
Synaptic Learning Rules

Computational Models of
Neural Systems

Lecture 4.1

David S. Touretzky
October, 2021

10/27/21 Computational Models of Neural Systems 2

Why Study Synaptic Plasticity?

● Synaptic learning rules determine the information processing
capabilities of neurons.

● Synaptic learning rules can implement mechanisms like gain
control.

● Simple learning rules can even extract information from a
noisy dataset, via a technique called Principal Components
Analysis.

10/27/21 Computational Models of Neural Systems 3

Terms

● LTP: Long Term Potentiation
– A synapse increases in strength, above its baseline value.

● LTD: Long Term Depression
– A synapse decreases in strength, below its baseline value.

● PTP: Post-Tetanic Potentiation

● STP: Short-Term Potentiation

10/27/21 Computational Models of Neural Systems 4

PTP vs. LTP

Baxter & Byrne (1993)

10/27/21 Computational Models of Neural Systems 5

Optimal Stimulus Pattern for LTP
● Tonic stimulus: 30 secs @ 10 Hz = 300 spikes.
● Patterned stimulus: 30 secs of evenly spaced

2-5 spike 100 Hz bursts, for a total of 300 spikes.

PTP

LTP

10/27/21 Computational Models of Neural Systems 6

Types of Synaptic Modification Rules

● Non-associative vs. Associative
– Non-associative: based on activity of a single cell:

either presynaptic or postsynaptic
– Associative: based on correlated activity between cells

● Homosynaptic (action at the same synapse) vs.
Heterosynaptic (activity at one synapse affects another)

● Potentiation vs. Depression

10/27/21 Computational Models of Neural Systems 7

Non-Associative Homosynaptic Rules

What biophysical mechanisms could cause these changes in strength?

activation

presynaptic
change

postsynaptic
change

10/27/21 Computational Models of Neural Systems 8

Non-Associative Heterosynaptic Rules

Modification of the AB synapse depends on activity in
presynaptic neuron C or modulatory neuron M.

10/27/21 Computational Models of Neural Systems 9

Homosynaptic Presynaptic Potentiation

● yA(t) is the firing frequency of the presynaptic cell, i.e., spike
activity averaged over a few seconds.

● This rule may apply to mossy fiber synapses in
hippocampus.

● But this rule causes wB,A to grow without bound.
– In real cells, the weight approaches an upper limit.

wB,A t  = ⋅yA t 

10/27/21 Computational Models of Neural Systems 10

Matlab Learning Rule Simulator
● Find it in the matlab/ltp directory.

10/27/21 Computational Models of Neural Systems 11

Saturation of LTP

Baxter & Byrne (1993)

10/27/21 Computational Models of Neural Systems 12

Homosynaptic Presynaptic Potentiation
with Asymptote

● lmax is the asymptotic strength.

● The weights are now bounded from above by lmax

● But the weights can never decrease, so they will saturate.
● Still a very abstract model.
● lmax < 6 to 10 times w0.

wB,A t  =  ⋅ yA t  ⋅ max−wB,A t  

10/27/21 Computational Models of Neural Systems 13

Presynaptic Potentiation with Asymptote

10/27/21 Computational Models of Neural Systems 14

Homosynaptic Presynaptic Depression

● By analogy with potentiation, but use the inverse of activity,
so that low frequency stimulation (0.1 Hz) produces more
depression than high frequency (> 1 Hz).

● Larger yA means less weight change.

● e is positive; asymptote term is negative.

wB,A t  = ⋅yA t 
−1

⋅ min−wB,A t  

10/27/21 Computational Models of Neural Systems 15

Effects of Stimulus Strength

A stronger stimulus potentiates
more quickly.

A weaker stimulus depresses more
quickly.

a = 100, b = 50, c = 25

10/27/21 Computational Models of Neural Systems 16

Homosynaptic Postsynaptic Modification

● Depends on activity of the postsynaptic cell, yB(t)

● lmax is around 3 times the initial weight w0.

● For depression, lmin is around 0.14 times w0.

wB,A t  = ⋅yBt  ⋅ max−wB,A t  

wB,A t  = ⋅yBt  
−1

⋅ min−wB,A t 

10/27/21 Computational Models of Neural Systems 17

Non-Associative Heterosynaptic Rules

● Weight change occurs when a third neuron C fires.

● Exact formula by analogy again.

● There are also modulatory neurons that can affect synapses
by secreting neurotransmitter onto them.

wB,A t  = F yCt 

10/27/21 Computational Models of Neural Systems 18

Several Types of Non-Associative Learning Are
Observed in Hippocampus CA3 or CA1

10/27/21 Computational Models of Neural Systems 19

Associative Learning Rules

● Basic Hebb rule
● Anti-Hebbian rule
● Bilinear Hebb rule
● Asymptotic Hebb rule
● Temporal specificity
● Covariance rule
● BCM (Bienenstock, Cooper, and Munro) rule

10/27/21 Computational Models of Neural Systems 20

Hebbian Learning

“When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one
of the cells firing B, in increased.”
 -- D. O. Hebb, 1949

● Purely local learning rule (good).
● Weights can grow without bound (bad).
● No decrease mechanism is mentioned (bad).

wB,A t  = F yA t  , yBt  

10/27/21 Computational Models of Neural Systems 21

Basic Hebbian and Anti-Hebbian Rules

● Basic Hebbian rule produces monotonically increasing
weights with no upper limit:

● Anti-Hebbian rule uses e < 0. Also called “inverse Hebbian”
or “reverse Hebbian”.
– If the presynaptic and postynaptic neurons fire together, decrease

the weight.

wB,A t  =  ⋅ yA t  ⋅ yBt 

10/27/21 Computational Models of Neural Systems 22

Bilinear Hebb Rule

● Increase based on product of activity.
● Linear decrease if either neuron fires.
● General decay term d should probably be dwB,A for

asymptotic decay.
● e must be large enough to outweigh b and g for this to work.

wB,A t  = ⋅yA t ⋅yBt  − ⋅yA t  − ⋅yBt  − 

10/27/21 Computational Models of Neural Systems 23

Simulation of Bilinear Rule

10/27/21 Computational Models of Neural Systems 24

Asymptotic Hebb Rule

● Allows weight increases and decreases, like bilinear rule.
● Incorporates an asymptotic limit.
● If yB is 0 there is no weight change.

● If neuron B fires, then neuron A's state determines the
weight change.

wB,A t  = ⋅GyBt ⋅c⋅yA t −wB,A t  

10/27/21 Computational Models of Neural Systems 25

Hebbian Rule with Asymptotic Limits On Both
Potentiation and Depression

10/27/21 Computational Models of Neural Systems 26

Temporal Specificity
● Hebb's formulation refers to neuron A causing neuron B to fire.

Can't measure causality directly.
● Instead, look for correlated activity.
● Traces of a presynaptic spike will linger for a short while after

the spike has passed.
● Can use this to detect correlation:

– k is how far back to look
– F(t-,x) is a weighting function based on age of the spike (t-)

ΔwB,A(t) = ϵ∑
=0

k

F ( , yA(t−))⋅G (yB(t))

Memory trace

10/27/21 Computational Models of Neural Systems 27

The NMDA Receptor
Detects Correlated Activity

Small postsynaptic
depolarization: no Ca2+
influx due to Mg2+ block

Large postsynaptic
depolarization brings

Ca2+ influx

magnesium
block

10/27/21 Computational Models of Neural Systems 28

Spike-Timing Dependent Plasticity
● Weight increase vs. decrease depends on relative timing of pre-

and post-synaptic activity.

10/27/21 Computational Models of Neural Systems 29

Hebbian Covariance Learning Rule

● Subtract mean rate from current firing rate of each cell.
● Then use a Hebbian rule to update the weight.
● Weight will increase if pre- and post-synaptic firing are

positively correlated (both above or both below their means).
● Will decrease if they are negatively correlated.
● No change if firing is uncorrelated.
● Summary: weight change is proportional to the covariance of

the firing rates.

10/27/21 Computational Models of Neural Systems 30

Covariance Learning Rule

ΔwB ,A(t) = ϵ ⋅ [y A(t)−〈y A〉] ⋅ [yB(t)−〈yB〉]

= ϵ ⋅ [y A(t)⋅yB(t) − 〈 y A〉⋅yB(t) − y A(t)⋅〈yB〉 + 〈 y A〉⋅〈 yB〉]

〈ΔwB, A(t)〉 = ϵ ⋅ [〈y A(t)⋅yB(t)〉 − 〈〈 yA〉⋅yB(t)〉 − 〈 y A(t)⋅〈yB〉〉 + 〈〈y A〉⋅〈yB〉〉]

= ϵ ⋅ [〈y A(t)⋅yB(t)〉 − 〈y A〉⋅〈 yB〉 − 〈y A〉⋅〈yB〉 + 〈y A〉⋅〈yB〉]

= ϵ ⋅ [〈y A(t)⋅yB(t)〉 − 〈y A〉⋅〈 yB〉]

Mean of
product

Product
of means

10/27/21 Computational Models of Neural Systems 31

Simulation of Covariance Rule

10/27/21 Computational Models of Neural Systems 32

BCM Rule

● Bienenstock, Cooper, and Munro learning rule

● q is a variable threshold.
● Similar to covariance rule
● No weight change unless

presynaptic cell A fires.

wB,A =  yBt  ,t   ⋅ yA t 

t  = 〈yB
2
〉

y
B
(t)

y
B
(t)

10/27/21 Computational Models of Neural Systems 33

Comparison of BCM and Related Rules,
Assuming Fixed Presynaptic Activity

10/27/21 Computational Models of Neural Systems 34

Evidence for BCM Learning
in Visual Cortex

Intrator et al. 1993

● Weight increase/decrease matches BCM rule.
● But does the threshold q adapt?

– If so, what is the physiological basis?

– Might be calcium concentration [Ca2+]
i
.

10/27/21 Computational Models of Neural Systems 35

Principal Components Analysis

● N-dimensional data has up to N principal components.
● Principal components are mutually orthogonal.
● The first principal component is the direction along which the

(zero-meaned) data has the greatest variance.
● The first few components capture the essence of the data, i.e.,

they provide an efficient encoding.

10/27/21 Computational Models of Neural Systems 36

PCA with a Linear Unit
● Assume inputs x

i
 normalized to have zero mean, so that

Hebbian learning is equivalent to a covariance learning rule.
– Then the variance of x

i
 is equal to <x

i
2>.

● Weight grows without bound, but in the direction of the first
principal component, i.e., the component with greatest
variance <x

i
2>.

x1 x2 x3 x4

w1
y = ∑

i

wixi

Δwi = ηxi y = η ⋅ (…+wixi
2
+…)

w4

y

10/27/21 Computational Models of Neural Systems 37

Oja's Rule

● Weight vector w is bounded.
● w approaches a unit length vector in the direction of the

eigenvector with largest eigenvalue, i.e., the first principal
component.

ΔwB , A = ϵ ⋅ yB(t) ⋅ (y A(t)−yB(t)⋅wB , A(t))

= ϵ⋅yb(t)⋅ya(t) − ϵ⋅yb
2
(t)⋅wB , A(t)

10/27/21 Computational Models of Neural Systems 38

x1 x2 x3 x4 x5

Extracting Multiple Components

● A network of k neurons can be used to extract the first k
principal components.

● Use Hebbian learning for
the wi connections.

● Use anti-Hebbian for
the ui connections.

10/27/21 Computational Models of Neural Systems 39

Does the Brain Really Do PCA?

● PCA can train feature detectors that efficiently encode high-
dimensional data, such as images.

● But the receptive fields learned by Hebbian covariance
neurons don't look like the receptive fields of real neurons.

The first 8 principal
components extracted
from visual data using
symmetric connections.

10/27/21 Computational Models of Neural Systems 40

Independent Components Analysis
● A more sophisticated learning algorithm, called Independent

Components Analysis, does produce realistic looking
receptive fields.

Tries to maximize the variance of each component while
minimizing their correlation; they needn't be orthogonal.

● Does the brain do ICA? Possibly.

Karklin & Lewicki (2003)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

