
Te xture On Demand

Darwyn Peachey

Pixar

San Rafael, California

Abstract

Te xture On Demand (TOD) is a technique for organizing large amounts of stored texture data in

disk files and accessing it efficiently. Simply reading entire texture images into memory is not a

good solution for real memory systems or for virtual memory systems. Te xture data should be

read from disk files onlyon demand. In the TOD technique, each texture image is stored as a

sequence of fixed-size rectangular regions calledtiles, rather than in the conventional raster scan-

line order. Tiles are an appropriate unit of texture data to read into memory on demand. As

fixed-size units with good locality of reference in a variety of rendering schemes, tiles can be

cached in main memory using the paging algorithms common in virtual memory systems. Good

results have been obtained using an LRU tile replacement algorithm to select a tile to be deleted

when main memory space is required.

Prefiltered textures are an important means of limiting bandwidth. TOD uses a set of prefiltered

texture images called anr-set, a generalization of the texture pyramid (‘‘mip map’’). Texture fil-

tering methods are reconsidered in terms of their performance in the TOD environment. Efficient

filtering methods using the r-set are described.

The paper describes various implementations of TOD, including a virtual memory implementa-

tion and a distributed implementation on a 16-processor multicomputer.

CR Categories and Subject Headings: I.3.3 [Computer Graphics]: Picture/Image Genera-

tion; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism − color, shading,

DP
Text Box
Pixar Animation Studios - Technical Memo #217 Copyright 1990 Pixar Animation Studios

-2-

shadowing, and texture.

General Terms: Algorithms, Performance.

Additional Keywords and Phrases: antialiasing, filtering, mip map, multicomputer, paging,

pyramid, texture, virtual memory.

1. Introduction

A computer graphics image is more realistic and pleasing to the eye when the objects in the

image appear to be complex and detailed. Te xturing is a way of adding apparent complexity

without changing the underlying geometric model. The additional details are created by modulat-

ing shading parameters as a function of some texture coordinate system. It is common to use a

digitized or precomputed 2D table of texture values to generate the modulating function. This

texture table is accessed during rendering and the values in the table are filtered to obtain the tex-

ture values used to modulate shading parameters. Since the source of the data in a texture table is

often a digitized photograph, the table may be thought of as a texture image.

Access to tabular texture data has been studied by several authors [1,2,5-11,18]. A primary con-

cern of these authors has been to reduce the CPU time cost of texture filtering calculations. It is

commonly assumed that texture data resides in main memory and can be accessed directly by an

array reference.

We are interested in making pictures which use tens, hundreds, or thousands of high resolution

texture images. A single texture image typically consists of one to sixteen megabytes of data.

There are difficult problems in the design of a texture system that can efficiently access many

such images during rendering. Te xtures of this size inevitably reside in disk files before render-

ing, and an accurate measure of the cost of accessing the textures must take into account the oper-

ating system overhead and disk I/O time involved in reading the texture data into memory.

This paper describestexture on demand(TOD), a technique for organizing and accessing texture

data which attempts to minimize the I/O and CPU cost of access. Although the paper focuses on

the case of 2D texture tables (images), the technique is easily extended to 1D tables and 3D tables

(solid textures [13,14]).

-3-

2. Principles of Efficient Texture Access

Assuming that texture data initially resides in disk files, the total time cost of texture access dur-

ing the rendering of an image is

cost= N L +
D

rate
+ CPU

whereN is the number of I/O operations (texture reads),L is the latency or time overhead of each

read (including setup, seek time, rotational delay),D is the total amount of texture data read in

bytes,rate is the I/O system transfer rate in bytes per unit time, andCPU is the CPU time taken

to access and filter the texture data. We assume thatL and rate are fixed by the hardware and

operating system design. Thus to minimize the cost, a texture access algorithm should minimize

N, D, andCPU.

2.1. Why Not Just Read It All?

There is a temptation, especially on computers with virtual memory systems, to ‘‘just read it all

in.’’ Our cost function shows one reason why this is a poor strategy: reading texture data that

might never be accessed increasesD and adds to disk read time. It is generally difficult to predict

which parts of a texture will be needed, since a textured surface can be partially or completely

hidden by another surface.

The other reason not to read the entire texture into memory before rendering is to conserve scarce

memory space. Unless the computer system has an infinite amount of real memory, there usually

won’t be enough memory to hold all of the texture data which might be needed. A large virtual

memory space simulated with a small real memory doesn’t solve the problem. Reading a texture

into virtual memory can result in two I/O operations, one to read the data from a file and another

to page it out to a disk paging area. A third I/O operation can take place when the texture is

accessed (but only for the parts that are actually used in rendering the image).

2.2. Texture On Demand

In order to minimizeD the access algorithm must avoid reading texture data that is never used. It

is difficult to know in advance what portion of the texture data will be needed, since visibility of

the surfaces must be considered. Visibility is properly the concern of the renderer. This suggests

-4-

that the right thing to do is to read texture on demand, as it is required by the renderer.

The extreme implementation of this idea is to read the texture one pixel at a time. This minimizes

D (assuming no pixel is ever read more than once), but makesN enormous, in fact, equal toD.

SinceL is four or five orders of magnitude larger than 1/rate in practice, the latency dominates

the rendering time and the overall rendering time is greatly increased.

Obviously texture data must be read in units larger than single pixels. Choosing the best size for

I/O operations is a complex decision involving the hardware and operating system characteristics;

in most systems an I/O size of 1K to 16K bytes balances the effects of latency and transfer rate.

Each texture read operation will include many ‘‘extra’’ pixels along with the desired texture pixel.

It is important to ensure that most of the extra pixels are ones that will be needed later in the ren-

dering process. Any unused texture data which is read will increaseD and thus increase the total

cost of texture access.

Most images are stored in raster scanline order, so a scanline can be read by a single I/O opera-

tion. But a scanline is not an ideal unit of I/O for texture access. For example, if only the left half

of a texture is used, each scanline that is read will consist half of useful pixels and half of wasted

pixels; in an extreme case, all but one pixel of each scanline could be wasted. Scanlines can also

exhibit poorlocality of reference[3], that is, a low probability that a pixel access will soon be fol-

lowed by further accesses to the same scanline.

The optimum I/O unit for texture access is both renderer and image dependent, but we would pre-

fer a unit which performs fairly well with a wide variety of renderers and scene descriptions.

Such a unit should beisotropic, that is, it shouldn’t hav e a preferred access direction, since effec-

tive use of the preferred direction would require that the rendering algorithm and scene descrip-

tion be adapted to the texturing algorithm. A scanline is a poor unit because it is not isotropic;

accesses along the scanline are far more efficient than accesses across scanlines.

2.3. Texture Tiles

A better unit for texture I/O is a square (or nearly square) region of an image called atexture tile1.

A square is a convenient approximation to the most isotropic shape, a circle. Each texture image

can be cut up into a grid of rectangular tiles (Figure 1). The dimensions of a tile are such that it

1Dungan, et. al. [6] use the term ‘‘texture tile’’ differently. Their concern is to build up large areas
of texture by repeating a single texture tile designed to have opposite edges which match. Our tex-
tures consist of many different texture tiles. The edges of a given tile do not (necessarily) match.

-5-

can fit into a fixed I/O size, and therefore depend on the size of one pixel of the texture. The size

and dimensions of a tile are restricted to powers of two to simplify and speed up access calcula-

tions. If tiles are 4K bytes in size and texture pixels consist of a single byte each, the tile dimen-

sions are 64×64 pixels. If instead each pixel consists of two bytes, the tile dimensions are

64×32. Tiles are square if the number of pixels in a tile is an integral power of four; otherwise,

tiles are twice as wide as they are high.

Te xture images are stored in disk files as a set of tiles, rather than as a sequence of image scan-

lines. A tile can be read with a single I/O operation. Each tile is itself a small image stored in

raster scanline order. The tiles may be stored in any order in the texture file, as long as there is

some means to determine the file address of a tile given its location in the image. Usually the

tiles of a particular image are stored one after another and are addressed as a 2D array of tiles in

row-major order. Alternatively, tiles can be located through a 2D table of tile addresses. In this

scheme, only one of a set of identical tiles needs to be stored and read; others may be represented

by multiple references to the same tile address.

Figure 1: Tiled texture organization.

2.4. Prefiltering Texture Images

Reading texture tiles on demand helps reduceD, the total amount of texture data read, by not

reading unused parts of the texture images.D can be reduced further by using texture images of

-6-

an appropriate resolution. Much more data must be read from a high resolution texture image

than from a low resolution one to filter over a giv en region in texture space. However, it is unrea-

sonable to expect the texture user to select the appropriate resolutions before rendering.

Dungan,et. al. [6] and Williams [18] have proposed schemes in which a high-resolution source

image is prefiltered to a variety of lower resolutions to form atexture pyramidas illustrated in

Figure 2.

Figure 2: A texture pyramid.

Williams explains how approximate filtering calculations can be performed using a fixed number

of texture pixels from the pyramid and a fixed number of CPU operations regardless of the size of

the area being filtered. Prefiltering of texture offers a substantial reduction of the texture I/O vol-

ume D as well as a reduction of the CPU cost of access and filtering. In fact, we can make the

following observation regarding the minimum amount of texture data required to render an image:

Principle of Texture Thrift

Given a scene consisting of textured 3D surfaces, the amount of texture informa-

tion minimally required to render an image of the scene is proportional to the reso-

lution of the image and is independent of the number of surfaces and the size of the

textures.

-7-

This principle is a consequence of the signal processing limitation on the amount of information

which can be conveyed by the rendered image: each pixel of the image can represent only one

sample of each texture on a given surface. Imagine a scene consisting of many small textured

objects. A wide angle view of the scene contains many objects, but little detail is visible in the

texture on each object. A close up view of one of the objects shows the texture of that object at a

much higher resolution, but does not show the other objects. The total number of texture pixels

seen in the two images is about the same. Of course, this depends on being able to filter a texture

to any desired resolution by accessing a fixed amount of stored texture data − exactly the result of

using prefiltered textures.

If each surface in the scene uses more than one texture (e.g., a color texture and a bump texture),

the amount of texture necessary to render the scene is proportional to the number of textures per

surface, which we call thetexture complexityof the scene.

2.5. Resolution Sets

To simplify the following discussion, we use a powers-of-two notation for image resolutions. An

image is a 2D rectangular array of pixels indexed by two coordinates calleds andt. When thes-

resolution of the image is 2S and thet-resolution of the image is 2T , the resolution is specified in

powers-of-two notation as [S,T]. In this notation, a texture pyramid consists of a square source

image of resolution [R, R] and images of lower resolutions [i , i], i = 0, 1,. . . , R − 1 obtained by

repeatedlyminifying(filtering an image to produce a lower resolution image).

The texture pyramid is a special case of a more general set of minified texture images which we

call a resolution setor r-set.. An r-set is built from a source image of resolution [S0,T0]. The

images in the r-set have resolutions [S,T] where S is an integer satisfyingS0 ≥ S ≥ 0 and

T0 ≥ T ≥ 0. A complete r-setis the set ofall such minified versions of the source image. Any

other r-set of a given source image is a proper subset of the complete r-set for that image.

For any r-set, we can construct a Boolean matrixB called thepattern matrixwhich tells us

exactly which lower resolution versions of the source image are contained in the r-set (see

Figure 3). EntryBi , j is true (indicated in the figure by •) if and only if the r-set contains an image

of resolution [i , j]. Some common r-set resolution patterns are illustrated by the small matrices at

the bottom of the figure. If the source image is square, the diagonal pattern is exactly the same as

a resolution pyramid. In an r-set the diagonal pattern can be applied to non-square images as well

-8-

Figure 3: Pattern matrix of an r-set.

(using the diagonal which passes through the source image). The lower triangular pattern pro-

vides all values of thes-resolution for any image on the diagonal, and the upper triangular pattern

provides all values of thet-resolution for any image on the diagonal. These patterns are useful

when it is known in advance that the textured surface will be foreshortened by perspective or oth-

erwise compressed so that low s or t resolutions will be needed in combination with higher reso-

lutions in the other direction. A classic example is the case of wood texture on a floor which is

seen from a low angle (as in Figure 7). The complete r-set provides all lower resolution versions

of the source image and is useful when the texture may be foreshortened in either thes or t direc-

tion. Such r-sets provide a remedy for the inconvenience of filtering rectangular areas using a tex-

ture pyramid created with a square filter noted in [11].

2.6. Storage Cost of Resolution Sets

The storage cost of an r-set is the amount of disk space required to store the images whose resolu-

tions are included in the pattern matrix. This section gives upper bounds on the storage cost for

the most common resolution patterns in terms of the size of the source image. The bounds are

most closely approached when the source image is square and of a very high resolution.

-9-

As shown by Williams [18], the diagonal pattern r-set (pyramid) takes no more than 4/3 as much

storage as the source image, since each resolution is one-quarter as large as the next larger image

and 1+ 1/4 + 1/16+ . . . = 4/3.

The complete r-set takes no more than four times as much space as the source image. Since

1 + 1/2 + 1/4 + . . . = 2, the images corresponding to each row of the pattern matrix take at most

twice as much storage as the rightmost element of the row. The bottom row takes no more than

twice as much storage as the source image. Each row takes half as much storage as the row

below it, so the series summation can be applied again to determine that the complete r-set takes

no more than twice as much storage as the bottom row, or four times as much as the source

image.

Figure 4 shows how a complete r-set generated from a square source image can be arranged in a

square whose area is less than four times as large as the source image. In the example the source

image is 8×8 and the entire r-set fits inside a 15×15 square. This arrangement2 is analogous to

Williams’ mip-map organization for a texture pyramid, and is a convenient organization for stor-

ing the images of a complete r-set in a framebuffer.

The upper and lower triangular r-sets take no more than 8/3≈ 2. 67 times as much storage as the

source image. This result can be obtained by a series expansion, or by the following argument:

for a square source image, the upper and lower triangular r-sets have the same storage cost.

Together they cost as much as the complete r-set plus the diagonal r-set, since the diagonal is

included in both triangular r-sets. Therefore, the cost of each triangular r-set is (4+ 4/3)/2= 8/3.

2.7. Tile Access and Cache Management

When a particular texture pixel is required, the TOD algorithm must determine whether the tile

containing the pixel is already in memory. If so, the memory address of the tile must be deter-

mined. If the tile is not in memory, atile fault is said to have occurred, and the tile must be read

into some area of memory before the texture pixel can be used. The texture file identification,

r-set member identification (resolution), and the tile location in the grid of tiles (tile number)

together form atile keywhich uniquely identifies a single tile among all the tiles which possibly

could be accessed. The tile key is looked up in a hash table of in-memory tiles in order to find its

2This texture storage scheme was used by Charlie Gunn in Pixar’s ChapReyes renderer, which
stores texture data in framebuffer memory. Similar extensions to the mip-map structure have been
implemented at NYIT.

-10-

Figure 4: Framebuffer layout of complete r-set.

address or to determine that it is not in memory. The implementation of this procedure in various

types of computer systems is discussed in section 3.

If memory is scarce, it is not possible to retain all of the tiles which are ever read. Even in a sys-

tem with a huge (but finite) real memory, there is always some competing demand for memory,

and it makes little sense to retain texture data which is unlikely to be reused. A virtual memory

system cannot be treated as equivalent to a huge real memory, because careless use of virtual

memory leads to enormous implicit use of disk I/O which can destroy the gains made by TOD.

Consequently, it is often necessary to make room for an incoming tile by removing another tile

from the set of tiles in memory. Because tiles are never modified during texture access, removing

a tile is simply a matter of deleting all references to it and reusing its memory space. The impor-

tant question is how best to choose a tile to be removed. This is basically a page replacement

problem and has been studied at length by operating system researchers interested in virtual mem-

ory algorithms [3]. TOD uses the LRU (least-recently used) page replacement algorithm to deter-

mine which tile to remove and replace. The in-memory tile which has least recently been

accessed is removed and replaced with the tile being read. In multi-threaded renderers some tiles

are not eligible to be removed because they are in use by other threads; such tiles are exempt from

-11-

the LRU test.

High locality of reference is known to be the key to good performance in LRU-managed caches.

The next section discusses locality of texture pixel accesses in various texture filtering techniques.

2.8. Texture Filtering

The demand for texture data comes from the texture filtering algorithm used in the renderer, and

that algorithm has much to do with the amount of texture accessed and the locality of those

accesses. Texture filtering is already a much-studied topic. Most of the work has focused on

accurate filtering by direct convolution [1, 7, 10] and on approximate filtering methods that are

less general and far less costly in CPU time [5, 8, 11, 15, 18]. Our concern for thetotal cost of

texture access (I/O and CPU) leads us to reevaluate available methods of texture filtering in terms

of their I/O demands and access locality.

Each filtering method can be characterized in terms of the number of texture pixel accesses it

makes to filter a given area in texture space, and the locality of those accesses. A large number of

texture pixel accesses is costly in both I/O and CPU time, because the texture pixels must be read

from the texture file and then combined to obtain the filter result. Poor access locality leads to a

sharp increase in the amount of I/O required to keep the necessary set of tiles in a limited amount

of main memory (thrashing).

Direct convolution on the source image is the simplest and most accurate filtering technique. The

number of texture pixel accesses is directly proportional to the filtered area, so the I/O and CPU

costs are high for large filtered areas. However, the access locality is quite good, since the

accesses are to adjacent pixels of a single image.

The summed area table [5] and other integrated array techniques [15, 11] make a small constant

number of accesses to the texture table regardless of the size of the filtered area. A properly

aligned rectangular area of the texture can be filtered with four accesses to the table. The I/O and

CPU costs are increased somewhat due to the need for much higher numerical precision in the

table entries than in the source image. Access locality is poor: the four accesses are at the corners

of the rectangular area, and so may be very widely separated when the filtered area is large. Fil-

tering over arbitrary quadrilaterals or other areas is difficult using these methods, so the filtering

is performed on a bounding box of the true filtered area.

-12-

Williams’ trilinear interpolation technique [18] also makes a small constant number of accesses to

the texture table regardless of the size of the filtered area. Four texture pixels are accessed from

each of two adjacent resolution levels of a texture pyramid and bilinearly interpolated to obtain a

texture value from each level. The filter value is obtained by linear interpolation between the tex-

ture values of the two lev els. This method exhibits good locality within each resolution level,

since the pixels accessed are adjacent, but locality is reduced by accessing data from two different

resolution levels. The minimum cache size required to ensure good cache hit rates is approxi-

mately doubled by the need to access two resolution levels rather than one. As with the integrated

array techniques, filtering over arbitrary quadrilaterals is inconvenient, so a bounding box of the

filtered area is used. Non-square areas are difficult to filter accurately because the prefiltering of

the pyramid is based on a square filter.

As a compromise among CPU efficiency, I/O volume, locality of access, and filter shape control,

TOD uses a direct filter convolution on an image of appropriate resolution selected from an r-set.

Direct convolution has good locality of access. A region of any shape can be filtered using the

convolution, but the accuracy with which the shape is approximated varies depending on the reso-

lution of the selected image. An image must be selected from the r-set so that the width of the fil-

tered area is at least one pixel in each direction or aliasing artifacts may be produced. If the r-set

is complete, a suitable image can be found with no more than four pixels in the filtered area. A

higher resolution can be selected to give better control of the filter shape and response. If the r-set

is not complete, the resolution of the selected image may be unduly high, and the number of pix-

els accessed by the convolution can be large.

Given a complete r-set, the TOD filtering method accesses from one to nine adjacent texture pix-

els of a single image. A region of arbitrary shape may be filtered, and the filtered results are gen-

erally less blurred than those produced by Williams’ trilinear interpolation. [Note to reviewers:

an image to illustrate this will be included in the final paper.] The direct convolution approach is

somewhat more costly in CPU time than trilinear interpolation, but results in better I/O perfor-

mance; This seems to be a sensible compromise in view of the widening gap between CPU speed

and I/O speed.

3. Implementation of TOD

This section discusses the structure of an implementation of the TOD technique and the issues

raised by various computer system architectures. Section 4 discusses the results we have

-13-

observed from extensive use of the TOD implementation on a variety of computers.

3.1. Overall Structure

The diagram in Figure 5 shows the hierarchical structure of our implementation of TOD.

Figure 5: Block Structure of Access Mechanism

The top layer of the structure isTextureFilter , the texture filtering routine. Te xture pixels

are obtained by callingTexturePixel , the second level of the structure.TexturePixel

calls the tile access routineFindTile as needed to locate the tile containing the desired pixel.

FindTile calls the tile I/O routineReadTile if the required tile is not in memory (a tile

fault). The structure of the texture file is hidden inReadTile , since onlyReadTile needs to

be able to locate a texture tile in a disk file.

3.2. TheTextureFilter Routine

A texturing operation begins with the need to filter a texture over some region in texture space.

The texture coordinate system ranges from 0 to 1 ins andt over the source image. The renderer

requests the filtered value of the texture over a region with a specified center (s, t) and widths

(swidth, twidth) in the texture coordinate system3.

3This information is sufficient to specify a rectangular or elliptical region in texture space. This is
not always an exact representation of the area being textured. However, the focus of this work is on
efficiency rather than precision, and the filtering scheme is admittedly an approximation.

-14-

The first task of theTextureFilter routine is to determine thedesiredresolution ins and t.

This is simply 1/swidthand 1/twidth respectively. The widths are clamped at a minimum of one

source image pixel; this ensures that extremely magnified views of a texture show blurred pixels

instead of sharp-edged rectangular pixels. The next step is to find a member of the r-set which

has an equal or higher resolution in each direction. Once a member is selected,Texture-

Filter calls TexturePixel repeatedly to obtain the pixels of that texture image which are

contained in the filtered region. A direct filter convolution is performed to obtain the filtered

value of the texture and this value is returned.

Finding the most suitable member of an r-set to filter a given region of a texture involves a search

operation on the r-set pattern matrix. The search begins with the resolution [S,T] where

S = log2(1/swidth) and T = log2(1/twidth). The search examines the pattern matrix along

diagonal lines of decreasingS and increasingT, that is, from upper right to lower left in the

matrix (Figure 6). Successive diagonal lines are one step further to the lower right. The final res-

olution considered is that of the source image. The search stops when it finds a • in the matrix

indicating that the corresponding texture image is a member of the r-set. The rationale for this

search method is:

• it sweeps out the entire area in which a suitable resolution might be found.

• each diagonal search line has resolutions of the same total size, with each successive search

line doubling this size.

A suitable member is guaranteed to be found and is guaranteed to have a minimal storage size.

3.3. TheTexturePixel Routine

The existence of texture tiles is hidden from the texture filtering code. The filtering code simply

requests texture pixels in terms of their integer coordinates (s, t) which range from 0 to

resolution− 1 in each direction based on the resolution of the image selected from the r-set.

TexturePixel determines the tile dimensions in pixels, and divides the coordinates by the tile

dimensions to obtain the tile number. It then constructs a tile key and callsFindTile to obtain

the memory address of the tile.TexturePixel indexes the tile as a small image array using

the coordinates (s mods-resolution, t mod t-resolution). The size of the pixels in the texture is

taken into account in the indexing, and the pixel value, which may be an 8-bit, 16-bit, or 32-bit

integer or a 32-bit IEEE floating point number, is converted to a common floating point

-15-

Figure 6: Resolution search in pattern matrix.

representation and returned toTextureFilter .

It would be very expensive to callFindTile for each texture pixel, soTexturePixel main-

tains a pointer to the last tile referenced in each texture. When a new pixel is required, a quick

check is made to see whether the pixel is from the same tile as the previous pixel referenced in

that texture. If so, the tile address is already known; otherwise,FindTile is called. In our

experience, between 90% and 99% of texture accesses are to the same tile as the previous pixel.

3.4. TheFindTile Routine

FindTile must implement an efficient mapping from a tile key to a memory address. This is

done by hashing the tile key to obtain a table index. Collisions are rare in small caches (a few

hundred tiles) if the hashing function uses the tile number and file ID from the tile key. If a tile is

not found in the hash table, it is not currently resident in memory; a tile fault has occurred. Mem-

ory space must be found for the desired tile, possibly by removing a tile, and thenReadTile

can be called to actually read the tile into memory. Each tile in the cache has a timestamp from

its last access. The least-recently accessed tile is selected for removal when space is required.

Note that the LRU tile removal procedure can be used to satisfy other demands for memory space

which arise outside the texture mechanism.

-16-

3.5. Virtual-Memory Uniprocessor Implementation

The preceding sections have described the implementation of TOD for a real-memory uniproces-

sor. Adding virtual memory to the uniprocessor system adds the complication of interactions

between the operating system’s paging system and the tile cache mechanism.

If the tile cache size is made quite small, the texture tiles in the cache will be referenced fre-

quently enough to remain in real memory. Some virtual memory systems make it possible to ask

the operating system to force a piece of the address space to reside in real memory, and this can

be applied to the tile cache. In such cases, TOD functions much as it would in a real-memory

environment.

An alternative strategy is to make the tile cache very large, so that there is never any need to

remove a tile from the cache. Instead the cache grows as necessary to hold every texture tile that

is ever accessed. The tile access mechanism provides the mapping from the tile key to the virtual

memory address where the tile resides, and the operating system pages the tile cache in and out of

memory as necessary. There are some disadvantages: the hash table becomes so large that the

key to address mapping can be expensive. At least one disk write operation is needed to copy

each paged-out tile into the operating system’s page area.

Some virtual memory systems (e.g., the Sun-4 with SunOS 4.0.3) provide a way to map a disk file

into the address space of a process. A texture file can be made directly accessible as part of the

renderer’s virtual address space. Tiles are read from the file automatically when they are refer-

enced, and there is no need to copy tiles into a paging area. Tile keys still need to be mapped to

virtual memory addresses, but this can be particularly simple: if the tiles of a single texture image

are stored in sequence in the file, the hash table mapping can be limited to one entry per r-set

member. The file ID and member ID map to the starting address of the member image in virtual

memory. A particular tile address is computed by adding an offset that depends on the tile num-

ber. Unfortunately, this method can consume virtual address space very rapidly.

3.6. Real-memory Multicomputer

TOD has been implemented on an experimental rendering accelerator built at Pixar using 16

Inmos T800 Transputers with four megabytes of RAM per processor. The transputers are con-

nected together by 20 megabit per second serial lines (transputer links). The transputer architec-

ture does not provide virtual memory support, and there are no disks attached directly to the

-17-

transputers. A host computer (Sun-4) is connected to one of the transputers by a transputer link.

All texture data used by the rendering process which runs on each of the transputers must ulti-

mately be read from the disk attached to the host computer and transmitted to the transputers via

serial links.

To support remote texture access, theReadTile routine in the transputer-based renderer is mod-

ified to transmit a message to a remotetexture serverprocess. The texture server may be on

another transputer or on the host computer system which is attached to the multicomputer board.

The texture server handles the tile request from the remote client just as it would handle a tile

request generated by local rendering; that is, the requested tile is sought byFindTile in the

server’s texture cache. If the tile is not in the cache, a tile fault is generated. On the host com-

puter this results in a disk file read operation. If the texture server is running on a transputer, the

fault results in another network read request being sent to the texture server on another transputer

or on the host.

We hav e experimented with various strategies for determining which texture server should be sent

a giv en read request. Since the transputer communications network is usually configured as a

ternary tree, one strategy is to send a request to the texture server on the processor which is the

parent of the current processor. At the root of the tree, all requests are sent to the host computer.

A tile request works its way up the tree, and is answered by the lowest ancestor in the tree which

has the tile, or by the host computer if none of the ancestors has the tile.

A better strategy is the ‘‘location server’’ algorithm. All tile requests are sent to a location server

running on one of the transputers (usually the root node). The location server keeps a list of the

most recent requests it has received, and if it receives a second request for the same tile, it for-

wards the request to the texture server on the transputer which previously requested the tile. This

texture server is likely to still have the desired tile in its tile cache. If not, it sends the tile request

on to the host computer. Of course, the location server sends a request directly to the host com-

puter if the desired tile has not been requested recently by another processor.

4. Results and Experience

A version of TOD is implemented in Pixar’sPhotoRealistic RenderMan 3.0rendering package,

which is based on the Reyes architecture [4]. Numerous still pictures and animated films have

been produced using this renderer on a variety of machine types: real-memory uniprocessors such

as the Compaq 386 MSDOS computer, virtual-memory uniprocessors such as the Sun-4 and SGI

-18-

4D/20, and the experimental 16-transputer multicomputers described in section 3.6. This section

describes some of the texture-intensive uses of the renderer and presents quantitative results con-

cerning the performance of TOD.

Figure 8 shows the imageTe xtbook Strike, produced by Thomas Porter of Pixar. Each bowling

pin is shaded using four textures to create the graphic designs on the pin and the dents and gouges

in the pin’s surface. Separate textures are used to simulate wood on the floor, and to produce the

realistic reflections and shadows seen on the floor. The image was computed at a resolution of

3072× 2304 and the texture images had correspondingly high resolutions.

Figure 9 is a 1024× 768 pixel image of a living room in which the paintings, shadows, and

reflections are produced by texture mapping. The shadow algorithm was developed by Reeves,

et. al. [17]. The reflections in the chrome teapot are simulated using the cube-face environment

texture [9, 16] shown in Figure 10. The image uses a total of thirteen textures. Reading in the

entire set of textures needed to render Figure 9 would require 8.4 megabytes of disk I/O. Since

this image was rendered on a 16-processor multicomputer, the data would then be copied 16 times

using a total of 134 megabytes of transputer link I/O. Using the TOD method, only the necessary

parts of the textures are accessed; this reduces the volume of transputer link I/O to 32.8

megabytes and the amount of disk I/O to 6.3 megabytes. The reduction in transputer I/O to 25

percent of the naive strategy is particularly large, because each transputer used only a portion of

the texture data and only that part of the data contributed to the transputer I/O volume. The com-

plete image made use of most of the texture data, so the total volume of disk I/O was reduced less

dramatically from 8.4 to 6.3 megabytes.

In rendering Figure 9 from 94 to 99 percent of texture accesses were made to the same tile as the

previous access of the same texture (allowing the use of the optimization described at the end of

section 3.3). This statistic supports the claim that a nearly square tile is a good unit of texture

data to maximize access locality. The small number of tile faults further indicates the high degree

of texture access locality. With a cache size of only 64 tiles (4K bytes each) on each processor,

the average tile fault rates in rendering Figure 9 range from 0.004 to 0.07 percent; 99.93 to 99.996

percent of texture accesses were made to tiles which were already in the cache. This high degree

of locality in the access pattern of the texture filtering process makes it possible to render such

images on scarce-memory systems such as the transputers for which the total size of the textures

far exceeds the size of main memory.

-19-

Our experience has been that the distributed cache mechanism in the multicomputer implementa-

tion has a modest but substantial rate of return when the rendering workload is divided up among

processors by having different processors render different parts of the screen. Typically 15 to

30% of tile requests sent to the network are satisfied by other transputers rather than by the host.

This relatively low ‘‘hit rate’’ is not surprising, given that the rest of the texture system is func-

tioning properly. Since only the required parts of the texture data are requested by each proces-

sor, there is little overlap in the texture data needed by different processors which are working on

different parts of the image.

The short animated filmsTin Toy, Luxo Jr. 3D, andknickknackwere produced by Pixar’s anima-

tion group using several of the 16-transputer multicomputers described in section 3.6. Te xtures

were used extensively to create painted patterns, text, photos, textured materials, reflections, and

shadows.

The renderer has also been used by several Pixar customers, notably by Industrial Light and

Magic to produce the ‘‘water pseudopod’’ special effect for the theatrical motion pictureThe

Abyss. Mark Dippe gav e the pseudopod realistic optical properties by using several textures to

represent the environment and tracing rays through the water to the textures.

5. Conclusions

Cost measures for texture access must include terms for disk file access cost. These terms may

dominate the cost when large amounts of texture are used. The texture-on-demand technique pro-

vides efficient access to texture by reading only the required parts of a texture image at only the

appropriate resolutions. Prefiltered r-sets provide texture images of appropriate resolutions. A

tile-based texture image organization facilitates I/O and gives good texture access locality (con-

firmed by high tile hit rates). An LRU tile replacement algorithm is effective in managing the set

of tiles kept in memory in a scarce-memory environment.

The TOD technique can be implemented for real and virtual memory uniprocessors and can also

be effective in distributed systems based on loosely-coupled multicomputers where the secondary

storage is a communications network with distributed texture tile servers. TOD has been used

with good results on several computer systems spanning a range of performance levels and archi-

tectures.

-20-

Further work is needed on tile cache management algorithms. Demand fetching with LRU tile

replacement works well without taking the rendering algorithm into account, but better heuristics

might be developed for use with a specific rendering algorithm whose texture reference character-

istics are known. In this case, it might be possible to predict near-future accesses with a high

degree of success, so that it is possible to prefetch tiles which will soon be accessed by the ren-

derer.

Acknowledgements

Many people at Pixar helped to make this work possible. The principle of texture thrift in section

2.4 was suggested by Pat Hanrahan. A starting point for this work was an earlier texture system

for Reyes developed by Sam Leffler with help from Eben Ostby and Bill Reeves. Eben Ostby and

Tom Porter provided the images in Figures 7 and 8. Several people read and commented on early

drafts of the paper, and Tom Deering converted my crude sketches into polished diagrams. Ed

Catmull and Mickey Mantle deserve credit for creating an environment in which research and

experimentation are possible despite commercial pressures.

References

1. BLINN, J.F. AND NEWELL, M.E. Texture and reflection in computer generated images.

Comm. ACM 19,10 (Oct. 1976), 542-547.

2. CATMULL , E. A subdivision algorithm for computer display of curved surfaces,Ph.D. thesis,

University of Utah, Dec. 1974.

3. COFFMAN, E.G. AND DENNING, P.J. Operating Systems Theory,Prentice-Hall, 1973,

241-312.

4. COOK R.L., CARPENTER, L., AND CATMULL , E. The Reyes image rendering architecture,

Computer Graphics 21,4 (July 1987), 95-102.

5. CRO W, F.C. Summed-area tables for texture mapping.Computer Graphics 18,3 (July

1984), 207-212.

6. DUNGAN, W., STENGER, A., AND SUTTY, G. Texture tile considerations for raster graphics.

Computer Graphics 12,3 (Aug. 1978), 130-134.

-21-

7. FEIBUSH, E.A., LEVOY, M., AND COOK, R.L. Synthetic texturing using digital filters.Com-

puter Graphics 14,3 (July 1980), 294-301.

8. GLASSNER, A. Adaptive precision in texture mapping.Computer Graphics 20,4 (August

1986), 297-306.

9. GREENE, N. Environment mapping and other applications of world projections.IEEE

CG&A 6,11 (Nov. 1986), 21-29.

10. GREENE, N. AND HECKBERT, P.S. Creating raster omnimax images from multiple perspec-

tive views using the elliptical weighted filter.IEEE CG&A 6,6 (June 1986), 21-27.

11. HECKBERT, P.S. Filtering by repeated integration.Computer Graphics 20,4 (August 1986),

315-321.

12. HECKBERT, P.S. Survey of texture mapping.IEEE CG&A 6,11 (Nov. 1986), 56-67.

13. PEACHEY, D.R. Solid texturing of complex surfaces.Computer Graphics 19,3 (July 1985),

279-286.

14. PERLIN, K. An image synthesizer.Computer Graphics 19,3 (July 1985), 287-296.

15. PERLIN, K. SIGGRAPH ’85 Course Notes: state of the art in image synthesis,July 1985,

297-300.

16. PIXAR. The RenderMan® Interface Version 3.1,Sept. 1989, 87-92 and 128-131.

17. REEVES, W.T., SALESIN, D.H., AND COOK, R.L. Rendering antialiased shadows with depth

maps.Computer Graphics 21,4 (July 1987), 283-291.

18. WILLIAMS , L. Pyramidal parametrics.Computer Graphics 17,3 (July 1983), 1-11.

-22-

Figure 7: 1988 Pixar Christmas Card by Eben Ostby based on Tin Toy.

Figure 8: Te xtbook Strikeby Thomas Por ter.

DP
Text Box
Copyright 1988 Pixar Animation Studios

DP
Text Box
Copyright 1989 Pixar Animation Studios

-23-

Figure 9: Living room with chrome teapot.

Figure 10: Environment texture used in Figure 9.

DP
Text Box
Copyright 1990 Pixar Animation Studios

DP
Text Box
Copyright 1990 Pixar Animation Studios

