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Why Do Modeling?

● Models help to organize and concisely express our 
thoughts about the system being modeled.

● Good models make testable predictions, which can 
help guide experiments.

● Sometimes a computational model must be 
implemented in a computer simulation in order to 
explore and fully understand its behavior.

– Surprising behavior may lead to new theories.
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Models of the Nervous System

● Hydraulic network (Descartes): nerves = hoses
that carry fluid to drive the muscles

● Clockwork: systematic and representational

● Telephone switchboard: 
communication

● Digital computer (“electronic brain”): computational

Metaphors can serve as informal theories.

Help to frame the discussion.

But limited in predictive power.
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Do Brains Compute?

Most scholars believe the answer is “yes”.

Brains are meat computers!

Some consider this conclusion demeaning.

Computers are machines.  I am not a machine!

Some try to find reasons the answer could be “no”.

Example: if unpredictable quantum effects played a crucial 
role in what brains do, then the result would not be 
describable as a computable function.
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How Can A Physical System Perform 
“Computation” ?

It's a subjective judgment.  What to look for:

1) Its physical states correspond to the 
representations of some abstract computational 
system.

2) Transitions between its states can be explained in 
terms of operations on those representations.

Terry Sejnowski and Patricia Churchland, authors of
The Computational Brain
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Physical Computation:
The Slide Rule

●  Abstract function being computed:  multiplication

– Input:  a pair of numbers

– Output: a number 

●  Physical Realization:

– First input = point on surface of the (fixed) D scale

– Second input = point on surface of the (sliding) C scale

– Output = point on surface of the (fixed) D scale
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Slide Rule Computation:
Multiply 2.05 by 3

● Move the sliding C scale so that the digit “1” is at 
2.05 on the D scale.

● Slide the cursor so that the red index is over the 3 
on the C scale.  Read the result 6.15 on the D scale.

● Why does this work?  Sliding scale and cursor = 
addition. Multiplication comes from adding logs.

C
D

C
D
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 Tinkerytoy Tic-Tac-Toe
Computer

Designed by
Danny Hillis
at MIT.

See Scientific
American
article for
details.
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How Big Are Meat Computers?
Some Numbers

   Neurons     Synapses

Humans   86 billion 150 trillion (1.5 × 1014)

Rats 200 million 450 billion (4.5 × 1011)

1 mm3 of cortex 105    109

A cortical neuron averages 4.12  103 synapses (cat or 
monkey.)
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Computational Resources

Illustration from Wired 
Magazine, May 2013.
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“Building A Brain”

IBM's Dharmendra Modha EPFL's Henry Markram
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Do We Have All the Math We Need
to Understand the Brain?

● Probably not yet.

● People have tried all kinds of things:

– Chaos theory

– Dynamical systems theory

– Particle filters

– Artificial neural networks (many flavors)

– Quantum mechanics

● We can explain simple neural reflexes, but not 
memory or cognition.

● Current theories will probably turn out to be as 
wrong as Aristotelian physics.



13

Which Rock Hits the Ground First?

Natural
motion is

downward

Aristotle (384-322 BCE)
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Aristotelian Motion
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Galileo: Motion is Parabolic
and Independent of Mass

Galileo Galilei (1564-1642)
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Why a Parabola?  Need Calculus

a t =−9.8m /s2

v t =∫a t dt=−9.8 tv0

h t =∫v t dt=−9.8 t2/2v0 th0

Isaac Newton (1643-1727)
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Relativistic Motion: Curved Spacetime

For this theory
you need

tensor calculus.

Albert Einstein (1879-1955)
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Computational Processes 
Posited in the Brain

● Table lookup / associative memory.

● Competitive learning; self-organizing maps.

● Principal components analysis.

● Gradient descent error minimization learning.

● Temporal difference learning.

● Dynamical systems (attractor networks, parallel 
constraint satisfaction).

This course will explore these models and how they 
apply to various brain structures: hippocampus, basal 
ganglia, cerebellum, cortex, etc.
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Some Representative Successes (1)

Dopamine cells in the midbrain
fire in response to rewards, but 
also in response to neutral stimuli
that have become associated with
rewards. But they can also stop 
firing with further training, or
pause when a reward is missed.

Why should they do that?

Temporal difference learning, a type of 
reinforcement learning, neatly explains much of the 
data.
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Some Representative Successes (2)

Most cells in primary visual cortex (V1) get input 
from both eyes but have a dominant eye that they 
respond more to. Radioactive tracing shows zebra-
like “ocular dominance” stripes.

How does this
structure emerge?

Competitive learning algorithms, a type of 
unsupervised learning, can account for the 
formation of ocular dominance and orientation 
selectivity in V1.



21

Science vs. Engineering

● Science: figure out how nature works.

– Good models are as simple as possible.

– Models should reflect reality.

– Models should be falsifiable (make predictions).

● Engineering: figure out how to make useful stuff.

– “Good” means performs a task faster/cheaper/more 
reliably.

– Making a system more “like the brain” doesn't in itself 
make it better.

● Holy grail for CS/AI people: use insights from 
neuroscience to solve engineering problems in 
perception, control, inference, etc.

– Hard, because we don't know how brains work yet.



22

Want to Build a Brain?
Some Disappointing News:

● We're still in the early days of neural computation.

● Our theories of brain function are vague and wrong.
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The Misunderstood Brain

● We know a lot about what makes neurons fire.

● We know a good deal about wiring patterns.

● We know only a little about how information is 
represented in neural tissue.

– Where are the “noun phrase” cells in the brain?

● We know almost nothing about how information is 
processed.

● This course explores what we do know. There is 
progress every month.

● It's an exciting time to be a computational 
neuroscientist.
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Brain Anatomy
● How do we uncover the anatomy of the brain?

– Anatomical dissection + visual inspection

– Microscopy: look for different cell types; staining

– Tract tracing using radioactive labels, viruses, 
diffusion tensor imaging

– Mapping gene expression

● The Allen Brain Institute's mouse brain atlas lists 
737 distinct brain areas. What about humans?

TED Talk Video:
A Map of the Brain.
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What's So Special About 
the Human Brain?

● In general, brain size correlates with body size.

● Humans are smarter than rats and monkeys 
because we have bigger brains.

● Who has the biggest brain?

– Dog: 0.4 kg

– Human: 1.5 kg

– Elephant: 5 kg

– Killer whale: 5.4 – 6.8 kg

– Sperm whale: 8 kg

● Why are humans the smartest?

– We have the most cortical neurons.

– Elephants have more neurons (257B vs. 86B) but most 
of them are in the cerebellum.

Suzana Herculano-Houzel measured 
the number of neurons in the brains 
of humans and other animals.
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