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Why Study Synaptic Plasticity?

● Synaptic learning rules determine the information processing 
capabilities of neurons.

● Synaptic learning rules can implement mechanisms like gain 
control.

● Simple learning rules can even extract information from a 
noisy dataset, via a technique called Principal Components 
Analysis.
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Terms

● LTP: Long Term Potentiation
– A synapse increases in strength, above its baseline value.

● LTD: Long Term Depression
– A synapse decreases in strength, below its baseline value.

● PTP: Post-Tetanic Potentiation

● STP: Short-Term Potentiation
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PTP vs. LTP

Baxter & Byrne (1993)
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Optimal Stimulus Pattern for LTP
● Tonic stimulus:  30 secs @ 10 Hz = 300 spikes.
● Patterned stimulus: 30 secs of evenly spaced

2-5 spike 100 Hz bursts, for a total of 300 spikes.

PTP

LTP
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Types of Synaptic Modification Rules

● Non-associative vs. Associative
– Non-associative: based on activity of a single cell:     

either presynaptic or postsynaptic
– Associative: based on correlated activity between cells

● Homosynaptic (action at the same synapse) vs. 
Heterosynaptic (activity at one synapse affects another)

● Potentiation vs. Depression
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Non-Associative Homosynaptic Rules

What biophysical mechanisms could cause these changes in strength?

activation

presynaptic
change

postsynaptic
change
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Non-Associative Heterosynaptic Rules

Modification of the AB synapse depends on activity in 
presynaptic neuron C or modulatory neuron M.
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Homosynaptic Presynaptic Potentiation

● yA(t) is the firing frequency of the presynaptic cell, i.e., spike 
activity averaged over a few seconds.

● This rule may apply to mossy fiber synapses in 
hippocampus.

● But this rule causes wB,A to grow without bound.
– In real cells, the weight approaches an upper limit.

wB,A t  = ⋅yA t 
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Matlab Learning Rule Simulator
● Find it in the matlab/ltp directory.
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Saturation of LTP

Baxter & Byrne (1993)
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Homosynaptic Presynaptic Potentiation
with Asymptote

● lmax is the asymptotic strength.

● The weights are now bounded from above by lmax

● But the weights can never decrease, so they will saturate.
● Still a very abstract model.
● lmax < 6 to 10 times w0.

wB,A t  =  ⋅ yA t  ⋅ max−wB,A t  



10/27/21 Computational Models of Neural Systems 13

Presynaptic Potentiation with Asymptote
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Homosynaptic Presynaptic Depression

● By analogy with potentiation, but use the inverse of activity, 
so that low frequency stimulation (0.1 Hz) produces more 
depression than high frequency (> 1 Hz).

● Larger yA means less weight change.

● e is positive; asymptote term is negative.

wB,A t  = ⋅yA t 
−1

⋅ min−wB,A t  
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Effects of Stimulus Strength

A stronger stimulus potentiates 
more quickly.

A weaker stimulus depresses more 
quickly.

a = 100, b = 50, c = 25
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Homosynaptic Postsynaptic Modification

● Depends on activity of the postsynaptic cell, yB(t)

● lmax is around 3 times the initial weight w0.

● For depression, lmin is around 0.14 times w0.

wB,A t  = ⋅yBt  ⋅ max−wB,A t  

wB,A t  = ⋅yBt  
−1

⋅ min−wB,A t 
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Non-Associative Heterosynaptic Rules

● Weight change occurs when a third neuron C fires.

● Exact formula by analogy again.

● There are also modulatory neurons that can affect synapses 
by secreting neurotransmitter onto them.

wB,A t  = F yCt 



10/27/21 Computational Models of Neural Systems 18

Several Types of Non-Associative Learning Are 
Observed in Hippocampus CA3 or CA1
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Associative Learning Rules

● Basic Hebb rule
● Anti-Hebbian rule
● Bilinear Hebb rule
● Asymptotic Hebb rule
● Temporal specificity
● Covariance rule
● BCM (Bienenstock, Cooper, and Munro) rule



10/27/21 Computational Models of Neural Systems 20

Hebbian Learning

“When an axon of cell A is near enough to excite a cell B and repeatedly 
or persistently takes part in firing it, some growth process or metabolic 
change takes place in one or both cells such that A's efficiency, as one 
of the cells firing B, in increased.” 
       -- D. O. Hebb, 1949

● Purely local learning rule (good).
● Weights can grow without bound (bad).
● No decrease mechanism is mentioned (bad).

wB,A t  = F yA t  , yBt  
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Basic Hebbian and Anti-Hebbian Rules

● Basic Hebbian rule produces monotonically increasing 
weights with no upper limit:

● Anti-Hebbian rule uses e < 0.  Also called “inverse Hebbian” 
or “reverse Hebbian”.
– If the presynaptic and postynaptic neurons fire together, decrease 

the weight.

wB,A t  =  ⋅ yA t  ⋅ yBt 
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Bilinear Hebb Rule

● Increase based on product of activity.
● Linear decrease if either neuron fires.
● General decay term d should probably be dwB,A for 

asymptotic decay.
● e must be large enough to outweigh b and g for this to work.

wB,A t  = ⋅yA t ⋅yBt  − ⋅yA t  − ⋅yBt  − 
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Simulation of Bilinear Rule
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Asymptotic Hebb Rule

● Allows weight increases and decreases, like bilinear rule.
● Incorporates an asymptotic limit.
● If yB is 0 there is no weight change.

● If neuron B fires, then neuron A's state determines the 
weight change.

wB,A t  = ⋅GyBt ⋅c⋅yA t −wB,A t  
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Hebbian Rule with Asymptotic Limits On Both 
Potentiation and Depression
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Temporal Specificity
● Hebb's formulation refers to neuron A causing neuron B to fire.  

Can't measure causality directly.
● Instead, look for correlated activity.
● Traces of a presynaptic spike will linger for a short while after 

the spike has passed.
● Can use this to detect correlation:

– k is how far back to look
– F(t-,x) is a weighting function based on age of the spike (t-)

ΔwB,A(t) = ϵ∑
=0

k

F (  , yA(t−))⋅G (yB(t))

Memory trace
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The NMDA Receptor
Detects Correlated Activity

Small postsynaptic
depolarization: no Ca2+ 
influx due to Mg2+ block

Large postsynaptic
depolarization brings

Ca2+ influx

magnesium 
block



10/27/21 Computational Models of Neural Systems 28

Spike-Timing Dependent Plasticity
● Weight increase vs. decrease depends on relative timing of pre- 

and post-synaptic activity.
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Hebbian Covariance Learning Rule

● Subtract mean rate from current firing rate of each cell.
● Then use a Hebbian rule to update the weight.
● Weight will increase if pre- and post-synaptic firing are 

positively correlated (both above or both below their means).
● Will decrease if they are negatively correlated.
● No change if firing is uncorrelated.
● Summary: weight change is proportional to the covariance of 

the firing rates.
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Covariance Learning Rule

ΔwB ,A(t) = ϵ ⋅ [ y A(t)−〈y A〉 ] ⋅ [ yB(t )−〈yB〉 ]

= ϵ ⋅ [ y A(t)⋅yB(t) − 〈 y A〉⋅yB(t) − y A(t)⋅〈yB〉 + 〈 y A〉⋅〈 yB〉 ]

〈ΔwB, A(t)〉 = ϵ ⋅ [〈y A(t)⋅yB(t )〉 − 〈〈 yA〉⋅yB(t)〉 − 〈 y A(t )⋅〈yB〉〉 + 〈〈y A〉⋅〈yB〉〉]

= ϵ ⋅ [〈y A(t)⋅yB(t )〉 − 〈y A〉⋅〈 yB〉 − 〈y A〉⋅〈yB〉 + 〈y A〉⋅〈yB〉]

= ϵ ⋅ [〈y A(t)⋅yB(t )〉 − 〈y A〉⋅〈 yB〉]

Mean of
product

Product
of means
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Simulation of Covariance Rule
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BCM Rule

● Bienenstock, Cooper, and Munro learning rule

● q is a variable threshold.
● Similar to covariance rule
● No weight change unless

presynaptic cell A fires.

wB,A =  yBt  ,t   ⋅ yA t 

t  = 〈yB
2
〉

y
B
(t)

y
B
(t)
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Comparison of BCM and Related Rules,
Assuming Fixed Presynaptic Activity
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Evidence for BCM Learning
in Visual Cortex

Intrator et al. 1993

● Weight increase/decrease matches BCM rule.
● But does the threshold q adapt?

– If so, what is the physiological basis?

– Might be calcium concentration [Ca2+]
i
.
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Principal Components Analysis

● N-dimensional data has up to N principal components.
● Principal components are mutually orthogonal.
● The first principal component is the direction along which the 

(zero-meaned) data has the greatest variance.
● The first few components capture the essence of the data, i.e., 

they provide an efficient encoding.
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PCA with a Linear Unit
● Assume inputs x

i
 normalized to have zero mean, so that 

Hebbian learning is equivalent to a covariance learning rule.
– Then the variance of x

i
 is equal to <x

i
2>. 

● Weight grows without bound, but in the direction of the first 
principal component, i.e., the component with greatest 
variance <x

i
2>.

x1 x2 x3 x4

w1
y = ∑

i

wixi

Δwi = ηxi y = η ⋅ (…+wixi
2
+…)

w4

y
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Oja's Rule

● Weight vector w is bounded.
● w approaches a unit length vector in the direction of the 

eigenvector with largest eigenvalue, i.e., the first principal 
component.

ΔwB , A = ϵ ⋅ yB(t) ⋅ (y A(t )−yB(t)⋅wB , A(t))

= ϵ⋅yb(t)⋅ya(t) − ϵ⋅yb
2
(t)⋅wB , A(t )
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x1 x2 x3 x4 x5

Extracting Multiple Components

● A network of k neurons can be used to extract the first k 
principal components.

● Use Hebbian learning for
the wi connections.

● Use anti-Hebbian for
the ui connections.
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Does the Brain Really Do PCA?

● PCA can  train feature detectors that efficiently encode high-
dimensional data, such as images.

● But the receptive fields learned by Hebbian covariance 
neurons don't look like the receptive fields of real neurons.

The first 8 principal 
components extracted 
from visual data using 
symmetric connections.
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Independent Components Analysis
● A more sophisticated learning algorithm, called Independent 

Components Analysis, does produce realistic looking 
receptive fields.

Tries to maximize the variance of each component while 
minimizing their correlation; they needn't be orthogonal.

● Does the brain do ICA?  Possibly.

Karklin & Lewicki (2003)
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