable
requirement?)
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Storing Multiple Patterns
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Input patterns

must be dissimilar:

orthogonal or
nearly so. (Is this
a reasonable
requirement?)

. Noise due to overlap
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Storing Multiple Patterns
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False Positives Due to Memory Saturation
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Responding To A Subset Pattern
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Training the Cerebellum

« Mossy fibers (input pattern)
— Input from spinal cord, vestibular nuclei, and the pons.

— Spinocerebellar tracts carry cutaneous and proprioceptive information.

- Much more massive input comes from the cortex via the pontine nuclei
(the pons) and then the middle cerebellar peduncle. More fibers in this
peduncle than all other afferent/efferent fiber systems to cerebellum.

« Climbing fibers (teacher)

— QOiriginate in the inferior olivary nucleus.

x L St
— The “training signal” for motor learning. 4
- The UGS for classical conditioning. AR YA Y 3
« Neuromodulatory inputs from raphe AW s
nucleus, locus ceruleus, and ey (Sl
hypothalamus. = *
.,' /1
N < )
& Mo /
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Purkinje Cells

« The principal cells of the cerebellum. | JEEIER

" . - I ‘?ﬁ?&:\ EHM

« Largest dendritic trees in the brain: MREDIN (:ﬁ%r A,

about 200,000 synapses. | N ;‘Eiﬂ:‘ﬁ? § 3l

- These synapses are where the associative | Q‘Q‘a{ ‘ ,:J
weights are stored. NS asfad

« Albus argues that basket and stellate cells
should also have trainable synapses.

- Beginning in the 1990s, evidence for various types of symaptic
adaptation and long-term plasticity in stellate cell inputs and
outputs has accumulated.

« Purkinje cells have recurrent collaterals that contact Golgi cell
dendrites and other Purkinje cell dendrites and cell bodies.

« Purkinje cells make only inhibitory connections.
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Input Processing

o If mossy fiber inputs made direct contact with Purkinje cells, the
cerebellum would have a much lower memory capacity due to
pattern interference.

« Also, for motor learning, subsets of an input pattern should not
produce the same results as a supserset input. Subsets must
be recoded so that they look less similar to the whole.

« “cup in hand”, “hand near mouth”, “mouth open”
« “cup in hand”, “mouth open” (don't rotate wrist!)

« Solution: introduce a layer of processing before the Purkinje
cells to make the input patterns more sparse and less similar to
each other (more orthogonal).

« This is what granule cells are for!

« Similar to the role of the dentate gyrus in hippocampus.
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Mossy Fiber to Parallel Fiber Transformation:
“Conjunctive Coding”

« Same number of active lines, but a larger population of units,
produces greater sparsity (smaller o) and less overlap between
patierns.

o =3/29 = 0.103

wimz—r v z™

o =3/8=0.375
' 0 6110 0 01

OUTPUT LINES
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Recoding Via Granule Cells

« Mossy fibers synapse onto
granule cells.

« Granule cell axons (called
parallel fibers) provide input to
Purkinje cells.

« Golgi cells are inhibitory
interneurons that modulate the
granule cell responses to
produce 'better” activity patterns.
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« Golgi cells monitor
both the mossy fibers
(granule cell inputs)
and the parallel fibers
(granule cell outputs).

« Mossy fiber input
patterns with widely
varying levels of
activity result in
granule cell patterns
with roughly the same
level of activity, thanks
to the Golgi cells.
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Golgi Cells

ascending dendrites
(sample parallel fibers)

descending dendrites
(sample mossy fibers)

descending axons
modulate mossy fiber
to granule cell connections

/-—-.'———.-—._————.—-—-—-—-—..—7~
’

- -
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The Glomerulus

GABA,R
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ns

dendrite
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terminal '
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MF MF = mossy fiber

Gr = granule cell
GC = Golgi cell
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Basket and Stellate Cells

« Inhibitory interneurons that supply short-range, within-beam
inhibition (stellate) and long-range, across-beam inhibition
(basket).

stellate cell

N\

~ dendritic trees

‘baskets’ that form around
the Purkinje cell bodies

basket cell N N =
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The Matrix Memory
« Weights: modifiable synapses from granule cell parallel fibers
onto Purkinje cell dendrites.
« Thresholding: whether the Purkinje cell chooses to fire.

« Threshold setting: stellate and basket cells sample the input
pattern on the parallel fibers and make inhibitory connections
onto the Purkinje cells.

« Marr thought the synapses started out with zero or small
weights that increased with learning (LTP).

« Albus' contribution: synapses should initially have high weights,
not zero weights. Learning reduces the weight values (LTD).

« Since Purkinje cells are inhibitory, reducing their input means
they will fire less, thereby dis-inhibiting their target cells.

09/20/23 Computational Models of Neural Systems
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Marr's Notation for Analyzing His Model

.. 1S the fraction of active mossy fibers
o, is the fraction of active granule cells (parallel fibers)
N_,N ; are numbers of mossy fibers/granule cells

N o = expected # of active mossy fibers
N o, = expected # of active granule cells

A fiber that is active with probability o transmits
—log, a bits of information when it fires

N _o_X-log,o = information content of a mossy fiber pattern
N e gx—10g2 o, = information content of a granule cell pattern
(but assumes fibers are uncorrelated, which is untrue)
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Marr's Constraints on Granule Cell Activity

1. Reduce saturation: tendency of the memory to fill up.

Otg < Otm
2. Preserve information. The number of bits transmitted
should not be reduced by the granule cell encoding step.

—Ngocg(logocg) > -N_o_(loga, )

m

N ocm(logocm)

—ocg(logocg) >
g

3. Pattern separation: overlap is an increasing function of «,

SO we agaln want o g < %

09/20/23 Computational Models of Neural Systems 21



Golgi Inhibition Selects Most Active Granule Cells

22
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Summary of Cerebellar Circuitry

Two input streams:

- Mossy fibers synapse onto granule cells whose parallel fibers project to
Purkinje cells

— Climbing fibers synapse directly onto Purkinje cells
Five cell types: (really 7 or more)

1. Granule cells (input pre-processing)

2. Golgi cells (regulate granule cell activity)
3. Purkinje cells (the principal cells)

4. Stellate cells
5. Basket cells

One output path: Purkinje cells to deep cerebellar nuclei.

} Feed-forward inhibition of Purkinje cells

But also recurrent connections: Purkinje = Purkinje

09/20/23 Computational Models of Neural Systems
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New Cell Types Investigated Since Marr/Albus

« Lugaro cells (LC): an inhibitory interneuron (GABA) that monitors the
activity of Purkinje cells and targets Golgi, basket and stellate cells. May
be involved in synchronizing Purkinje cell firing.

« Unipolar brush cells (UBC):
excitatory interneurons. One
mossy fiber input. Projects to
granule cells and other UBCs.

May serve to amplify mossy fiber effects
on granule cells.

09/20/23 Computational Models of Neural Systems 24



Tyrrell and Willshaw's Simulation (1992)

24 MB of memory)

Tried for a high degree of anatomical realism.
Took 50 hours of cpu time to wire up the network!

Then, 2 minutes to process each pattern.

09/20/23

Simulation parameters:

13,000 mossy fiber inputs, 200,000 parallel fibers
100 Golgi cells regulating the parallel fiber system
binary weights on the parallel fiber synapses

40 basket/stellate cells

1 Purkinje cell, 1 climbing fiber for training

Computational Models of Neural Systems

C program running on a Sun-4 workstation (12 MIPS processor,
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Tyrrell & Willshaw Architecture
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Geometrical Layout

plane onto which granule cell
dendrites and mossy fibre plane of granule cells plane of Golgi cells
axon terminals are projected

plane of
mossy fibres
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Golgi Cell Arrangement
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Golgi cell body
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Golgi Cell Estimate of Granule Cell Activity
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Golgi Cell Regulation of Granule Cell Activity
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Granule Cells Separate Patterns
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Pattern Separation by Granule Cells

Let's look at how two patterns are transformed by the granule cells.

Mossy fibers: input pattern.
Parallel fibers: output pattern.

Mossy Fibers Parallel Fibers
o, =3/6=0.5 a, = 4/10 = 0.4

111000 - 1011000100
011001 — 0010110001
6,=2/6=033 6 =6/8=0.75

Patterns have become more sparse: o_ < o

Patterns have also become more distinct: GG > GM.

09/20/23 Computational Models of Neural Systems
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Tyrell & Willshaw's Conclusions

« Marr's theory can be made to work in simulation.

« Memory capacity: 60-70 patterns can be learned by a Purkinje
cell with a 1% probability of a false positive response to a
random input.

« Several parameters had to be guessed because the anatomical
data were not yet available.

« A few of his assumptions were wrong, e.g., binary synapses.
« But the overall idea is probably right.

« The theory is also compatible with the cerebellum having a role
in classical conditioning.
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Marr's 3 System-Level Theories

e Cerebellum

- Long-term memory but strictly “table lookup”.
— Pattern completion from partial cues not desirable

« Hippocampus

- Learning is only temporary (for about a day), not permanent.
— Retrieval based on partial cues is important.

o (Cortex

- Extensive recoding of the input takes place: clustering by
competitive learning.

- Hippocampus used to train the cortex during sleep.

09/20/23 Computational Models of Neural Systems
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« Function approximator using distributed version of table lookup.
In machine learning this is called “kernel density estimation”.

S, and S, far apart

in pattern space:
table entries don't
overlap.

Mossy fiber

Sy

S2

Albus' CMAC Model

« Cerebellar Model Arithmetic Computer, or
Cerebellar Model Articulation Controller

o

CMAC TABLE LOOK-UP S, # S,

“,
-
o~

pattern space
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Similar Patterns Share Representations

CMAC TABLE LOOK-UP S;=S»

\
X\ R
synaptic
— R\\weights
\
\
\
\
\
[ [ \

\
\  Purkinje cell

s, 5 output
ﬁ{5| ) = ?HSE}
S2 . /
/
/
/
: AR |
Mossy fiber /
pattern space — f*"
[ ;"‘f
/
/

09/20/23 Computational Models of Neural Systems

36



Learning a Sine Wave

—
=1

1 § 360
Fig.1 p is the output from a one-input CMAC memaory prior to any

dats baing stored. D is the desired cwiput. For this case the maxi-
mum srror between p and £ Is 1.0 and the r.m.s. error is 0.707.

1}
S IVAN
b/

1 8 60
Fig.2 The output of tha CMAC mamary after & singls arror correction

dats storage operation. p was set equal to 1.0 at 5 = 3. Maximum
srror is still 1.0 (at 1 = I70) and r.m.s ermor s now 0625,
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1+ !‘l\

p '\‘.
. - _P_..\V/_

_1 -

1 3 360

Fig.3 Afer two data storsge operations. Maximum srror = 0.57 and
r.m.s. srror = 0,530,

\ 1 S 360

Fig. 4 After five data points are stored, Maximum srror = 3.34 and
r.m.s. srror = §.313.
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Learning a Sine Wave

1%
p
u - "—V-/
-l L
1 8 360
Fig.5 After nine data points are stored. Maximum arrer = 0.33 and
r.m.s. erer = 0,091,
ln
u.
=1+
1 s 360

Fig. § Afuer sixtesn data points are stored. Maxzimum error = 0.08
and r.m.s. smor = 0,033,
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Learning 2D Data

Flg. 7 A plot of & desired output £ for a CMAC with two inputs.

5 - e (2 ) (%)

Fig. 3 The owtput of a twe-input CMAC memory after sixtesn dats
polnts wars stored. A cress section of this figure in the 5; = 30 plane
i identical to Fig. &.

i §, JE0
Fig. 3 The output of a two-input CMAC memory after a single error

correction dats storags operation. p was set squal to 1.0 at 5, =
90, 5 = %M.
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i =

File Edit View Insert Tools  Window  Help

Paoints = 20: MaxErr = 0.557, RMS = 0.201

Click on the green curve to sample data points

150
M = 20 training points

Learning rate:
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Coarsely-Tuned Inputs Resemble Mossy Fibers
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Coarse Tuning in 2D
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Coarse Coding Using Overlapped Representations

Elbow i

Granule cell

Shoulder
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2D Robot Arm Kinematics
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Higher Dimensional Spaces

Motor control is a high dimensional problem.
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CMAC Learning Rule

1. Compare output value p with desired value p*.
2. If they are within acceptable error threshold, do nothing.

3. Else add a small correction A to every weight that was summed
to produce p:

g is a gain factor (learning rate) < 1
A is the set of active weights

_ p —p
A = N o o
A

If g=1 we get one-shot learning.
Safer to use g<1 to ensure stability.
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CMAC = LMS (Least Mean Square) Learning
« CMAC learning rule:

— Implicit: rule only applies
A =g - P —P to active units
A‘ (units in set A)

o LMS learning rule:

AWi =n - (d—y)-xi Explicit: learning
« Same rulel! \ rate depends on

unit's activity level

« LMS could be used to store linearly independent patterns in a
matrix memory.
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Albus: Why Should Purkinje Cells Use LTD?

1. Learning must be Hebbian, i.e., depend on Purkinje cell activity,
not inactivity.

2. Climbing fiber = error signal.
Climbing fiber fires — Purkinje cell should not fire.

3. Parallel fibers make excitatory connections onto Purkinje cells.

So: reducing the strength of the parallel fiber synapse when the
climbing fiber fires will reduce the Purkinje cell's firing.
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Application to Higher Order Control?

COMPLEX TASK (cssemble ports,
‘ put oway tools, elc.)

CMAC IX
=
#@& \smm.z TASK (fetch, wipe,
% ingert, etc.)
OBSERVED
TASK CMAC 1L
DATA .
o
& ELEMENTAL MOVEMENT
% (reach, go to,iwist, eic.)
OBSERVED
MOVEMENT CMAC I
DATA .
Cerebrocerebellum? 4 o
*@F \ X
\ OBSERVED _
r .92 CMAC I
DATA
. o R
Spinocerebellum? < & JOINT ACTUATOR
< SIGNALS
OBSERVED
JOINT POSITION,
. VELOCITY, eic.
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Compare Marr and Albus Models

Marr: Albus:
Focus on single Purkinje cell « Focus on PCs collectively
recognizing N patterns approximating a function
Binary weights (incorrect) « Continuous weights
Binary output « Continuous-valued output

Both use granule cells to recode input, decrease overlap.

Assumes learning by LTP « Requires learning by LTD

Both use static input and output patterns; no dynamics.
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Newer Simulations using GPUs

« Mauk lab (2013): large scale simulation of cerebellum
— 1024 mossy fibers; 1024 Golgi cells
- 2% (1,048,576) granule cells (vs. 50 billion in humans)
- 32 Purkinje cells
— 128 basket cells; 512 stellate cells
- Simulated on an Nvidia GTX580 GPU
- Eyeblink conditioning, pole balancing tasks

« Yamazaki & lgarashi (2013): real-time spiking simulation

- 102,000 granule cells

- 1024 Golgi cells, 16 Purkinje cells, 16 basket cells
- Runs in real-time on Nvidia GeForce GTX580

— Robot arm control application
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Complications

PF — Pk synapses show LTP as well as LTD
Connectivity is more complex than these models provide for:

Pk cells project to other Pk cells

Deep cerebellar nuclei (DCN) cells project to Golgi cells
Deep cerebellar nuclei cells inhibit cells in the inferior olive
Inferior olive cells are electrotonically coupled

Unipolar brush cells excite granule cells

Plasticity is not limited to PF — Pk synapses

Plasticity of connections onto interneurons
Plasticity within DCN

DCN is complex

— At least 6 cell types

09/20/23

Multiple neurotransmitters (glutamate, GABA, glycine)

Computational Models of Neural Systems 52



Experimental Issues to Consider

Why do some papers report results that conflict with others?

e lt's easier to record in slice than in intact animals.

— But slices are missing some input pathways because those axons
get severed.

- Slice experiments require artificial stimuli; experiments done with
intact animals can use natural stimuli.

« Recording in intact animals may require anesthesia.

— Anesthesia alters the behavior of neurons.

« Although the cerebellum is common to vertebrates, there may
be differences between species.
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