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Why Study Synaptic Plasticity?

* Synaptic learning rules determine the information processing
capabilities of neurons.

* Synaptic learning rules can implement mechanisms like gain
control.

* Simple learning rules can even extract information from a
noisy dataset, via a technique called Principal Components
Analysis.
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Terms

LTP: Long Term Potentiation

— A synapse increases in strength, above its baseline value.

LTD: Long Term Depression

— A synapse decreases in strength, below its baseline value.

PTP: Post-Tetanic Potentiation

STP: Short-Term Potentiation
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PTP vs. LTP
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Optimal Stimulus Pattern for LTP
* Tonic stimulus: 30 secs @ 10 Hz = 300 spikes.

* Patterned stimulus: 30 secs of evenly spaced
2-5 spike 100 Hz bursts, for a total of 300 spikes.
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Types of Synaptic Modification Rules

* Non-associative vs. Associative

— Non-associative: based on activity of a single cell:
either presynaptic or postsynaptic

— Associative: based on correlated activity between cells

* Homosynaptic (action at the same synapse) vs.
Heterosynaptic (activity at one synapse affects another)

* Potentiation vs. Depression
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Non-Associative Homosynaptic Rules
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What biophysical mechanisms could cause these changes in strength?
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Non-Associative Heterosynaptic Rules
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Modification of the A—B synapse depends on activity in
presynaptic neuron C or modulatory neuron M.
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Homosynaptic Presynaptic Potentiation

Awg (L) = e y,(t) l‘ﬂ
H!H,A

* ya(t) is the firing frequency of the presynaptic cell, i.e., spike
activity averaged over a few seconds.

* This rule may apply to mossy fiber synapses in
hippocampus.

* But this rule causes wg A to grow without bound.

— Inreal cells, the weight approaches an upper limit.
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Matlab Learning Rule Simulator

* Find it in the matlab/Itp directory.
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Saturation of LTP
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Homosynaptic Presynaptic Potentiation
with Asymptote

A‘/VB,A(t) — € - .yA(t) ' (?\max_WB,A(t))

* Amax IS the asymptotic strength.

* The weights are now bounded from above by Amax

* But the weights can never decrease, so they will saturate.

* Still a very abstract model.

* Amax < 6 10 10 times wy,.
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Presynaptic Potentiation with Asymptote

Figure 1: Synaptic Learning Rules
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Homosynaptic Presynaptic Depression

* By analogy with potentiation, but use the inverse of activity,
so that low frequency stimulation (0.1 Hz) produces more
depression than high frequency (> 1 Hz).

AWB,A<t) — (E'yA<t))_1 ' (?\min_WB,A“:))

* Larger ypo means less weight change.

* ¢ Is positive; asymptote term is negative.
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Effects of Stimulus Strength
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Homosynaptic Postsynaptic Modification

* Depends on activity of the postsynaptic cell, yg(t)

A‘/\]B,A<t) — EyB(t) ) (?\max_WB,A“’_))

Awg ,(t) = (E'y3<t>)_1 ' (?\min_WB,A(t))

* Amax IS around 3 times the initial weight wy.

* For depression, Amin is around 0.14 times wy,.
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Non-Associative Heterosynaptic Rules

* Weight change occurs when a third neuron C fires.

Awg 4(t) = F(Yc(”)

* Exact formula by analogy again.

* There are also modulatory neurons that can affect synapses
by secreting neurotransmitter onto them.
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Several Types of Non-Associative Learning Are
Observed in Hippocampus CA3 or CA"
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Associative Learning Rules

Basic Hebb rule
Anti-Hebbian rule
Bilinear Hebb rule
Asymptotic Hebb rule
Temporal specificity
Covariance rule

BCM (Bienenstock, Cooper, and Munro) rule
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Hebbian Learning

“When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one
of the cells firing B, in increased.”

-- D. O. Hebb, 1949

Awg ,(t) = F(yA<t)/yB(t))

* Purely local learning rule (good).
* Weights can grow without bound (bad).

* No decrease mechanism is mentioned (bad).
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Basic Hebbian and Anti-Hebbian Rules

* Basic Hebbian rule produces monotonically increasing
weights with no upper limit:

AWwg 4(t) = € - yu(t) - yp(t)

* Anti-Hebbian rule uses ¢ < 0. Also called “inverse Hebbian”
or “reverse Hebbian”.

— If the presynaptic and postynaptic neurons fire together, decrease
the weight.
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Bilinear Hebb Rule

AWg 4(t) = €y, (t)yg(t) — B-ya(t) — y-yg(t) —

10/27/21

Increase based on product of activity.
Linear decrease if either neuron fires.

General decay term 6 should probably be & -wpg a for
asymptotic decay.

¢ must be large enough to outweigh £ and vy for this to work.
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Simulation of Bilinear Rule
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10/27/21

Asymptotic Hebb Rule

Awg A(t) = eG(yg(t)):[c-ya(t)—wg 4(t),

Allows weight increases and decreases, like bilinear rule.

Incorporates an asymptotic limit.

If yg is O there is no weight change.

If neuron B fires, then neuron A's state determines the
weight change.
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Hebbian Rule with Asymptotic Limits On Both
Potentiation and Depression

a. presynaptic activity b. postsynaptic activity c. conjunctive activity d. postsynaptic activity

A o @) q A ._4 . B
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Temporal Specificity

* Hebb's formulation refers to neuron A causing neuron B to fire.
Can't measure causality direcily.

* Instead, look for correlated activity.

* Traces of a presynaptic spike will linger for a short while after
the spike has passed.

* (Can use this to detect correlation:

— Kk is how far back to look

— F(t-t,x) is a weighting function based on age of the spike (t-t)

AWy A(t) = €Y Flt,ya(t-1)|Glys(t)
. y

Memory trace
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The NMDA Receptor
Detects Correlated Activity
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Spike-Timing Dependent Plasticity

* Weight increase vs. decrease depends on relative timing of pre-
and post-synaptic activity.
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Hebbian Covariance Learning Rule

* Subtract mean rate from current firing rate of each cell.
* Then use a Hebbian rule to update the weight.

* Weight will increase if pre- and post-synaptic firing are
positively correlated (both above or both below their means).

* Will decrease if they are negatively correlated.
* No change if firing is uncorrelated.

* Summary: weight change is proportional to the covariance of
the firing rates.
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Awp 4 (t)

<AWB,A(t)> = €

Covariance Learning Rule

’ :yA(t)_<yA>} ' [yB(t)_<yB>}

’ yA<t)’yB(t) - <yA>’yB(t) - yA(t)'<yB> + (Ya)(Vgp) }

[(Yalt)yst)) = (YarVe(t)) = (Yalt)(ye)) + (Ya)(Vs)]

[{Yalt)yp(t)) = Y(Vp) = (YarVg) + (Va)(Vs)]

- [(yalt)ys(t)) — <yA>-éyB>]

f

Mean of
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Simulation of Covariance Rule
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BCM Rule

* Bienenstock, Cooper, and Munro learning rule

Awg 4 = &|Ys(t),0(t)] - yu(t)

O(t) = (ya) 0 R

\

°* 0 is a variable threshold. 0, 4

* Similar to covariance rule e\/( >

* No weight change unless

presynaptic cell A fires.
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Comparison of BCM and Related Rules,
Assuming Fixed Presynaptic Activity
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Evidence for BCM Learning
in Visual Cortex
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* Weight increase/decrease matches BCM rule.

* But does the threshold 6 adapt?

— If so, what is the physiological basis?

- Might be calcium concentration [Ca2+]i.
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Principal Components Analysis

* N-dimensional data has up to N principal components.
* Principal components are mutually orthogonal.

* The first principal component is the direction along which the
(zero-meaned) data has the greatest variance.

* The first few components capture the essence of the data, i.e.,
they provide an efficient encoding.
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PCA with a Linear Unit

e Assume inputs X normalized to have zero mean, so that

Hebbian learning is equivalent to a covariance learning rule.

- Then the variance of x is equal to <x*>.

y
v = Twx <%/%\b
1 $ o'y
AW — nxly — 77 . (+WZX12+) X1 Xo X3 X4

I

* Weight grows without bound, but in the direction of the first
principal component, i.e., the component with greatest
variance <x>>.
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Oja's Rule

AWg 4 € - YB(t) ' (yA(t)_yB(t>°WB,A(t>)

= €°yb(t)°ya<t) - E’y129<t>'WB,A(t)

* Weight vector w is bounded.

* W approaches a unit length vector in the direction of the
eigenvector with largest eigenvalue, i.e., the first principal
component.
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Extracting Multiple Components

* A network of kK neurons can be used to extract the first k
principal components.

* Use Hebbian learning for
the w; connections.

* Use anti-Hebbian for
the u; connections.
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Does the Brain Really Do PCA?

* PCA can train feature detectors that efficiently encode high-
dimensional data, such as images.

* But the receptive fields learned by Hebbian covariance
neurons don't look like the receptive fields of real neurons.

The first 8 principal
components extracted
from visual data using
symmetric connections.
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Independent Components Analysis

* A more sophisticated learning algorithm, called Independent
Components Analysis, does produce realistic looking
receptive fields.

Karklin & Lewicki (2003)

Tries to maximize the variance of each component while
minimizing their correlation; they needn't be orthogonal.

* Does the brain do ICA? Possibly.
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