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Outline

Anderson: parietal cells represent locations of visual stimuli.

Zipser and Anderson: a backprop network trained to do parietal-
like coordinate transformations produces neurons whose
responses look like parietal cells.

Pouget and Sejnowski: the brain must transform between
multiple coordinate systems to generate reaching to a visual
target.

A model of this transformation can be used to reproduce the
effects of parietal lesions (hemispatial neglect).
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Inferior Parietal Lobule

* Four sections of IPL (inferior parietal lobule):

— 7a: visual, eye position

— 7b: somatosensory, reaching

— MST: visual motion, smooth pursuit

* medial superior temporal area

* 19/37/39 boundary in humans

* V5a in monkeys
— LIP: visual & saccade-related

* lateral intra-parietal area
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Monkey and Human
Parietal Cortex
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Inferior Parietal Lobule

* Posterior half of the posterior parietal cortex.
* Area 7a contains both visual and eye-position neurons.
* Non-linear interaction between retinal position and eye position.

— Model this as a function of eye position multiplied by the

retinal receptive field.
* No eye-position-independent coding in this area.
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Results from Recording in Area 7a (Anderson)

* Awake, unanesthetized monkeys shown points of light

* 15% eye position only

* 21% visual stimulus (retinal position) only

* 57% respond to a combination of eye position and stimulus
* Most cells have spatial gain fields; mostly planar

* Approx. 80% of eye-position gain fields are planar
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Spatial Gain Fields

Neuron response modulated by eye position
relative to thePead/body.
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Spatial Gain Fields of 9 Neurons
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Types of Gain Fields
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Simulation Details

* Three layer backprop net with sigmoid activation function

* Inputs: pairs of retinal position + eye position

* Desired output: stimulus position in head-centered coords.

* 25 hidden units
* ~ 1000 training patterns

* Tried two different output formats:

— 2D Gaussian output

— Monotonic outputs with positive and negative slopes
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Hidden Unit Receptive Fields
10

a No units

Random weights; no training
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Real and Simulated Spatial Gain Fields

Real

B OYOXOROIOXe
c e @® @066 HOO
0e@O o0 H®O
e h
e OGO @@ e
@ e c 0 @® O@®e°
@@ © o (& (» @® ©

000 o - - @00
©e0® °0©® o O@®
@@@@@@oe@

a

Simulated

‘0@ @W@@® WO
' I NCECIONOIOO
1 ECHONCEOIO®,

ooo@@@b@@
Q0@ (00O o @@0

©©©@@@o-

b

11/17/21 Computational Models of Neural Systems 14



Summary of Simulation Results

* Hidden unit receptive fields sort of look like the real data.

* All total-response gain fields were planar.
— In the real data, 80% were planar

*  With monotonic output, 67% of visual response fields planar
* With Gaussian output, 13% of visual response fields planar
* Real data: 55% of visual response fields planar

* Maybe monkeys use a combination of output functions?

* Pouget & Sejnowski: sampling a sigmoid function at 9 grid
points can make it appear planar. Might be a sigmoid.
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Discussion

* Note that the model is not topographically organized.

* The input and output encodings were not realistic, but the
hidden layer does resemble the area 7a representation.

* Where does the model's output layer exist in the brain?

— Probably in areas receiving projections from 7a.

— Eye-position-independent (i.e., head-centered) coordinates will probably
be hard to find, and may not exist at a single cell.

— Cells might only be independent over a certain range.

* Prism experiments lead to rapid recalibration in adult humans,
so the coordinate transformation should be plastic.
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Pouget & Sejnowski:
Synthesizing Coordinate Systems

Visual Target

l

* The brain requires multiple
coordinate systems in order to
reach to a visual target.

* Does it keep them all separate?

* These coordinate systems can all
be synthesized from an

appropriate set of basis functions.

* Maybe that's what the brain
actually represents.
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Basis Functions

* Any non-linear function can be approximated by a linear
combination of basis functions.

* With an infinite number of basis functions you can synthesize
any function.

* But often you only need a small number.

* Pouget & Sejnowski: use the product of gaussian and sigmoid
functions as basis functions.

— Retinotopic map encoded as a gaussian

— Eye position encoded as a sigmoid
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Gausian-Sigmoid Basis Function
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Coordinate Transformation Network
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Head-Centered Retinotopic

Can derive either head-centered or retinotopic representations from the same set of
basis functions. The model used 121 basis functions.
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Summary of the Model

* Not a backprop model.

— Input-to-hidden layer is fixed set of nonlinear basis functions

— Qutput units are linear; can train with Widrow-Hoff (LMS algorithm)

* Less training required than for Zipser & Anderson, but model
uses more hidden nodes.

* Assume sigmoid coding of eye position, unlike Zipser &
Anderson who use a linear (planar) encoding.

— But sigmoidal units can look planar depending on how they're measured.
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Evidence for Saturation (Non-Linearity)

* Cells B and C show saturation, supporting the use of sigmoid
rather than linear activation functions for eye position.
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Sigmoidal Units Can Still Appear Planar
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Map Representations

* Alternative to spatial gain
fields idea.

* Localized “receptive
fields”, but in head-
centered coordinates
instead of retinal
coordinates.

* Not common, but some
evidence in VIP
(ventral intraparietal
area).
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Vector Direction Representations

* Unit's response is the
projection of stimulus vector A
along the units' preferred
direction: dot product.

* Units are therefore linear in
a and a ; response to angle 6

is a cosine function.

* 20% of real parietal neurons,
were non-linear.

Y = s ¢ s  om

- " ' B (Degree) )

* Motor cortex appears to
use this vector
representation to

encode reaching direction.
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Hemispatial Neglect

* Caused by posterior
parietal lobe lesion
(typically stroke).

Patient A Patient B

* Can also be
induced by TMS.

* Patient can't

properly integrate
body position %
visual input.

information with

Copies of a clock and a daisy
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Line Bisection and Clock Drawing Tasks
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Artist's Rendition of Left Hemisphere Neglect
(Depict Impaired Attention as Loss of Resolution)

Right parietal
lesion
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Retinotopic Neglect Modulated
By Egocentric Position

A

100 4 4 Right
-g St:mulus
o
G
Eé / Stxmulus
<

50
CZ

Body straight Body turned 20° left

Computational Models of Neural Systems

30



Stimulus-Centered Neglect

oy

Note that target x is in
same retinal position
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Pouget & Sejnowski Model of Neglect

* Parietal cortex A
representations are biased Saccadic Eye Movements Reaching
toward the contralateral side. 4 f
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Selection Mechanism

* Present the model with two
simultaneous stimuli,
causing two hills of activity
in the output layers.

* Select the most active hill as
the response. Zero the
activities of those units to
cause the model to move
on. Allow them to slowly
recover.
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Simulation Results

* Right side stimuli are
selected and activation set to A

Z€ero.

* But stimuli eventually recover | + - 4
- S INT X X
and are selected again. — > T

* Left side stimuli have poor
representations and are
frozen out.
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Simulation Results
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Simulation Results
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Discussion

* Neglect patients show a mixture of retinotopic, head-centered,
trunk-centered, and object-centered effects.

* This argues for a representation that combines muiltiple types of
information.

— Damage to that area could explain the mixture of effects.

* The proposed parietal basis function representation encodes
information in a way that allows any desired reference frame to
be extracted by a simple linear output layer.

* Tradeoff: to encode more information, the basis functions must
be more complex.

— And you need more of them.

— And decoding becomes more complex (even if linear).
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Coordination of Saccades and Reaching

* Do eye movements and reaching movements use independent

spatial representations?

* Dean et al. (Neuron, 2012): if so, then reaction times should be
uncorrelated. What do the data show?
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Monkeys Performing (Reach and) Saccade Tasks

ad Reach and Saccade Task b Saccade Only Task
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* Baseline: fixate and touch red/green start marker.
* Yellow target flashed briefly.
* Delay period.

* Go signal: red/green marker disppears. Monkey saccades and reaches to
remembered target position.

* Target reappears; monkey must hold for 300 msec.

* Reward delivered.
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b Saccade Only Task
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Results

* During Reach & Saccade tasks, LIP cells whose spiking was
coherent with the local beta rhythm (15 Hz) were predictive of
both saccade reaction time (SRT) and reach reaction time
(RRT).

* Lower beta power = faster reaction times.

* Cells whose spiking was not
coherent with the beta rhythm
did not correlate with SRT or RRT.
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* In the pure Saccade task, there
was no correlation between
beta power and SRT.
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Results (cont.)

Reach and saccade

Saccade only
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Beta-coherent cells predicted RT only in the saccade+reaching trials,
not in the pure saccade trials.
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