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4.1. INTRODUCTION .

4.1.1. A Classification of the Models of Memory
Mechanisms

In traditional experimental psychology one of the principal goals of memory
research has been to discover the quantitative laws that govern the performance
of memory. A universal learning or forgetting curve may be seen as an ideal
objective aimed at by researchers who are studying retention of words or letter
strings in memory or learning of simple sensory-motor skills. The many stochas-
tic learning models (e.g., Bush & Mosteller, 1955) published in the fifties and
early sixties reflect only one facet of this general trend.

The most salient feature in contemporary memory research is the change of
goal from the performance of memory to the mechanisms of encoding, retention,
and retrieval of information. This gradual adoption of an idea that might be called
the memory mechanism paradigm has also led to new research strategies. Work
in this area has concentrated more and more on the modeling' of memory
functions; computer simulation models have become indispensable tools of
theoretic2l work.

Although this common interest in memory mechanisms is recognizable in
most current research, diversification of the goals has also led to a ‘‘balkaniza-
tion”’ process (Newell, 1978) typical of different areas of cognitive science. For
this reason one of the purposes of this introduction is to classify the various
models of memory and to show how they have been motivated.
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We divide memory models into two main categories: physical system models
and information-processing models. In the category of physical system models
we include all those models that try to answer the following question: How is it
possible, using a collection of relatively simple elements connected to one
another, to implement the basic functions of selective associative memory? Al-
though it is possible to implement memory mechanisms by many different physi-
cal systems, we are here interested only in biological mechanisms for which there
exists some experimental evidence and that have a plausible principle of opera-
tion. The fundamental question, dealt with in this chapter, concerns the
mechanism that enables the nervous system to encode associations and sub-
sequently to recall them selectively and independently. In order to explain the
function of memory, the following three subproblems must be resolved: (1) What
are the variable elements in the neural system capable of accumulating memory
traces; (2) which neural events are identified with the reading and writing oper-
ations; and (3) what is the addressing mechanism used for memory in the nervous
system?

The physical system approach may be contrasted with information-processing
models that conceive man as an information-processing system executing internal
programs for testing, comparing, analyzing, manipulating, and storing infor-
mation. For an operable information processing paradigm, its propounders had
to assume that the mental processor had some sort of associative memory capac-
ity.

Within or at the fringe of the Artificial Intelligence community a great number
of studies have been published on associative data structures. The aim of these
studies has been to develop a representational format that permits the storage of
the meaning of a word or a sentence, or more generally, the storage of organized
knowledge. Quillian (1968) has formulated the central thesis of his early work on
semantic networks as follows: ‘“What constitutes a reasonable view of how
semantic information is organized within a person’s memory [p. 216]?" This is a
typical competence question. A more technological approach was, of course,
later adopted in the development of data-base software tools. Semantic network
models and models of mental processing may be seen as complementary: For
instance, in order to explain linguistic abilities, one has to postulate both process-
ing functions and articulated data structures.

4.1.2. Representation of Information by Collective
States

An inherent difficulty in the physical modeling of memory obviously arises from
the fact that the human mind deals mostly with concepts that appear to be distinct
and unique items. Attempts to construct abstract structures out of such hypotheti-
cal conceptual units are therefore understandable. Nonetheless, it has been
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pointed out by Simon (1976): ‘‘Nothing in contemporary information-processing
theories of memory requires that memories be specifically localized; and nothing
in those theories is incompatible with a distributed or even holographic theory of

_physiological basis for memory [p. 80].”" In this article an even stronger argu-
ment is presented. In fact, because a neural system is an ensemble of a great
number of collectively interacting elements, it seems more natural to abandon
altogether those physical models of memory in which particular concepts corre-
spond to particular spatial locations (nodes) in the hardware. Instead a physically
more plausible approach can be based on the assumption that representations of
concepts and other pieces of information are stored as collective states of a neural
network. It then becomes possible to demonstrate the formation of structured
interactions between these distinct states. Structures of interactions can be made
to correspond to structures of knowledge; however, they have no direct physical
counterparts in the system. They are realized only through the collective effects
and reflected in recall processes.

The first models of collective memory aimed at an analysis of the accuracy,
capacity, and resolution achievable in the basic associative mappings, and they
should not be misinterpreted on account of their simplicity. The principal objec-
tive in the early models was to show that there exist memory-dependent map-
pings between patterned sets of signals such that the memory traces can be
superimposed on the same substrate in the form of some transformation functions
without in any way losing information although the memory traces are superim-
posed on the same elements. The demonstration of the existence of such selective
mappings showed that there may indeed exist distinct representations for pieces
of information that nonetheless need not be represented and stored on the mem-
ory substrate spatially separated from each other. In the same way as many
mathematical or physical entities can have functional expansions, for example,
spectral decompositions, it thus became possible to demonstrate that distinct
items can be represented as functional components spread all over the memory
medium. This kind of collective representation might be called ‘*holographic’’ or
“holologic,”” although it need not resemble the usual optical holography that
requires coherent wave fronts.

In the memory models advanced in this paper, the answers to questions
concerning reading and writing of information, as well as the problem of address-
ing, follow from the idea that memory is regarded as an adaptive filter. When a
neural network that implements this filter function is stimulated by signal pat-
terns, each pattern produces adaptive changes in the neuronal interconnections,
changes that are equivalent to the writing of information into the memory.
Reading from memory can simply be the transformation of input signals in the
network, because this transformation is dependent on the previous stimulus se-
quence. (Detailed description of these transformations as well as the adaptive
changes is presented in Section 4.2.) No addressing problem exists because
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memory traces are spatially distributed and superimposed throughout the net-
work. This approach agrees well with current evidence about the functional
structure of the neocortex (Creutzfeldt, 1976).

The very direct analogy between conceptual systems and neural structures
was severely questioned at the beginning of the 1970s when several independent
articles were published on collective effects as a basis of memory. We review in
detail one of the most plausible models, the distributed associative network, in a
form that seems to give rise to several fundamental information-processing
paradigms in the neural realm.

4.2. ASSOCIATIVE MAPPINGS IN DISTRIBUTED
MEMORY SYSTEMS

4.2.1. Associative Recall

A central operation in explaining the functions of distributed memory models is
associative recall. As stated earlier, if the memorized data contains proper inter-
nal relations or links, structures of information can be shown to be reflected in
the resulting recall processes, that is, without explicitly being represented in
memory. Moreover it is possible to demonstrate processing of semantic data by
associative recall as shown in Section 4.4.

In general terms the basic action of associative recall is definable as any
process by which an input to the memory system, considered as a ‘‘key, "’ is able
to evoke in a highly selective fashion a specific response, associated with that
key, at the system output. Associative recall implies a specific stimulus-response
(S-R) type of mapping in the memory medium, which is able to associate a large
number of large-scale activity patterns faithfully and also suppress errors. This
mapping may be accompanied by many types of signal feedback and iterative
operation.

The fundamental assumption in the approach based on associative mappings
or transformations is that both the stimulus and the response are representable as
complex, patterned sets of parallel signals. The mapping is not defined between
individual signals but between these activity patterns as a whole, bringing to-
gether and interconnecting the various parts of the patterns. The results of this
distributed or “‘holologic’’ mode of operation can exhibit many surprising fea-
tures the existence of which is not obvious at first glance.

The models of distributed associative memory that were published first were
primitive in the sense that only direct mappings between pictures or other simple
patterns were demonstrated. However it was clear from the beginning that any
complex signal representations, even with semantic contents and infrastructure,
could have been chosen in place of the pictorial patterns used in simulations. In
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other words, if the S-R mapping is definable for any sets of signals, then it is
also possible to devise a mapping that transforms, for example, the representa-
tion of a statement into another one. Another fact to emphasize is that, quite
intentionally, the S-R model was not loaded with auxiliary functions such as the
activity-controlling projections in neural networks or preprocessing transforma-
tions of the patterns before they enter the proper memory system. By means of
preprocessing operations it is possible to extract any type of features from the
primary signals and to use them as a new basis of representation of information;
this is already one step towards symbolism, although it too was deliberately
neglected in the initial research.

In order to forestall misinterpretation of the network models of distributed
memory presented in the following sections, it is necessary to point out that the
whole brain is not assumed to be a single uniform network or ‘‘matrix’’ but a
complex system consisting of many interacting parts. In the same way as a
computer is made of chips of logic circuits, the brain may be composed of a great
number of subunits, each one with the properties of a ‘‘memory matrix."’

4.2.2. Two Structural Paradigms

As a starting point for concrete modeling of associative recall, consider the piece
of network or hypothetical neural tissue depicted in Fig. 4.1 (Willshaw, Bune-
man, & Longuet-Higgins, 1969). The vertical units might represent the dendritic
membranes of a set of neurons, and the horizontal lines could correspond to a set
of axons or axon collaterals having synaptic connections on the dendrites.

The horizontal lines carry the elements of the stimulus pattern in the form of
parallel, scalar-valued signals s;. In a neural network the signal values would be
represented by short-term averaged spike frequencies. At the output lines the
vertical units send out the responses r;, which similarly are represented by spike
frequencies. In this idealized model, there is a synaptic connection m; between
every vertical unit i and every horizontal line j. In practice some of the connec-
tions may be missing whereas others may be multiple. In the schematic repre-
sentation the actual locations of connections on the units or the multiplicity of
connections have not been shown explicitly.

In order that a given set of stimuli s5; evokes at the output another, predeter-
mined set of response signals r;, a selective S-R mapping must be encoded into
the set of synaptic connections m . One may call the array of m; values the
**synaptic matrix.’” This encoding is adaptively and automatically formed when
signals are mutually conditioned at the connections as explained below. Selec-
tive recall of a given response set from the synaptic matrix can thereby be
rendered possible. The conditioned couplings may take many different functional
forms. The simplest of them, the linear mapping, as explained in more detail in
Section 4.2.3, is suitable as the first approximation. For this conditioning to
happen, supervised (and nonlinear) learning must take place. For that purpose,
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FIG. 4.1. Associative network with a set of connected neurons shown schemati-
cally. s; = elements of the stimulus pattern; r; = elements of the response pattern;
fi = elements of the forcing stimulus pattern, which are absent during recall; m
= synaptic connections.

the forcing stimuli have been introduced in Fig. 4.1. The forcing stimuli f;
appear as the primary input into the units. In this paradigm they are needed only
when learning or writing into memory takes place; during learning the forcing
stimuli have the same signal values as the desired output responses, which
thereby become associated with the conditioning stimulus pattern. During recall
there is no input at the forcing stimulus lines. A detailed analysis of the recall and
the adaptive processes taking place in the above network, will be postponed to
Section 4.2.3.

The system depicted in Fig. 4.1 is highly unsymmetric in the sense that the
roles of the conditioning stimulus pattern and the forcing stimuli are strictly
differentiated; in recall only the former type of input is used. This paradigm
might already serve as a model for some neural structure like the cerebellum
where the relation between the different inputs to the Purkinje cells is roughly of
this kind. However, this model is unsatisfactory for modeling cortical regions of
the brain. For instance, in the cerebral cortex there is a rich variety of recurrent
activity mediated by axon collaterals and the longer subcortical projections. As a
step towards a more realistic paradigm for cortexlike structures, one may replace
the network of Fig. 4.1 by that given in Fig. 4.2.

The network of Fig. 4.2 shows two modular subsystems separated by vertical
dotted lines. The forcing stimuli in this case comprise the primary patterned
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input. Each subsystem is characterized by a dense net of interconnections; part or
all of the output fibers are fed back recurrently into the cortical layer comprised
of the parallel neuronal units, where the fibers branch and make redundant
connections with the other units of the same subsystem. This simplified scheme
neglects the existence of interneurons and other details of the actual topology of
the connections; as shown later in Fig. 4.8, a substantial part of the short-range
connections may be made subcortically. The network may also seem too
homogeneous in that within a subsystem each unit is connected with all the other
units. However, as shown in a previous work by one of the authors (Kohonen,
1972), all the connections do not in fact have to exist; if a portion of them is
lacking, the system can still be statistically approximated by a complete set of
connections.

In addition to short-range recurrent connections, there is a set of long-range
connections from one subsystem to another. They introduce other inputs to every
subsystem, which will become associated with the activity of the subsystem
itself.

The essential feature in Fig. 4.2, referring to connections within a subsystem,
is that in the synaptic matrix every forcing stimulus is conditioned with all the
other forcing stimuli of the same subsystem through the recurrent connections.
Within the subsystem there thus exists a complete symmetry with respect to the
primary inputs. As a result it becomes possible to use any part of the forcing
stimuli as a key. The activity pattern of the rest of the units is reconstructed in the
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FIG. 4.2. The modular associative network with recurrent feedback. f; = ele-
ments of the forcing or afferent stimulus pattern; r; = elements of the response
pattern that are fed back into the network at shorter and longer distances. The
vertical dotted lines separate the two subsystems shown, and the horizontal solid
lines represent the surfaces of the laminar network.
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associative recall process through the interconnections. This is the autoassocia-
tive encoding and recall principle extensively advanced in this chapter.

The paradigms presented in Fig 4.1 and 4.2 represent the extreme and purest
cases of S-R mapping, in the sense that Fig. 4.1 has no feedback whatsoever
from the response back to the stimulus, but in Fig. 4.2 this feedback within one
subsystem has the highest possible degree of completeness. The networks actu-
ally existing in the brain probably lie somewhere between these extreme
paradigms, and thus their properties can be expected to be a mixture of the
properties of these two networks.

In Fig. 4.3, the organization of Fig. 4.2 is shown as a three-dimensional
structure. The slabs or subsystems separated by the dotted lines are the areas of
the sheet with a high degree of interaction, but the interactions between the
subsystems are weaker. The feedback connections mediating these interactions
are no longer shown explicitly in Fig. 4.3. The organization depicted is the
laminar network model, which is later used in the system-theoretical description
of distributed memory.

The laminar network model is related (in more detail) to the anatomical and
physiological properties of the mammalian brain in Section 4.3. There also, extra
features, like the activity control exerted over selected areas, are merged into the
model. A feature inherent in the model is that corresponding to the individual
subsystems or regions in Fig. 4.2, the sets of input signals and output signals may
also be organized into a number of subfields or parts having, for example,
different modalities or semantic significance. The data contents of some or all of
these subfields may also differ, and there may be neutral areas between them

FIG. 4.3. Three-dimensional view of the modular system. An afferent stimulus
pattern enters the top and a response leaves at the bottom. The dotted lines
demarcate subfields or subsystems. The infrastructure of the lamina, not shown
explicitly, corresponds to that given in Fig. 4.2.
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with no signal activity (cf. Fig. 4.10). The important information-processing
implications of the infrastructure in the patterns used in models of associative
recall is postponed until Section 4.4. In order to describe information processing
in such a model, as well as in the simpler associative network model presented
earlier in Fig. 4.1, some quantitative analysis of signal transformations must first
be presented.

4.2.3. Analysis of Adaptive Transformations

To describe as concretely as possible what kind of interactions between patterned
data could be encoded into the networks in distributed form and how selective
recall is achievable, we first return to the unsymmetric case of Fig. 4.1. The
subsequent considerations of the network should be understood as a system-
theoretical approach only; no assumptions will be made at this stage about the
actual data represented by the patterns of activity.

As a first approximation to the transformations taking place in the network of
Fig. 4.1, assume that each response signal, r;, is a weighted sum of all the
stimulus signals s; and the ith forcing stimulus activity f;,

n=y mys; + f, (4-1)

where the weights m;; stand for the synaptic conductivities. What was said
previously about the necessity of a complete set of connections applies here, too:
A portion of the connections m;; may be lacking, and the network of Fig. 4.1
then serves as a statistical approximation.

It should further be stressed that the above linear mapping is only one repre-
sentative in an infinite class of S-R transformations, some of which are derived
from the linear models by adding nonlinearities like saturation or threshold
triggering to the signal paths whereas others are nonlinear from the beginning.
One possible source of misinterpretation of the earlier models of distributed
associative memory was the assumed linearity of some approaches: Linearity was
never intended to be an essential property but only a first approximation. Non-
linearities can also be introduced in the model as a separate operation, for
example, at the output whereby the linear mapping can be assumed as the basic
internal mode of operation of the system. In an alternative approach, the neural
units are assumed inherently binary (Nakano, 1972; Willshaw et al., 1969); if
the weighted sum of the binary-valued input signals exceeds a threshold, then the
response is 1, otherwise 0. Despite the apparent nonlinearity of this functional
form, the integral transformation properties are essentially the same as those
explained here using the continuous linear approximation.

Although linearity does not seem to be a necessary property in signal trans-
formation, the near-linearity of neural responses is often a quantitatively justified
good approximation (Anderson & Silverstein, 1978).
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Assume now that the strengths of the connections m; in Fig. 4.1 are changed
during a learning phase by what is here termed conjunctive forcing: my is
changed only when both of the signals converging on it are active. There seems
to be some physiological evidence, treated in Section 4.3, for this type of as-
sumption involving two different signals. If changes (time derivatives) of the
values of the m; are gradual, they are statistically described by a mathematical
form in which the conjunction is replaced by the product of the signal values,
resulting in the following correlation-type learning scheme:

d

dt
There \ is a scalar determined by the plasticity of the connections, which is here
assumed constant for simplicity. It might also vary from one connection to
another.

Let us now introduce the mathematical conceptualization of patterns into the
above formalism. At a given instant, there are parallel stimulus signals, s, ...,
Sn, on the input lines of Fig. 4.1. These make up a pattern s = Cogsres e S
simply defined as an ordered set of simultaneous parallel activities. In a similar fash-
ion, at that same instant there is a forcing stimulus pattern, f = (f;, ..., fu), at
the input lines and a response pattern, r = (ry, ... , ), at the output lines. For
economy of notation only (and without introducing any further mathematical or
physiological assumptions) we shall now switch to matrix algebra (cf. Bellman,
1960) in the description of associative recall.

The synaptic conductivities m;; can first be arranged into a rectangular array,
forming a matrix M with n rows and m columns. The patterns s, f, and r, being
sets of scalar numbers, can be identified with items in a high-dimensional vector
space. The term vector here has an abstract meaning, totally different from the
conventional two- or three-dimensional vectors used in geometry and field
theory; here a vector is simply an ordered set of scalar numbers. It is hereafter
assumed that s is a column vector of m dimensions, and both f and r are column
vectors of n dimensions.

The pattern vectors s, f, and r and the matrix M can now be immediately
substituted in Eq. (4-1) and (4-2), so (4-1) becomes

my = Nfis;. (4-2)

r=Ms+f (4-3)
and (4-2) be(\:omes
dM/dt = MsT, 4-4)

with sT denoting the transpose of vector s.

Imagine now that there is a large number, say p, of different stimulus vectors.
They are designated by s, s®, ..., s . Likewise, there are p different forcing
stimulus vectors, £, f2, ... , f®. The superscript is now used to separate
between the different vectors; e.g., each s’ is composed of m elements that are
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the individual parallel signal values making up the spatial activity pattern s,
whereas the corresponding m elements of s (j # i), may be totally different
from these.

Assume that all the synaptic strengths m; are initially 0, or M(0) = 0; from
the instant 1 = 0 onwards the first pair of stimulus and forcing stimulus vectors
(s, f%) appears at the inputs of the network of Fig. 4.1 and stays constant for a
while. According to Eq. (4-4), matrix M then develops into

M(r) = At £V gOT, (4-5)

From this time onwards, the second pair (s®, f¥)) appears and so on. If for
convenience it is assumed that each stimulus pair is input to the network for a
time period whose length is 1/X, then M(r) eventually develops into the matrix

M = i £O o1, (4-6)
i=1

Matrix M above takes the form of a cross-correlation matrix.

Based on this matrix, it is possible to recall associatively the forcing stimulus
patterns using the primary stimuli as keys. It should be stressed that no con-
straints to the actual form and structure of the £ patterns were given above;
theoretically, any set of n scalar signals could appear there. In a concrete exam-
ple, f”could represent the classification of the corresponding stimulus pattern s,
in which case the classification of s would take place very simply by analyzing
the response obtained when sV has been used as the stimulus pattern. Of course
any other pattern containing some type of information on the primary stimulus
can be used as the associated forcing stimulus and then later be recalled associa-
tively.

This becomes evident when the recall operation is defined according to Eq.
(4-3) without, however, the forcing stimulus f, which was only necessary during
the learning phase. Once the conjunctive learning phase described earlier is over,
the specific values given in matrix form by Eq. (4-6) have been imprinted into
the synaptic connectivities of the network. If now one of the earlier stimulus
vectors, say s, is used as the key stimulus in the network, the response becomes

= Ms® = i i) gOT g0
i=1
(s9Ts)fo) + Z (sOT gy - 4-7)

i#

Il

In some cases different stimulus patterns have representations in terms of neural
signals that can be assumed to be statistically independent. This independence is
often expressable as a mathematical property named orthogonality; the key
vectors are orthogonal if sTs% = 0 for i # j. Moreover, if signal values are
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standardized, one can assume a metiic property such that s”’Ts% = 1. It then
becomes evident that the response r’ is equal to f%’: the response to s% is an
exact recollection of the forcing stimulus pattern f whose elements became
conditioned with the elements of s in the course of learning. It must be em-
phasized that this is the optimal condition; the desired data are recalled com-
pletely and without any error. Because the maximum number of orthogonal m
dimensional vectors s’ is m, this is also the maximum number of stimulus-
response pairs that can be stored in the synaptic matrix of the network without
violating the optimality condition.

If, however, the vectors used as keys above are not orthogonal, then the sum
term in Eq. (4-7) will not be 0. It then represents cross-talk between the other
stored patterns, and the less orthogonal the key patterns are in general, the higher
is the cross-talk as compared to the correct recollection.

The occurrence of cross-talk that seems to limit the memory capacity has led
to an interesting theoretical question: One may ask whether it is possible to
devise a network of the above kind that would implement associative recall with
ideal selectively, that is, in which, with a hypothetical synaptic matrix M, the
desired stimulus-response relation would be implementable for arbitrary pairs of
patterns (s, f%) such that

f9 = M s for all j. (4-8)

Although information processing implementable by neural functions might
quite well employ the powerful property of orthogonality, it is intriguing to find
that this problem has solutions that are independent of the orthogonality assump-
tion. This is one of the basic problems studied in linear algebra, and it has a
simple answer that can be expressed in the form of a theorem:

Theorem. If all the s%’ are linearly independent (no one can be expressed as a
linear combination of the others), then a solution of Eq. (4-8) exists and is given by

M = F(S"S)'S" 4-9)

where F = (f, .. ., f?) and § = (s, . . ., s®) are the matrices with the %’ and
s as their columns, respectively, and the superscript T denotes the transpose of
a matrix. If the vectors s’ are not linearly independent, then there exists a unique
approximative solution in the sense of least squares

M = FS* (4-10)

where S* is the pseudoinverse of S (Albert, 1972). If vectors s are linearly
independent, then in fact S* = (87S)'S”; see Eq. (4-9).

Incidentally, M has the form of the best linear unbiased estimator (BLUE),
which is a kind of Gauss-Markov estimator (Lewis & Odell, 1971). Theoreti-
cally, even if there were an infinite number of pairs (s, f%), but they were
clustered, there would nonetheless exist an approximate solution M which de-
fines an ‘‘infinite’’ associative memory in the sense of Eq. (4-8). Matrices of Eq.
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(4-9) and (4-10) represent the optimal linear associative mapping that has been
extensively studied previously by one of the authors (Kohonen, 1977). A demon-
stration of the use of the optimal linear associative mapping in classification of
pictorial patterns is shown in Fig. 4.5 of Section 4.2.7.

4.2.4. Autoassociative Encoding

Very interesting associative recollections are obtained if the optimal linear as-
sociative mapping is considered in the case f*/ = s™. Of course, the trivial
solution of Eq. (4-8) is M = I (identity matrix), but this has no sense; one should
set up a more general solution which according to Eq. (4-10) reads

M = FF+ @-11)

Incidentally, this is a so-called orthogonal projection operator or projector with
some interesting pattern-processing properties.

The p different vectors, f, ... , f%?, all of them n-dimensional, span a
linear subspace £ in the n-dimensional vector space, that is, the vectors consti-
tute a basis of £. In still other words, .# is the set of vectors that results from all
possible linear combinations of the f*’, ... , f®. It is a well-known result from
the theory of Hilbert spaces that an arbitrary pattern vector f with dimensionality
n can always be uniquely decomposed into a sum of two component vectors

f=t4+1 (4-12)
such that f, obtained by
f = FF*f = Mf (4-13)
is the linear regression of the % on f or the best linear combination in terms of
least squares, and f is the residual. In fact, f is contained in the subspace ¥
whereas f is orthogonal to £; hence the two vectors are mutually orthogonal, too.
We can call f the optimal autoassociative recollection relative to the stored
information, or the set f), . .. | f*’, and the search argument or key pattern f.
Similarly, the matrix M of Eq. (4-11) is the optimal linear autoassociative
mapping, which in spite of its simple form will be seen to be capable of process-
ing patterns in rather unexpected ways.
The orthonormality of the stored patterns f% would allow the matrix of Eq.
(4-11) to be reduced to another form. For pattern vectors f, . . . , f such that
fOTEY = O for i # j and fPTfY = 1, the corresponding projection operator reads

Fi
M= FFis N f2 P (4-14)
i=1
The matrix above has the form of an autocorrelation matrix. Assume now that a
new (independent) pattern vector f is given as a key input excitation. Its compo-
nent vectors f and f, can be presented in the form
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P=ME= 3 @D, (4-15)
i=1

f=f-1 (4-16)

Eq. (4-15) shows clearly how f , or the optimal autoassociative recollection, is
now obtained as a linear combination of the stored vectors, where the coefficients
of this expansion are simply the inner products of the stored vectors with the new
vector f.

Even in the case of nonorthogonal vectors there exists a mathematical rela-
tionship between the optimal autoassociative mapping and the autocorrelation
matrix; when matrix FF* is presented in the form of a von Neumann expansion
(cf. Rao & Mitra, 1971)

FF* —a S FF(I - oFF"} 4-17)

k=0

where I is the identity matrix, and the matrix series on the right is written out,
then the matrix FFT appears as the 0-th degree term. There a is a scalar that lies
between predetermined bounds. In this sense, the autocorrelation matrix may be
regarded as a O-th degree approximation of the optimal mapping.

Just as the cross-correlation matrix was imprinted into the synaptic connec-
tions of the associative network of Fig. 4.1 by conjunctive forcing, so the
autocorrelation matrix, Eq. (4-14), can be shown to be the outcome of a similar
learning process in the feedback network of Fig. 4.2. If the modular organization
there is approximated by a homogeneous set of mutual feedback connections
between the units, then the main difference between mathematical considerations
of this network and the one of Fig. 4.1 is that, due to the feedback, the response
signals r; now appear in place of primary signals s;. This difference becomes
clear when the two figures are compared. One horizontal line in Fig. 4.2 carries
one response signal r;, but a corresponding horizontal line in Fig. 4.1 carries an
external stimulus signal s;.

Because of the feedback, however, the signal transmission properties and
their mathematical treatment are not as straightforward in this case as in the
paradigm considered in the previous Section. This problem has been considered
in detail by Kohonen, Lehtio, Rovamo, Hyvérinen, Bry, and Vainio (1977). First
of all, in order to explain the adaptive formation of the optimal linear autoas-
sociative mapping in the laminar network model, one has to take into account
short-range lateral inhibition between the units or columns. This has the effect of
forming weighted sums of neighboring activities locally; in terms of the forcing
stimuli f; appearing at the top of the laminar network, each signal f; should be
replaced by an “‘effective excitation”’

fi= 3 Buf (4-18)
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where the weights B;;, corresponding to direct connectivities, are positive, but
the lateral connectivities 3; with i # j are predominantly negative or inhibitory;
index j runs over a surround of unit i. The numerical values of 8;; thus reflect the
excitatory and inhibitory penumbrae around a point of afferent excitation. An
interesting consequence of lateral inhibition is that, for typical two-dimensional
pictorial patterns, the transformation produced by Eq. (4-18) has the effect of
orthogonalizing the patterns fairly effectively.

When the orthogonalized input patterns enter the laminar network one at the
time and conjunctive learning takes place, the network connections are adap-
tively changed. Later, when an input pattern is applied, the signals are modified
by the network, due to the adaptive effects caused by the earlier signals. This is
equivalent to the reading of stored information from memory. For details, see
Kohonen et al. (1977a).

The autoassociative mapping has the ability to reconstruct any of the stored
patterns when only a part of the pattern or a distorted version (e.g., contaminated
with noise) is used as the key input. Some demonstrations are shown in Section
4.2.7. There are more far-reaching properties, too, which can be best explained
by the subspace formalism of Eq. (4-12). In fact even when the key pattern f
bears no similarity whatsoever to any of the previously stored patterns, f, .. .,
f®, the output or optimal autoassociative recollection f must still reveal some
characteristic features common to all the stored patterns, because f is always a
vector in the subspace ¥ spanned by £, . . . , f. This implies synthesizing and
generalizing abilities, further illustrated by a demonstration in Section 4.2.7.

4.2.5. Extraction of Novelty

In the subspace formalism just presented, it was stated that the projection vector f
represented the recollection from memory, and the orthogonal component f then
assumed the role of a residual. In regression analysis, the residual would be
assumed noiselike and be inversely related to the goodness-of-fit; in the present
considerations, however, vector f is better understood as the result of a particular
information-processing operation whose purpose is to filter out from the pattern
vector f the component that is explained by the stored data. It is then possible to
think of f as the amount that is ‘‘maximally new” in f. It may be justified to call
this component the novelty with respect to the stored vectors, and the name
Novelty Filter has been used for a system which extracts f from input data f and
displays it at the output alone without the f component (Kohonen, 1977; Koho-
nen & Oja, 1976). The Novelty Filter system has the ability to enhance any
nonfamiliar part or features appearing in an activity pattern passing through.

Because f is obtained from f by a linear operation, the application of the
projection matrix FF*, where F is the matrix whose columns are the stored
vectors f, .. ., f® then it follows immediately that

f=f—FF'f=(— FFHf (4-19)
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where I is the identity matrix. This shows that f is the outcome of a linear
operation, too, with the matrix

P=1-FF* (4-20)

giving the linear operator. This matrix is the transfer operator of the Novelty
Filter. It is a projection matrix, too, because it projects every vector on a sub-
space £+ which is the orthogonal complement of the subspace £ spanned by the
stored vectors fV, ..., £,

A network implementation for the Novelty Filter paradigm can be explained
in terms of the laminar model with internal feedback, Fig. 4.2. If the separate
afferent input signals of the network are again denoted by scalars fi, the response
signals by r;, and the connectivities of the network by my, then the output
signals or responses are actually functions of both the afferent input and the other
responses of the network, carried by the feedback lines converging on the units.
By exact analogy to the mathematical treatment performed earlier in Section
4.2.3., with the same comments applying for the linearity approximation and the
completeness of feedback connections, we then have

=L+ Y myrn. (4-21)
j

In vector-matrix form, this reads

r=f+ Mr, (4-22)
which further yields

r=(1-M"1"1 (4-23)

Thus the overall transfer operator for the input patterns is in fact matrix @ =(-
M)~'. The crucial difference with respect to the earlier autoassociative network
lies in the assumed law for synaptic modification, which in place of Eq. (4-2)
now reads

% my = —arf;. (4-24)
In other words, negative feedback (mainly due to inhibitory connections) has
been introduced, and it will build up adaptively, tending to compensate for the
input excitation. Actually the physical implementation of Eq. (4-24) has some
extra details not discussed here (Kohonen & Oja, 1976). The laminar model,
described by the transfer operator ®, now becomes equivalent to a very special
and selective ‘‘habituating filter’’; it will display at its output only that compo-
nent of the input pattern vector which is orthogonal to the subspace already
spanned by all earlier inputs, that is, it displays exactly the previously mentioned
residual. If each input is applied for a suitably long time, the resulting transfer
matrix is in fact ® = P, the Novelty Filter projector given by Eq. (4-20). The
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mathematical form that the learning process takes is describable by a Bernoulli
matrix differential equation, whose solutions are intimately related to an al-
gorithm well known in linear algebra, viz. the Gram-Schmidt orthogonalization
procedure (Albert, 1972; Oja, 1978). Therefore the term orthogonalizing filter
has also been used for this system.

Novelty Filtering is a useful fundamental operation in any natural information
storing and processing system, because those parts or features of a pattern that
are directly expressible in terms of the stored data are rejected, but the filter
system is transparent to the most interesting components of new data.

4.2.6. Recollection of Temporal Sequences

The purpose of this section is to demonstrate that temporal associations are
easily obtainable from an associative memory provided with minor extra fea-
tures, namely, delayed feedback.

Imagine that a sequence of input patterns {A(¢)} that all share the same
background, or context, B shall be stored. Context B may now be regarded as a
specific part of the input field; however a characteristic of signals applied in this
part is that they are always held constant during a particular sequence {A(r}}. On
the other hand, different context signals can be used for different sequences. Due
to the introduction of context the same pattern A(¢) may thus be associated with
several different output patterns using different contexts. The role of context has
become very central in the temporal mode of operation; by its virtue it becomes
possible to identify the different sequences directly and to select one of them for
recall.

Consider the sequential machine depicted in Fig. 4.4 (Kohonen, 1977, 1980).
The central block is some kind of autoassociative distributed memory network,
for example, a laminar memory model discussed earlier. The system receives
two types of input: the external input, consisting of A and B, and feedback input
D. The feedback is obtained from the output of the system through a delay that,
for simplicity, is assumed to have unit length. It may be assumed that if A
represents a forcing input, then during the input process (writing into memory) C
is a response that is a replica of A. During recall, however, there is no forcing
input and C is recalled by (B, D) used as the key. Assume now that a sequence of
inputs {[A(1), B], [A(2), B], ..., [A(N), B]} is received and stored autoassocia-
tively. When the first input pattern [A(1), B] arrives, the feedback input D, due
to delay, does not receive any signals yet from C; it consists of an empty
subpattern p. When the second pattern [A(2), B] arrives, the previous output
A(1) has already been transmitted through the delay, and it is assumed to appear
synchronously with A(1). According to the above considerations, the effective
input sequence of the autoassociative memory is then

S = {[A(1), B, 9], [AQ2), B, A(1)],... , [A(N), B, A(N-1)]}.  (4-25)
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FIG. 44. A system for the associative recall of sequences. A = forcing input
vector; B = constant background or context pattern; C = response pattern, the
recollection from autoassociative memory; D = feedback pattern, equal to the
response at a previous instant, with the time difference given by the delay.

In order to recall the {A(#)} sequence, the reading is started at time ¢t = 0 by
applying a key input [A(1), B, ¢]. Hereafter, no other members of the sequence
are needed because they are automatically produced by the memory. At ¢ = 1,
the input pattern is now [p, B, A(1)] where A(1) appears because of the feed-
back. The memory recalls the missing part A(2) of this activity pattern associa-
tively and produces it at the output. In this manner a continued autonomous
process will retrieve the whole sequence A(2), A(3), ..., A(N) associated with
the background B.

A problem arises if the same state occurs in several places in the sequence and
it has a different successor state each time. It should then be realized that the
system of Fig. 4.4 is the simplest model containing feedback loops. If there are
several feedback paths with different delays, then the model will be able to recall
more complicated sequences; in fact, a machine with k different feedback paths
is meeded to recall correctly a sequence that contains several identical subse-
quences of length (k-1).

4.2.7. Some Demonstrations of the Pattern Processing
Properties of Optimal Associative Mappings

The simple demonstrations reported in this section are only intended to illustrate
pattern-transforming effects of the basic optimal associative mappings; process-
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ing of structured information needs a more developed organization as delineated,
for example, in Section 4.4. Nor is it claimed that the well-known problem of
invariances in perception would be completely solved by the interpolation that
takes place in linear transformations. However, even though this experiment
does not simulate the operations of the complete visual system, the pictorial
material (human faces) is justifiable as test data because it has an inherently
natural statistical structure and allows direct inspection of the recollections. The
actual neural patterns would look quite different because they are transmitted
through many preprocessing stations.

Pattern Classification. As a first demonstration, consider a classifier based
on the optimal linear associative mapping for pattern pairs (s, f*’); see Eq.
(4-9). Here the s are prototype vectors that belong to various classes; each ¢
is a unit vector that has as many components as there are classes of patterns. To
every class there corresponds a unit vector with the value 1 in a particular
component and O elsewhere. For every class, a small number of prototypes is
collected; if s¥ is one of the prototypes, then

f9 = Ms® forall j (4-26)

e .'f g

FiG. 4.5. Demonstration of classification by optimal associative mapping. Each
of the 10 pattern classes employed consisted of pictures of one person photo-
graphed from five different angles, ranging from +45° to —45°. Image vectors
with components consisting of discrete picture elements were used as pattern
vectors; eight intensity levels were defined for each picture element. A distinct unit
vector was associated with each person. Parts (2) and (b) show two prototypes
from one pattern class (no. 3), and Parts (e) and (f) show two prototypes from
another pattern class (no. 6). Part (d) shows a test image of the person in (a) and
(b), taken from an angle not used among the prototypes. In the histogram of the
recollection, (c), the position of the largest component correctly reveals the
number of the class. Parts (g) and (h) repeat the same with another class.
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holds exactly. If, however, a vector s to be classified has only varying degrees of
similarity with the prototypes of different classes, the matrix-vector product Ms
(associative mapping) produces an output vector f that has the same dimensional-
ity as the unit vectors f% but in which each component only describes a
‘‘weight’’ by which s belongs to the various classes. The largest component, or
weight, is assumed to indicate the classification.

In the demonstration of Fig. 4.5, 10 persons were viewed from different
angles, and these images were used as the prototypes of 10 classes, each class
corresponding to one person (Kohonen, Lehtio, Oja, Kortekangas, & Miki-
sara, 1977). T-ese prototypes were associated with unit vectors corresponding to
different persons. An associative mapping of the images onto unit vectors is seen
to be able to interpolate between the representations so as to yield a correct
recognition of a person from a viewing angle not occuring in the contents of the
memory.

Autoassociative Recall. In order to demonstrate the autoassociative mapping
given in Eq. (4-11), the patterns f% that were stored in memory were facial
images of different persons; there were 100 pattern vectors stored (p = 100).
Four of the images are shown in Fig. 4.6 (a-d). An incomplete or noisy version of

e . o ik h

FIG. 4.6. Demonstration of autoassociative recall. Parts (a) through (d) show 4
of the 100 prototype images used to construct the autoassociative projector. When
an incomplete or noisy version of a prototype, (e) and (g), respectively, served as
the key pattern, the recollection resulting in the optimal autoassociative mapping is
then shown to reconstruct the original appearance in (f) and (h), respectively.
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FIG. 4.7. Demonstration of generalization and synthesis by an autoassociative
mapping. Row a shows 4 of the 21 different prototypes, each one composed of 3
subpatterns with invariant relations of size, location, and orientation. Row b
displays new subpatterns never occurring among the prototypes. Each subpattern
is located in the same place as the uppermost subpattern in the prototype images,
but the rest of the picture field is empty. In Row c each pattern is the recollection
from the autoassociative mapping, computed from the 21 prototypes, when the
pattern above it was used as the key. The autoassociative mapping is shown to
synthesize new subpatterns exhibiting the same invariance of size, location, and
orientation as the prototypes.

one of the stored images, Fig. 4.6(¢) or 4.6(g), respectively, is now taken as the
key f. The optimal recollection or projection f is shown to reconstruct the original
appearance, at least approximately, in Fig. 4.6(f) and 4.6(h), respectively.

Another demonstration of autoassociative mapping, emphasizing its synthe-
sizing and generalizing properties, is shown in Fig. 4.7. The prototype patterns
were defined as two-dimensional functions on the image field. The field con-
sisted of 3128 points, but in this experiment only 21 different stored patterns
were used. Every stored pattern consisted of three subfields each containing a
subpattern, whose relations of location, size, and orientation were invariant in
all prototypes. The microstructure in each subpattern, expressed in polar coordi-
nates, consisted of bell-shaped functions in the radial direction and sinusoidal
functions with varying frequency and phase in the angular direction. The subpat-
terns of each prototype were so constructed that the prototype patterns, consid-
ered as 3128 component vectors (read from the picture field column by column,
with vector elements being the gray scale values of the picture elements), were
all linearly independent, in fact orthogonal. Orthogonality is, however, not
necessary in principle, but it simplifies computing algorithms because the au-
tocorrelation matrix (cf. Eq. (4-14)) can now be used instead of the autoassocia-
tive mapping.
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Four of the 21 stored prototype patterns are shown in Row a of Fig. 4.7.
Various test patterns were used as key patterns, each consisting of some form of
subpattern in the same location as the uppermost subpattern in all the prototypes
but with the rest of the picture field empty. Three such test patterns are seen in
Row b of Fig. 4.7. The results of the demonstration, the recollections in Row ¢
of Fig. 4.7, show that the invariances in the stored patterns, that is, their internal
structure, have become an inherent property of the space of linear expansions and
are thus implicitly contained in the elements of the memory mapping. The
recollections exhibit in every case the same relations of size, location, and
orientation as the prototypes but with the three subpatterns in the recollection
similar in form to the one in the key. Even with such a small set of basis functions
the autoassociative mapping has achieved the ability to synthesize the two new
subpatterns, resembling in form the one used in the key, and also to generalize
the structure of the prototypes to hold between these subpatterns of the recollec-
tion. It might be expected that with a larger and more representative set of
prototypes the recollections would comply even better to the key patterns.

4.3. THE NEURAL IMPLEMENTATION OF
ASSOCIATIVE MEMORY

4.3.1. The Laminar Model

Distributed associative memory seems to be implemented in the brain as laminar
networks with internal and sublaminar connections. In a fairly homogeneous
lamina, it is easy to see how the operation of the network might be mathemati-
cally described by a matrix, which may be sparsely occupied.

How does this simplified system-theoretical view accord with the physiologi-
cal and anatomical reality of the complicated neural machinery comprising the
mammalian brain, and what might be the neural embodiment of such a distrib-
uted adaptive memory system? These are questions that should be answered
before trying to explain mental information processing by the distributed associa-
tive paradigm. First of all, the histological analysis of the brain lends support to
the idea that neurons are organized into horizontal sheets. This laminar organiza-
tion is found in neocortex, allocortex, cerebellum, and in many areas of mid-
brain. (For an extensive collection of empirical results on different laminated
structures, see Creutzfeldt, 1976.) The recent findings on these histological
structures seem to point to a type of functional organization, whose overall
behavior might be approximately described by the mathematical apparatus re-
viewed earlier. The structure of neocortex is used in the following description as
a prototype of all cortical laminated structures.

Although it is morphologically possible to distinguish several layers in the
cortical lamina, physiological studies on the mammalian cortex have revealed
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that the responses are similar in all cells that are confined within vertical col-
umnlike aggregates of cells extending from pia to white matter (Hubel & Wiesel,
1974; Mountcastle, 1957). Itis generally accepted that such columns (or slabs) are
organized around specific afferent axonal inputs, which they seem to analyze.
Teleologically we may think that the columnar organization arises from the
necessity to represent different stimulus qualities upon a two-dimensional sur-
face, at the same time preserving the topological organization. Consider the
schematic view of cerebrocortical modular organization given in Fig. 4.8(a).
This view has been grossly simplified by presenting the net as a ‘‘skeleton
cortex,’’ omitting most of the cell types and taking into account only the prin-
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FIG. 4.8. (a) Cortical modular organization. | = afferent inputs, with actual
termination not shown explicitly; O = outputs; 4 = association or commissural
fibers mediating a projection between cortical areas. b) Short- and long-range
interactions.
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cipal neurons, which are pyramidal cells (Shepherd, 1974). The two block-
like structures depicted in Fig. 4.8a are cortical modules or areas defined by
their cortico-cortical connections. These connections are mediated by the subcor-
tical axons of the pyramidal cells, which, after passing the white matter, ascend
vertically through the cortical lamina up to its uppermost two layers, thereby
ramifying with a great number of branches and extending over an area with a
diameter of 2-3 mm (Szentdgothai, 1978). Pyramidal cells have a similarly
branching tree of apical dendrites in these layers, which allows a high degree of
horizontal interconnectivity between cells. As every pyramidal cell has further
axon collaterals that branch within the cortex, one may distinguish between the
following three types of horizontal connectivity: (1) intracortical excitatory con-
nections made by axon collaterals at a distance up to 100 w; (2) intracortical
inhibitory connections, possibly mediated through interneurons, which extend to
a distance of 500 pu, and depend strongly on distance; and (3) cortico-cortical
excitatory connections that may extend over any distance within the cortex. If
these connections are made within the same area, then connectivity is indepen-
dent of distance, and its obvious purpose is to provide the nonspecific interac-
tions between cells. If these cell connections project from one area to another
they are scattered over the target area. The commissural fibers between the corti-
cal hemispheres also belong to the class of long-range connections but with
specific connectivity. The two latter types of interaction are further shown
schematically in Fig. 4.8(b).

It is assumed that the connections of type (3) carry out the memory-dependent
interaction of columns. The integrated memory effects are therefore mediated
by apical dendrites, which are known to have weaker but numerous excitatory
synapses (Shepherd, 1974). The synaptic conductivities m;; (Section 4.2) are
used to describe the behavior of these contacts.

The spatial spread of the apical dendrites and the axons terminating at layer I
increases the number of synapses and thus ensures a high degree of connectivity.
It should be noticed that even if each column is integrating the activity of an area
far beyond its dimensions, the response is generated locally by the column itself.
There is therefore no lack of resolution in the output activity of the network.

4.3.2. Processing of Information by Interconnected
Cortical Areas

It is proposed here that information is processed in interconnected cortical areas.
This type of organization emphasizes the fact that each column may have inputs
from different processing levels or from different auxiliary areas. Although it is
possible to have a sequence of processing levels in certain parts of the brain, the
modules may as well have a more parallel organization. A diagram outlining
some organizational possibilities is presented in Fig. 4.9.
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FIG. 4.9. Simplified organization of processing stations, assumed as “‘ma-
trices,”” in the brain. The figure is a functional scheme, not showing the true
geometry of areas or fibers, the crossing of sensory tracts from the other hemi-
sphere, etc. Mainly those parts are designated that are close to input and output. f
= representatives of sensory and other ascending input; O = representatives of
descending output to muscles, glands, etc.; ARAS = ascending reticular activa-
tion system in the brain stem, which controls the cortical areas.

The interconnected cortical areas are represented in our model by associative
memory mappings M;. It must be understood that these have different degrees of
plasticity and memorizing capacity, probably with the plasticity in an adult brain
increasing as one moves from the primary sensory areas upwards in the hierar-
chy. Some or all of the mappings receive afferent inputs of various strengths,
although in the schematic figure the inputs have been represented by only one
arrow. The afferent input reaches the neocortical areas through thalamic nuclei,
depicted in Fig. 4.9 by circles. These contain some mappings My;, whose
plasticity, if any, is probably much lower than in the cortical areas. Other
subcortical units taking part in information processing, like the limbic system,
have also been represented by similar circles. The cortical and subcortical units
are interconnected in both directions. The efferent cortical outputs are designated
by an arrow, again without specifying from which parts of the interconnected net
they actually come.

An important subcortical feature in the model is the ARAS, or ascending
reticular activating system, located in the brain stem. Its function is to exercise
control over the activities in the cortical areas and over the incoming sensory
information. It has been empirically shown that the consolidation of memory
traces is affected by the activity of ARAS (Bloch, 1976). It thus has the effect of
increasing the selectivity and optimizing the resources of the information-
processing units by suppressing some activities and enhancing others. This also
implies that the plasticity of the network depends on its chemical state or on some
other global property.
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This description obviously contains a number of gross oversimplifications,
which would have to be taken into account in a more detailed model. However it
is not the purpose of the present chapter to build a structural model of the brain
that precisely fits the available anatomical data but to try to find out what the
general ways are in which information processing can be organized using a
distributed associative mode of operation.

4.3.3. Synaptic Modification and Learning

Inherent in the laminar network model is the assumption that memory is encoded
in the vast number of junction strengths of the interconnections of the network.
To be able to write new data into the memory, these junction strengths must be
modifiable; to gain selectivity, the modification must depend in some way on the
actual signals that are passing through the junction. The convergence of axonal
inputs in the cortical lamina ensures that in each column there are synapses
signaling the activity of the majority of other columns in the interacting areas.
The information needed for cooperative functioning is thus locally available. The
selectivity of the memory function is attainable in the network if and only if the
synaptic change is limited to some combination of the signal activity. Probably
the simplest mechanism proposed to explain the selective synaptic modification
is the principle stated by Hebb (1949) in a general nonmathematical form, ac-
cording to which an individual synaptic junction may increase its efficacy if it is
repeatedly activated simultaneously with the triggering of the postsynaptic cell.
This hypothesis was presented at a time when the physiological embodiment of
learning was thought to be the formation of new stimulus-response connections.
Later this hypothesis was expressed as the conjunction theory of learning (Ec-
cles, 1978; Marr, 1970): A synapse strengthens if both the presynaptic and the
postsynaptic neuron are active at the same time.

One may ask why there has not been a conclusive experimental verification of
the existence or nonexistence of conjunction type learning during the thirty years
between the appearance of Hebb’s book and the present day. The answer lies in
the very nature of the conjunction theory. One must realize that this theory does
not presuppose that the memory traces are encoded in strong changes in some
individual synapses or even in an increasing heterogeneity in the strengths of a
number of synapses; the integrated change even in a small population of neurons
may be zero due to positive and negative individual changes (cf. Eq. 4-27). The
phenomenon is more subtle. It can best be explained by mathematical correla-
tion, which is the macroscopic implication of conjunction learning in individual
synapses on the level of the whole network.

It is as impossible to infer the contents of the entire memory from a few
junction strengths as it would be to compute, say, the eigenvectors of a large
matrix from a few matrix elements. To carry the analogy a bit further, subtle and
almost unnoticeable changes in a large number of synaptic strengths can stron gly



4. DISTRIBUTED ASSOCIATIVE MEMORY 131

affect the overall properties of the memory filter just as small selective variations
in suitably chosen matrix elements may radically alter the linear mapping whose
numerical counterpart is the matrix.

For this reason the prospects of a direct experimental breakthrough in favor of
the conjunction hypothesis may not be good. This applies especially to large
networks, like those of the mammalian cortex. In small systems of neurons the
problem may be easier to solve. In fact the most important advances in this area
have been made in the study of small neural systems like that of Aplysia (Kandel,
1979). This work has revealed some of the laws governing presynaptic sensitiza-
tion. In the study of higher organisms most of the results are connected to
long-term potentiation phenomena in the hippocampus (Eccles, 1979).

If the conjunction assumption is accepted as a working hypothesis, there are
still several possibilities for the actual mechanisms involved. Some of these are
growth and regression of presynaptic endings; changes in the transmitter concen-
trations; and redistribution or activation and passivation of postsynaptic receptors
of the cell. These may be accompanied by other more permanent changes in the
synapses or in the postsynaptic membrane, in which the memory traces become
consolidated.

One of the more detailed and plausible models, although by no means the only
one producing conjunction-type learning, is the redistribution of receptors be-
tween the synapses of a cell according to demand (Huttunen, 1973; Stent, 1973).
This explanation has the advantage of being able to produce very quick changes,
which may later be consolidated by a fixation of the receptor molecules onto the
cell membrane.

This model has been discussed in detail by one of the authors (Kohonen,
1977). The ensuing equation for synaptic change is

A — (e - &) @-27)
where u is the efficacy of the synapse, 7 is the postsynaptic activity given on a
frequency scale, £ is the corresponding presynaptic activity, and &, is an equilib-
rium value, the input frequency causing no changes in the value of . The scalar o
is a constant determined by the level of plasticity of the synapse. The above law
applies both to excitatory and to inhibitory synapses and explains both weakening
and strengthening, depending on whether ¢ is below or above the equilibrium
level &,. In fact, the term (§ — &) may be considered as the effective presynaptic
signal, attaining both positive and negative values (Kohonen, 1977).

The term n(é — &), which is the product of postsynaptic and presynaptic
signals, gives rise to a correlation matrix appearing in the learning equations, as
explained previously in Section 4.2.3. Based on the conjinction form of synaptic
plasticity, several typical functional units may be adaptively formed depending
on the wiring of the network. Some such systems were reviewed in Sections
4.2.3.-4.2.6.
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4.4. INFORMATION PROCESSING IN DISTRIBUTED
ASSOCIATIVE MEMORY

4.4.1. Sensory Experiences as Patterns of Activity Over
Memory Fields

As stated in earlier sections, the brain is an interactive system in which the
activity of every part is affected by many other parts. Accordingly the associative
mapping that takes place in one hypothetical functional unit can only describe an
elementary operation in a complex sequence of processes. It is pointed out in the
following discussion that these basic operations may, nonetheless, operate upon
semantically meaningful representations of occurrences.

For every part or functional unit in the brain that contains memory we shall
use a representation that we henceforth call a memory field. (A similar approach
was taken by Nakano, 1972.) In its simplest form a memory field corresponds to
a lamina of memory elements (cells or tightly connected agglomerates of cells
such as columns) that have a great number of mutual connections, assumed to be
distributed uniformly over the field (cf. Section 4.3.). The memory field can be
identified with the top view of an area of cortex. There is sensory or other
primary input to every element in this field. This input is assumed to originate at
some prior processing stations (e.g., nuclei or other cortical areas) with the result
that different locations in the memory field already have differentiated roles;
signals representing particular features are clustered in particular locations. Some
locations may be thought to receive input from subcortical structures, so these
signals may have an emotional significance.

In the modeling approach it is thus possible to assume that within a memory
field certain local areas, which we schematically distinguish by circular regions
in Fig. 4.10, have a well-defined modality and meaning. A region is now iden-
tified with an attribute, and the spatial pattern of activity within the region
represents the value of that attribute. (In reality, of course, these areas may be
more or less diffuse.) There are good experimentally verified reasons to assume

Representations
of concrete items
Set of features } e

describing an _____@

object

Pattern of
Set of physical neural signals
signals that that stands for
describe a L~ @-" an abstract
concept, e.g.

quality, e.g.,
optical radiation "color of"
of a color | S p—

Abstract

attributes

FIG. 4.10. Hypothetical example of a memory field.
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that for a particular sensory experience or other occurrence the pattern of activity
over the complete memory field consists of only a few activated local areas
(attributes) (Barlow, 1972) whereas the rest of the elements in the field are silent,
having effective signal value zero (or rather, being regarded as signalless). This
theory of representation now makes it possible to compare the memory field
model directly with an abstract relational representation.

Assume for simplicity that there are only three active local areas as in Fig.
4.10, labeled A4, R, and B. The signals at A and B may stand for features that
make up the representations of two items, for example, one being the representa-
tion of an object and the other some concrete physical observation, whereas the
region for R might contain neural signals that represent an abstract, relational
attribute. Notice that the memory field model would allow an arbritrary number
of such attributes to be present in one occurrence. It is also important to notice
that attributes are bound to a particular location in the memory field.

This model, which uses patterns in memory fields, can now be contrasted with
the traditional way of representing relations in data structures by triples of sym-
bolic items, which may be traced back to the use of predicate calculus in early
question-answering systems (McCarthy, 1959). If A, B, and R are symbolic
(distinct) items, then (R, A, B) is a relational triple: For example, R = color of;
A = an apple; B = is red; (R, A, B) = color of an apple is red. It is possible to
question the generality of this formalism in the description of brain functioning.
We feel that linguistic expressions have an extremely high degree of coding
based on (implicit) assumptions and conventions, like the assignment of a par-
ticular meaning to prefixing, suffixing, and other formats. Expressions like (R,
A, B) only look simple; in fact their treatment in the brain might need compli-
cated processing, probably augmenting the representation of the arguments by
contextual information that indicates their role. The concept of a memory field,
in which regions are identified with attributes and the values of attributes corre-
spond to spatial patterns within regions, provides a more realistic view of the
representation of information in a neural network. The network is then able to
process, for example, semantic triples or other tuples of symbolic items, but this
is to be regarded as a secondary process rather than its natural mode of function-

ing.

4.4.2. Generation of Answers to Implicitly Defined
Queries Presented to the Laminar Memory Model

It is frequently stipulated that genuine models of memory should be able to
generate answers to complex queries or to perform searches for pieces of
memorized information that are only implicitly defined by their relational struc-
ture. For this reason there has been considerable interest in memory models
defined in certain artificial intelligence languages; the answers are found by a
series of list-structure processing operations. In these, tolerance to errors in



134 KOHONEN, LEHTIO and OJA

names, labels, and data structures is poor when compared with the performance
of biological memory, nor can this type of memory structure generalize over
clustered representations without adding considerable extra apparatus to inspect
the memory structures.

Because the associative mappings implemented in the ‘‘matrix’’ memories
have the ability of representing and retrieving patterned information that may
also be clustered, it would be interesting to develop these models in a direction
in which they too could be made to search for implicity defined memorized in-
formation on the basis of separately given cues. Contrary to what is generally
believed, such processes are implementable by rather simple mechanisms, thereby
preserving the ability to deal with data that have statistical properties (i.e., not
bound to occur in a unique form). It is even possible to demonstrate some ele-
mentary forms of thinking and problem-solving processes, although we are still a
long way from implementing real thought processes.

As it might be rather difficult to pick up an exemplary system which is general
enough and at the same time reflects powerful information-processing abilities,
we would like to rest content with a rather simple example that is still demonstra-
ble with the aid of a few illustrations and a little text. First of all we revert to the
field representation introduced in Section 4.4.1. Notice that because there exist
interactions (associative connections) between all areas of the memory field, the
active areas of the field can also be viewed as distinct functional *‘units.”’ In this
way the operational units can be regarded as virtual ones, allocated from the
memory ‘‘field’’ according to need by an activation and selection system. It is
then possible to consider the autonomous computing processes as taking place in
a system of these virtual units or ‘‘virtual processors,”’ in a series of iterative
recall processes.

It seems that a search task in which the target item is implicitly specified by
multiple relationships always involves multiple computations that are separated
in time. Thus, although the memory network from which associative recall is
possible is distributed and the operations in it are fully parallel, nonetheless there
must exist a phase in the operation in which intermediate results are collected,
compared, and collated. It can now be shown that there is no need to devise a
complicated processor for this purpose. In many cases the system that carries out
this collection and thus assumes the role of a a short-term memory (STM) can be
extremely simple. Some sort of retention of the output signals from a functional
unit with a duration of, say, several seconds is necessary, and the easiest way to
implement this is by some kind of ‘‘leaky integrator,’’ (Shiffrin, 1976). We shall
not try to specify a physical or chemical mechanism to make this retention
possible. Notice, however, that even dynamic reverberation of signals between
two units in a point-to-point fashion is a possible STM, and such point-to-point
circuits are known to exist between the cortex and the thalamus of a mammalian
brain.
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In order to collate signal values obtained in matching separate incomplete pat-
terns, the outcomes must first be normalized. This does not mean simply stan-
dardization of signal amplitudes to, say, two discrete levels but rather that the
time integrals of the output signals from the laminar memory ought to be stan-
dardized. This is possible if temporal differentiation of the patterns takes place at
the input to the matrix itself, or at its output. Again we shall not specify a
particular mechanism more closely. One possible effect would be a short-term
habituation, but this process might take on rather complex and at the same time
intriguing forms (e.g., Kohonen & Oja, 1976).

One further operation in the collating process is carried out by a threshold
trigger. The threshold might be adjustable by slow adaptation so that the trigger-
ing may be made to occur after two or more accumulated output signals have
been obtained in successive matches to incomplete search patterns.

An Example of a Searching Process. Consider the data structure shown in
Fig. 4.11, which is supposed to represent the contents of a semantic memory; this
structure is formed of relational triples (4, P, B), (4, Q, C), etc, in which the
middle elements always comprise the link labels, and the two others the as-
sociated items. Assume that item C had to be retrieved on the basis of two
incomplete search patterns (4, @, X) and (£, R, X) with X unknown. The normal
search procedure would first determine the set of solutions for X for each search
pattern separately, and then find the value X = C as the intersection of these two
sets.

Let us now study how the same task would be solved by distributed memory.
The data structure would be stored in terms of triples, which would be repre-
sented as patterns defined over the memory field, for example, of the type of Fig.

FIG. 4.11. The abstract data struc-
ture used in the simulation of Fig.
4.12. Vertices A through G repre-
sent items; edges P through § repre-
sent link labels.
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4.12(a). It is noteworthy that there may be similar local areas in two different
patterns, but the areas which are similar will vary from one pair of patterns to the
next.

Assume now that two cues, two incomplete key patterns, are given as shown
in Fig. 4.12(b) and 4.12(c). If either of these were separately applied as inputs
to an autoassociative memory network, the responses from the latter, being
mixtures of stored patterns, would be defined by Eq. (4-13) and delineated as
in Fig. 4.12(d) and (e). Due to the assumed standardization of output signals,
these recollections would remain subliminal. If, on the other hand, the two key
patterns were applied one after the other, with a delay that is less than the time
constant of the STM, then the component pattern C would be recalled with
approximately double the intensity of the other components, and it would there-
fore exceed the threshold. Figure 4.12(f) displays only the above-threshold
signals that now constitute the solution of the search task.

(a)

(c)
Keys %
(e) I'
E®
Responses ®
sub- sub- above—
liminal liminal threshold

recollection

FIG. 4.12. Generation of an answer to an implicitly defined query by the distrib-
uted memory model. Part (a) displays in pattern form the relational triples con-
tained in the data structure of Fig. 4.11. The elements of the triples are represented
as spatial subpatterns of activity over the memory field. These six patterns have
been stored in associative memory. Parts (b) and (c) show two cue patterns applied
to the inputs in recall, and (d) and (e), respectively, show subliminal responses that
are mixtures of selected images; for example in the upper right-hand subfield of
(d), mainly a superposition of C and D is recalled in response to the key pattern
(4, Q). When cue patterns (b) and (c) are shown subsequently with a time delay
not exceeding the time constant of STM, a superposition of the standardized
response patterns (d) and (e) takes place, producing the above-threshold recollec-
tion shown in (f). At the upper right-hand subfield of (f), an answer to the query
(i.e., C) has thus been produced.
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The search problem does not become much more complicated even if signifi-
cantly more local areas (regions) than three are included in the patterns and if
several of them are left unspecified in the keys. Although the internal relations
in the patterns would be more complex in this case, nonetheless the phases of
associative recall, and the recollection of results by the STM, would take place
in essentially the same way as described. On the other hand, such a problem
would need much more complicated handling by conventional query languages.

There is an intriguing explanation of the interaction of short-term memory
(STM) and long-term (LTM), based on the previous model. As there obviously
exist several types of memory effects with different time constants in the nervous
system, one might assume that the integrated and processed outcomes from the
STM become autoassociatively memorized in this or another network. In a later
recall process this information can be recalled associatively, etc. This allows
rather complicated information structures to accumulate in memory with time,
without all of these structures being explicitly present at the same time.

4.4.3. Self-Controlled Operation of the Distributed
Memory

Organized computing devices can be built of chips containing only logic gates.
Similarly we can imagine an associative processor, consisting of many distrib-
uted memory units interconnected by bundles of signal lines over which they pass
cue patterns and recollections to each other. If the system had closed signal
circuits, this passing and transformation of information would proceed recur-
rently or iteratively with each module adding such information to the patterns as
was earlier stored in it. These modules could also standardize their output signal
values and extract certain features at their inputs, thus compressing information
that was present in the transmitted patterns. Unlike digital computers, such
distributed memory systems do not need a highly sophisticated control that opens
and closes every signal path in a programmed sequence. If any gating of signal
paths exists, it can be of a more or less general nature, comparable to the control
of arousal or attention in the nervous system. Coarse spatial control could be
achieved by context signals, which activate a subset of units for a particular task.
The self-controlled operation of this kind of system should be compared with that
of a conventional analog computer, especially a differential analyzer. The oper-
ational units of the latter transform signals internally and pass the results to each
other in an asynchronous and highly parallel fashion without external control.
The analog computer can be envisioned as an autonomous dynamical system in
which computation involves continuous change of the state variables over time.

Although the distributed memory system is assumed to behave in a way
grossly similar to an analog computer, there exist some characteristic features
that distinguish it from a conventional differential analyzer:
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1. The system parameters (the weights) change adaptively due to the occur-
ring signals; that is, memory traces are collected that facilitate associative recall.

2. The state variables and the input-output signals between the units are not
scalar valued. Processing of information within the units as well as communica-
tion between them occurs simultaneously and in parallel over a great number of
state variables that constitute the patterns.

3. The outcomes from computations in a memory system are usually not
trajectories of signal variables in time as in a differential analyzer. Instead the
final state of a memory field can be a stationary pattern, in which case the
resulting values of some state variables represent the sought information. Alter-
natively, the system may run through a sequence of states that represent a
dynamic recollection of a memorized occurrence.

4.5. DISCUSSION OF CERTAIN PROBLEMS WHICH
ARISE WITH PHYSICAL MEMORY MODELS

4.5.1. The Data-Switching Problem

Conventional information-processing models contain implicit assumptions about
computational procedures and underlying programs. Current Al research has
most often resorted to procedural models that are directly implementable by
present computer hardware and languages developed for it. If these models are
also advanced in the context of theoretical psychology, one may easily be misled
into assuming that intellectual and especially verbal activities require this type of
computation. Very little attention has generally been paid to what digital compu-
tation actually means.

In conventional digital computers processing operations are concentrated
around central arithmetic-logic circuits and associated registers into which the
operands have to be multiplexed from the memories. Multiplexing and time-
sharing of the computational operations is a natural solution for devices that are
based on logic circuits. However it also means extensive data transfers between
the operational units during which the format of data must be preserved with high
fidelity. Moreover, each particular type of datum must then be guided into a
particular destination according to its role, which imposes extra requirements on
its representation and control. It is highly improbable that this kind of multiplex-
ing or data switching occurs in the neural structures where signals are transmitted
at relatively low speeds through more or less fixed pathways and transformed
during their passage from one processing station to another. It is thus implausible
that the representation of information in the central nervous system is based on
relational triples where items are ordered by their role.

Instead of assuming that the representations of signals in the central nervous
system carry with them some specification of their roles and are thus freely
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transferable, it would be more natural to assume that the semantic role of a signal
explicitly follows from the particular part of the brain and region in the memory
field into which it converges. This becomes possible because of some degree of
genetic predisposition in the gross connectivity, although, as pointed out in
Section 4.4, the actual forms of signal patterns within an area may vary with
individual experiences.

If brain mechanisms are viewed as highly parallel computing circuits, then
ideal parallelism means representation of information that is distributed all over
the system. It is then no longer proper to think of information as composed of a
great number of more or less independent records, a view that has been in-
herited from serial computers. An occurrence could rather have a representation
that occupies the whole system, as the activity patterns over the memory
fields do.

The difficulties arising from the data-switching problem with corresponding
restrictions set to neural implementation seem to favor memory models that are 3
based on memory fields, that is, the distributed associative memory, as well as
the connectionist view.

A particular type of memory field can be made to represent a ‘‘connectionist’’
memory directly. If it is assumed that the memory elements of the field (not
activity patterns over areas) directly represent items, abstract attributes, etc.,
then these elements might be named nodes as in semantic networks. ‘‘Associa-
tions’’ would in this view correspond to direct links between nodes. Obviously
this model represents an extreme case in which every single element of the
memory field has a semantic interpretation. This is a standpoint adopted by some
earlier psychological models of memory (Norman, 1968). Not only must the
signals corresponding to every sensory experience then be guided to the nodes
with perfect spatial resolution and selectivity, but one must also assume that the
location of such a node was determined from the beginning, independently of any
sensory experiences.

In fact, in the example of information processing by a laminar network as
discussed in Section 4.4, operations were performed by a ‘‘hazy connectionist
network’’ in which the local areas corresponded to nodes, and their interactions
were mediated through the adaptive lateral connections.

4.5.2. Automatic Formation of Symbols in Associative
Mappings
It has been a common view that the central nervous system processes information

in symbolic form (Newell & Simon, 1972). This was obviously postulated for the
following reasons:

1. Symbols can be made unique whereby they facilitate long and complex
operation sequences.
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2. Symbols can be associated with concepts, which in the simplest form are
representations of clusters in more or less variable occurrences.

3. As the concepts can be defined on different levels of abstraction, a more
accurate meaning can be given to an occurrence at an increased economy of
representation.

An extreme form of symbolism would be a ‘‘brain code,’’ the existence of
which, however, has never been verified experimentally. Now it has to be
emphasized that a symbolic representation need not be identified with a code. It
seems sufficient that any substitute pattern that is simpler and more invariant than
the original occurrence can be associated with the latter; we have tried to de-
lineate in this paper some possibilities for the embodiment and processing of
structured relations between such representations (Sections 4.2.6 and 4.4.2).

A trivial and also common way to define a concept is as supervised associa-
tion of a symbol to a pattern. However, a much more important and intriguing
problem concerns mechanisms by which a symbolic representation could au-
tomatically be formed in an adaptive system. One possibility, formation of
certain discrete states in the system corresponding to distinct statistical ‘‘eigen-
features’’ of the input information is discussed elsewhere in this book (Anderson
& Mozer, Chapter 8, this volume). Sometimes such discrete states are formed by
simplification, for example, by amplitude discrimination of signals and dropping
of weak segments from sequences. Classification, especially false identification
with earlier prototypes, is obviously one process which assigns names to new
occurrences.

As to the remaining problem, formation of symbols referring to different
levels of abstraction, it is useful to observe that regions in scenes which are more
general are often also more constant and vice versa. This may allow differentia-
tion between hierarchical levels on the basis of conditional probabilities of the
subpatterns.

4.5.3. Interdependence of Different Operations in Neural
Information Processing

A comprehensive theory of neural information processing has to explain many
known phenomena not covered in this chapter. How do we recognize a person on
the basis of a scratched old photograph never seen before? How do we allocate
attention to different parts of a scene full of objects? What is the basis of the
perceptual invariances? :

The analytical models in this chapter are the results of the study of basic
learning paradigms in the nervous system. They try to explain how the associa-
tive storage and recall may be implemented in a neural network. Their ability to
explain perceptual invariances or complex mental processes is limited. We feel,
however, that even if all cognitive processes are tightly interrelated complex
processes, there exist subproblems that may be tackled separately.
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The brain, which is the most effective adaptive system, is obviously op-
timized at all levels, in organization as well as in details. Therefore, because
representation of organized perceptions and structured knowledge is a demanding
task, it seems reasonable to assume that there exist information-processing stages
in the brain that can extract invariant primitives of information from signal
patterns. Effective feature extraction and standardization functions are known to
exist at least in the primary sensory systems, and they have been subject to many
theoretical studies; similar standardizing transformations may be found at higher
levels of neural hierarchy, too. At least in theory it then seems profitable to
separate the modeling of preprocessing from that of memory functions, which
allows a more lucid discussion of the latter.

SUMMARY

The major theme in this chapter has been processing of information in distributed
associative memory systems that serve as models of adaptive neural systems.
This approach provides an answer to one of the most intriguing problems in
neuroscience: How may the neural tissue, which is rather uniform over the
cortex, be adaptively specified to carry out the highly differentiated functions
found in it.

The chapter was divided into three main parts: We first presented in Section
4.2 some models to explain the basic functioning of the distributed associative
memory in system-theoretical terms, using optimal associative mappings. It was
shown that items of information can be made to correspond to distributed trans-
formation functions that, although not being stored in spatially separate loca-
tions, still preserve the distinctness of representations in the recall process. In
Section 4.3 the biological feasibility of these system-theoretical ideas was stud-
ied in connection with a laminar network model of the neocortex. In this model
information is processed in interconnected cortical areas that make it possible to
represent the known specificity of different cortical areas and still apply the
principle of distributed associative memory. In Section 4.4 the problem of repre-
senting semantic data and generating answers to implicitly defined queries in
distributed memories was approached and a solution was outlined in terms of
laminar memory fields.
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