
Ray Tracing for the Movie ‘Cars’

Per H. Christensen∗ Julian Fong David M. Laur Dana Batali

Pixar Animation Studios

ABSTRACT

This paper describes how we extended Pixar’s RenderMan renderer
with ray tracing abilities. In order to ray trace highly complex
scenes we use multiresolution geometry and texture caches, and
use ray differentials to determine the appropriate resolution. With
this method we are able to efficiently ray trace scenes with much
more geometry and texture data than there is main memory. Movie-
quality rendering of scenes of such complexity had only previously
been possible with pure scanline rendering algorithms. Adding ray
tracing to the renderer enables many additional effects such as ac-
curate reflections, detailed shadows, and ambient occlusion.
The ray tracing functionality has been used in many recent

movies, including Pixar’s latest movie ‘Cars’. This paper also de-
scribes some of the practical ray tracing issues from the production
of ‘Cars’.

1 INTRODUCTION

Pixar’s RenderMan renderer (PRMan) is a robust production ren-
derer that is used for many CG movies and special effects [1].
PRMan uses the REYES scanline rendering algorithm [4]. About
five years ago, at the request of our external customers, we started
a project to add on-demand ray tracing to PRMan.
At roughly the same time, John Lasseter and his team started

working on ‘Cars’, a movie that would turn out to be an ideal testing
ground and showcase for the ray tracing functionality. There were
two main rendering challenges in making the movie. First, ‘Cars’
has scenes that are much more complex than past Pixar movies; for
example, wide desert landscapes with many sagebrush and thorn-
covered cacti, and a racing oval with 75,000 cars as spectators. Sec-
ond, ray tracing effects such as correct reflections, shadows, and
ambient occlusion were needed to get the desired artistic look. Ray
tracing these very complex scenes in manageable time was quite a
challenge.
The REYES algorithm is very efficient at handling complex

scenes. For ray tracing, we use ray differentials [6, 14] to select the
optimal tessellation level of surfaces and the proper MIP map level
for textures. A multiresolution geometry cache keeps recently tes-
sellated geometry ready for fast access. Similarly, a multiresolution

∗e-mail: {per,jfong,dml,dana}@pixar.com

texture cache keeps recently accessed texture tiles ready for fast ac-
cess. This combination of ray differentials and caching makes ray
tracing of very complex scenes feasible.
This paper first gives a more detailed motivation for the use of

ray tracing in ‘Cars’, and lists the harsh rendering requirements in
the movie industry. It then gives an overview of how the REYES al-
gorithm deals with complex scenes and goes on to explain our work
on efficient ray tracing of equally complex scenes. An explanation
of our hybrid rendering approach, combining REYES with ray trac-
ing, follows. Finally we measure the efficiency of our method on a
test scene, and present a few production details from the use of ray
tracing for ‘Cars’.
Please refer to Christensen et al. [3] for an overview of previ-

ous work such as the Toro [10] and Kilauea [7] renderers. Re-
cent related work includes an interactive out-of-core renderer by
Wald et al. [15], the Razor project by Stoll et al. [13], and level-of-
detail representations for efficient ray tracing of simplified geom-
etry [2, 18]. The focus of those projects is more on interactive or
real-time rendering than on movie-quality images.

2 MOTIVATION: WHY RAY TRACING?

There are several reasons why the directors chose to use ray tracing
for ‘Cars’: realistic reflections, sharp shadows, and ambient occlu-
sion.
Real cars are usually shiny, and the reflections are an important

visual cue to the shape and material of the car. With scanline al-
gorithms such as REYES, reflections are usually computed using
environment maps. However, this approach breaks down when the
reflected points are close to the reflecting points, or if the reflected
points are also reflectors. Figure 1 shows two early pre-production
test images of Luigi, a yellow Fiat 500 “Topolino”. The images
compare environment mapping with ray traced reflections. While
the environment map reflection in figure 1(left) shows a good ap-
proximation of the distant environment, it does not capture inter-
reflections such as the reflections of the eyes in the hood seen in
figure 1(right).
Shadows give strong cues about the lighting and about the place-

ment of objects relative to each other. Scanline algorithms tradi-
tionally compute shadows using shadow maps [11], and there are
still many cases where a shadow map is the most efficient way of
generating high-quality shadows. However, some of the scenes in
‘Cars’ use expansive sets but also have a lot of tiny, detailed geome-
try. This can lead to resolution problems in shadow maps. Further-
more, many scenes contain thousands of light sources, so keeping



Figure 1: Reflection test: (left) with environment map. (right) with
environment map and ray-traced interreflections.

track of the shadow map files can become an asset management
problem. Figure 2 shows a frame from the final movie with Light-
ning McQueen leading a race. This is an example of a large scene
requiring very fine shadow detail. The scene contains nearly 1000
light sources. Using ray traced shadows eliminates the resolution
and asset management problems.

Figure 2: Ray-traced sharp shadows.

Another use of ray tracing is for ambient occlusion. Ambient
occlusion [9, 19] is a measure of how much light reaches a point
from a uniformly lit hemisphere. Ambient occlusion is widely used
in movie production since it gives a good indication of creases on
surfaces and spatial proximity of objects, and is a cheap (but crude)
approximation of global illumination. Figure 3 shows ambient oc-
clusion on three cars in Radiator Springs. Ambient occlusion is
usually computed by shooting many rays to sample the coverage of
the hemisphere above each point.

Figure 3: Ambient occlusion.

3 MOVIE RENDERING REQUIREMENTS

The rendering requirements in the movie industry are extremely
harsh:

• Scene geometry is far too large to fit in memory in tessellated
form.

• Many surfaces are displacement-mapped.

• There may be thousands of textures (too many to fit all in
memory at full resolution) to control reflection parameters and
displacements.

• There can be thousands of light sources.

• All illumination and surface reflection characteristics are con-
trolled by fully programmable, complex shaders.

In addition, images are typically rendered at high resolution with
motion blur and depth of field. Furthermore, no spatial or temporal
aliasing is acceptable: no staircase effects, “crawlies”, popping, etc.

4 REYES RENDERING OF COMPLEX SCENES

The REYES algorithm has many desirable properties such as co-
herent shader execution, coherent access to geometry and texture
data, simple differential calculations, efficient displacement, fast
motion blur and depth-of-field, and the ability to render very com-
plex scenes.
The REYES algorithm divides each surface into smaller patches,

and each patch is tessellated into a regular grid of tiny quadrilaterals
(aka. micropolygons). The small patches are easy to place into one
(or a few) image tiles. A patch can be thrown away if it is entirely
behind other opaque patches.
Shading is done at the vertices of the grid. Shading an entire

grid at a time is advantageous for data coherency and differential
calculations as needed for e.g. texture filter sizes. The shading rate
is decoupled from visibility calculations: there is typically only one
shading point (grid vertex) per pixel on average, while the pixel
sampling rate typically is 4× 4 for static images and even higher
for images with motion blur.
The REYES algorithm is very good at handling complex scenes.

First, it can completely ignore all objects outside the viewing frus-
tum. Second, it renders only one small image tile (typically 16×16
or 32×32 pixels) at a time. This means that the computation only
needs a small fraction of the scene geometry and textures at any
given time. This maximizes geometry coherency and minimizes
the number of tessellated surfaces that need to be kept in memory at
the same time. Furthermore, as soon as a surface has been rendered,
its data can be removed from memory since they will no longer be
needed. Surfaces are divided and tessellated according to their size
on screen, so large distant surfaces automatically get a coarse rep-
resentation. Likewise, distant objects only need coarse textures,
so only coarse levels in the texture MIP maps will be accessed for
those objects. For all these reasons, REYES deals gracefully with
very complex geometry and huge amounts of texture.

5 RAY TRACING OF COMPLEX SCENES

Ray tracing also has several wonderful properties as a rendering
algorithm: it is conceptually simple, its run-time only grows loga-
rithmically with scene complexity, and it can easily be parallelized.
But ray tracing has an important limitation: it is only efficient if the
scene fits in memory. If the scene does not fit in memory, virtual
memory thrashing slows the rendering down by orders of magni-
tude.



Ray tracing of complex scenes is inherently harder than REYES
rendering of similar scenes. First, objects can’t be rejected just be-
cause they are outside the viewing frustum: they may cast shadows
on visible objects or be reflected by them. Second, even if the im-
age is rendered one tile at a time and the directly visible geometry is
ray traced very coherently, the reflection and shadow rays will ac-
cess other geometry (and textures) in a less coherent manner. Even
worse, the rays traced for diffuse interreflections and ambient oc-
clusion are completely incoherent and may access any part of the
scene at any time. Hence, we can’t delete an object even when the
image tile it is directly visible in has been rendered — a ray from
some other part of the scene may hit that object at any time during
rendering.
For all the reasons listed above, ray tracing of very complex

scenes may seem like a daunting task. However, the use of ray dif-
ferentials and multiresolution geometry and texture caches makes
it tractable.

5.1 Ray differentials

A ray differential describes the differences between a ray and its
— real or imaginary — “neighbor” rays. Igehy’s ray differential
method [6] traces single rays, but keeps track of the differentials
as the rays are propagated and reflected. The differentials give an
indication of the beam size that each ray represents, as illustrated
in figure 4. The curvature at surface intersection points determines
how the ray differentials and their associated beams change after
specular reflection and refraction. For example, if a ray hits a highly
curved, convex surface, the specularly reflected ray will have a large
differential (representing highly diverging neighbor rays).

ray

neighbor ray

neighbor ray

ray beam

Figure 4: Rays and ray beam.

Suykens and Willems [14] generalized ray differentials to glossy
and diffuse reflections. For distribution ray tracing of diffuse re-
flection or ambient occlusion, the ray differential corresponds to a
fraction of the hemisphere. The more rays are traced from the same
point, the smaller the subtended hemisphere fraction becomes. If
the hemisphere fraction is very small, a curvature-dependent differ-
ential (as for specular reflection) becomes dominant.
In Christensen et al. [3] we provided a comprehensive analysis

of ray differentials vs. ray coherency. We observed that in all prac-
tical cases, coherent rays have narrow beams and incoherent rays
have wide beams. This is an important and very fortunate relation-
ship that enables ray tracing of very complex scenes. We exploit
that relationship in the following sections by designing caches that
utilize it.

5.2 Multiresolution tessellation

REYES chooses tessellation rates for a surface patch depending on
viewing distance, surface curvature, and optionally also view an-
gle. In our implementation, the highest tessellation rate used for
ray tracing of a patch is the same as the REYES tessellation rate
for that patch. Subsets of the vertices are used for coarser tessel-
lations, which ensures that the bounding boxes are consistent: a
(tight) bounding box of the finest tessellation is also a bounding
box for the coarser tessellations. The coarsest tessellation is simply

the four corners of the patch. One can think of the various levels
of tessellation as a MIP map of tessellated geometry [17]. Figure 5
shows an example of five tessellations of a surface patch; here, the
finest tessellation rate is 14×11.

Figure 5: Multiresolution tessellation example for a surface patch:
14×11 quads, 7×6 quads, 4×3 quads, 2×2 quads, and 1 quad.

In our first implementation [3], the tessellation rates used for
ray tracing were 16×16, 8×8, . . . , 1. However, using the REYES
tessellation rates and subsets thereof has two advantages: there are
fewer quads to test for ray intersection (since we always rounded the
REYES tessellations rates up for ray tracing), and there are fewer
self-intersection problems if we use a hybrid rendering method
(since the vertices of the two representations always coincide when
using the current tessellation approach).
The example in figure 5 is a rectangular surface patch. We have

a similar multiresolution tessellation method for triangular patches
which arise from triangle meshes and Loop subdivision surfaces.

5.3 Multiresolution geometry cache

We tessellate surface patches on demand and cache the tessella-
tions. As shown above, we use up to five different levels of tessel-
lation for each surface patch. However, we have chosen not to have
five geometry caches; instead we use three caches and create the
two intermediate tessellations by picking (roughly) a quarter of the
vertices from the next finer tessellation level.
In our implementation, the coarse cache contains tessellations

with 4 vertices (1 quad), the medium cache contains tessellations
with at most 25 vertices, and the fine cache contains all larger tes-
sellations (at most 289 vertices). The size of the geometry caches
can be specified by the user. By default, the size is 20MB per thread
allocated for each of the three caches. Since the size of the tessel-
lations differ so much, the maximum capacity (number of slots) of
the coarse cache is much higher than for the medium cache, and the
medium cache has much higher capacity than the fine cache. We
use a least-recently-used (LRU) cache replacement scheme.
For ray intersection tests, we choose the tessellation where the

quads are approximately the same size as the ray beam cross-
section. We have observed that accesses to the fine and medium
caches are usually very coherent. The accesses to the coarse cache
are rather incoherent, but the capacity of that cache is large and its
tessellations are fast to recompute.

5.4 Multiresolution texture cache

Textures are stored on disk as tiled MIP maps with 32×32 pixels in
each tile. The size of the texture cache is chosen by the user; the
default size is 10 MB per thread.
As with the geometry cache, the ray beam size is used to se-

lect the appropriate texture MIP map level for texture lookups. We
choose the level where the texture pixels are approximately the
same size as the ray beam cross-section. Incoherent texture lookups
have wide ray beams, so coarse MIP map levels will be chosen. The
finer MIP map levels will only be accessed by rays with narrow ray
beams; fortunately those rays are coherent so the resulting texture
cache lookups will be coherent as well.



6 OTHER RAY-TRACING IMPLEMENTATION ISSUES

This section describes other efficiency and accuracy aspects of our
implementation of ray tracing in PRMan.

6.1 Spatial acceleration data structure

Good spatial acceleration structures are essential for efficient ray
tracing. We use a bounding volume hierarchy, the Kay-Kajiya
tree [8]. This data structure is a good compromise between mem-
ory overhead, construction speed, and ray traversal speed. The data
structure is built dynamically during rendering. While we are quite
satisfied with the performance of the Kay-Kajiya tree, it is certainly
worth considering other acceleration data structures in the future.
There is one more level of bounding volumes for the finest tes-

sellations: bounding boxes for groups of (up to) 4×4 quads. These
bounding boxes are stored in the fine geometry cache along with
the tessellated points.

6.2 Displacement-mapped surfaces

Displacement shaders complicate the calculation of ray intersec-
tions. If the surface has a displacement shader, the shader is eval-
uated at the tessellation vertices to get the displaced tessellation.
The bounding box of the displaced vertices is computed, and the
Kay-Kajiya tree is updated with the new bounding box.
Although there exist techniques for direct ray tracing of dis-

placed surfaces [12], we have found that applying displacement
shaders to tessellated grids gives much faster rendering times —
at least if the displaced tessellations are cached.
Each object that has displacement must have a pre-specified up-

per bound on the displacement; such bounds are important for the
efficiency of both REYES rendering and ray tracing. Without a pri-
ori bounds, any surface might end up anywhere in the scene after
displacement, and this makes image tiling or building an accelera-
tion data structure futile.
The value of tight bounding boxes is so high that even if the first

access to a displaced surface patch only needs a coarse tessellation,
we compute a fine tessellation, run the displacement shader, com-
pute the tight bounding box, update the Kay-Kajiya tree, and throw
away those tessellation points that aren’t needed. This is a one-time
cost that is amortized by the reduction in the number of rays that
later have to be intersection-tested against that surface patch. Tight
bounding boxes allow us to ray trace displaced surfaces rather effi-
ciently.

6.3 Motion blur

PRMan assumes that all motion is piecewise linear. There is a tes-
sellation for the start of each motion segment plus a tessellation for
the end of the last segment. These tessellations are computed on de-
mand and stored in the geometry cache. For ray intersection tests,
the tessellated vertex positions are interpolated according to the ray
time, creating a grid at the correct time for the ray.
The Kay-Kajiya node for a moving surface patch contains a

bounding box for the start of each motion segment plus a bound-
ing box for the end of the last segment. The bounding boxes are
linearly interpolated to find the bounding box that corresponds to
the ray time.

6.4 SIMD speedups

We use SIMD instructions (SSE and AltiVec) to speed up the com-
putation of ray intersections. When intersection-testing a Kay-
Kajiya node bounding box, we test multiple slabs (x, y, and z
planes) at once. The bounding boxes for groups of 4× 4 quads
of finely tessellated patches (stored in the fine geometry cache) are

intersection-tested four boxes at a time. And tessellated patches are
intersection-tested 4 triangles (2 quads) at a time.
Since each ray is traced independently, our SIMD speedups do

not rely on ray coherency. In contrast, Wald et al. [16] used SIMD
instructions for tracing four rays at a time. This works fine if the
rays are coherent, but fails to deliver a speedup if the rays are inco-
herent.

6.5 Shading at ray hit points

To compute the shading results at ray hit points, we could shade
the vertices of ray tracing tessellations, store the colors in a cache,
and interpolate the colors at the hit points. This would be a straigh-
forward generalization of the REYES shading approach. But un-
fortunately the shading colors are usually view-dependent — high-
lights move around depending on the viewing direction, for exam-
ple. The shader may also compute different results depending on
the ray level for non-realistic, artistic effects.
Instead we create 3 shading points for each ray hit (similar to

Gritz and Hahn [5]). One shading point is the ray hit point, and the
other two shading points are created using the ray differentials at the
ray hit point. This way, the shader can get meaningful differentials
for texture filtering, computation of new ray directions, etc. While
most shading functions are executed on all three shading points,
some are only executed at the ray hit point — for example, rays are
only traced from the ray hit point.
It is worth emphasizing that for production scenes, the dominant

cost of ray tracing is typically not the computation of ray intersec-
tions, but the evaluation of displacement, surface, and light source
shaders at the ray hit points. (This is also why ambient occlusion
has gained popularity in movie production so quickly as an alterna-
tive to more accurate global illumination solutions: even though it
takes a lot of rays to compute ambient occlusion accurately, there
are no shader evaluations at the ray hit points.)

6.6 Avoiding cracks

Visible cracks can occur if the two grids sharing an edge have dif-
ferent tessellation rates. See figure 6 for an illustration. This is a
potential problem both for REYES rendering and for ray tracing,
and has to be dealt with explicitly.

cracks

Figure 6: Mismatched tessellation and potential cracks.

The easiest way to fix these cracks requires that all dicing rates
are powers of 2. Then every other vertex on the fine tessellation
side of the edge can be moved to lie along the straight line be-
tween its two neighbor points. This ensures that the vertices on
both sides of the edge are consistent so there are no cracks. How-
ever, such power-of-two tessellation (aka. “binary dicing”) intro-
duces too many shading points compared to more flexible tessella-
tion rates, and it is therefore too expensive in practice when shaders
are a bottleneck.
Instead, PRMan uses an alternative algorithm that glues all edges

together [1, sec. 6.5.2], thus avoiding cracks. We call this algo-
rithm “stitching”. Stitching moves the tessellation points so that
the grids overlap, and introduces new quads if needed to fill remain-
ing gaps. For REYES rendering, new quads that are introduced are
never shaded, they only copy colors from their nearest neighbor.



We use a similar stitching algorithm for ray tracing. If any new
quads are generated, they are stored in the geometry cache.
The tessellation rate of each surface patch is determined from

the size of the patch bounding box relative to the ray beam size.
Hence, the tessellation within a patch is kept consistent for each
ray, and there are no cracks internally within a patch. (Such cracks
are sometimes refered to as “tunnelling” [13].)

7 HYBRID RENDERING: REYES AND RAYS

PRMan uses a combination of the REYES algorithm and on-
demand ray tracing. REYES is used to render objects that are di-
rectly visible to the camera. Shading those objects can cause rays
to be traced. With this hybrid approach there are no camera rays;
all the first-level rays originate from REYES shading points.
With the methods described above, both the REYES and ray trac-

ing algorithms can handle very complex scenes. So why not use ray
tracing for primary rendering? It would unify our algorithm, elimi-
nate large parts of the PRMan code base, and make software main-
tenance easier. However, so far the advantages of coherency, well-
defined differentials, graceful handling of displacement mapping,
efficient motion blur and depth-of-field, decoupling of shading rate
and pixel sample rate, etc. makes the REYES algorithm hard to beat
for movie-quality rendering.

8 TEST ON A COMPLEX SCENE

Figure 7 shows a test example, a scene with 15 cars. The cars are
explicitly copied, not instanced. Each car consists of 2155 NURBS
patches, many of which have trim curves. The cars have ray-traced
reflections (maximum reflection depth 4) and sharp shadows, while
the ground is shaded with ray-traced ambient occlusion. This gives
a mix of coherent and incoherent rays. The image resolution is
2048×1536 pixels.

Figure 7: Shiny cars on ambient occlusion ground.

The tests were run on an Apple G5 computer with two 2 GHz
PowerPC processors and 2 GB memory.
During rendering the car surfaces are divided into 1.3 million

surface patches, corresponding to 383 million vertices and 339 mil-
lion quads (678 million triangles) at full tessellation. Storing all full
tessellations would consume 4.6 GB. Instead, with multiresolution
caching, the scene uses a total of 414 MB: Geometry cache sizes
are set to their default value (20 MB per cache per thread), a total
of 120 MB. The Kay-Kajiya tree uses around 59 MB per thread.

The top-level object descriptions use 126 MB plus 50 MB for trim
curves.
Rendering this image used 111 million diffuse rays, 37 million

specular rays, and 26 million shadow rays. The rays cause 1.2
billion ray-triangle intersection tests. With multiresolution geom-
etry caching, the render time is 106 minutes. The three geometry
caches have a total of 675 million lookups and cache hit rates of
91.4%–95.2%. In contrast, if the ray differentials are ignored (the
REYES tessellation rates are used for all ray intersection tests) and
no caching is done, the render time is 15 hours 45 minutes — al-
most 9 times slower.
More exhaustive tests and results can be found in Christensen

et al. [3]. Although the render times reported there are quite obso-
lete by now, the time ratios and relative speedups are still represen-
tative.

9 RAY TRACING FOR ‘CARS’

Figure 8 shows “beauty shots” of two of the characters from ‘Cars’.
These images demonstrate ray traced reflections, shadows, and am-
bient occlusion.

Figure 8: More cars with ray traced effects: Luigi (left) and Doc
Hudson (right).

For convex surfaces like a car body, distant reflections do not
need to be very accurate. In many shots, the maximum distance
that a ray can hit geometry was set to 12 meters. If the ray didn’t
hit anything within that distance, it would use a single held envi-
ronment map instead.
The reflections in the movie were usually limited to a single level

of reflection. There were only a few shots with two levels of re-
flection, they are close-ups of chrome parts that needed to reflect
themselves multiple times. Figure 9 shows an example.

Figure 9: Chrome bumper with two levels of ray-traced reflection.



Figure 10 shows all the main characters in the ‘Cars’ movie. This
is an example of a very complex scene with many shiny cars. The
shiny cars reflect other cars, as shown in the three close-ups. The
image also shows ray-traced shadows and ambient occlusion.

Figure 10: The cast of ‘Cars’ with three close-ups showing ray-traced
reflections.

10 CONCLUSION

PRMan uses the REYES algorithm for rendering directly visible
objects, and offers on-demand ray tracing for reflections, shadows,
ambient occlusion, etc. It uses a multiresolution geometry cache
and a multiresolution texture cache, and uses ray differentials to
select the appropriate resolutions. Due to the observation that co-
herent rays have narrow beams while incoherent rays have wide
beams, the method is efficient for ray tracing of complex scenes.
The ray tracing functionality has been used for several movies, in-
cluding Pixar’s ‘Cars’.

Acknowledgements

We would like to thank our colleagues in Pixar’s RenderMan Prod-
ucts group for providing an inspiring and creative environment and
for many helpful discussions. Loren Carpenter implemented most
of the SIMD speedups and Brian Smits helped us optimize other as-
pects of the ray-tracing efficiency. Tony Apodaca headed the Cars
“Nitro” speed team. Erik Smitt clarified some of the movie produc-
tion details.
All images from ‘Cars’ are copyright c©Disney Enterprises, Inc.

and Pixar Animation Studios.

REFERENCES

[1] Anthony A. Apodaca and Larry Gritz. Advanced RenderMan — Cre-
ating CGI for Motion Pictures. Morgan Kaufmann, 2000.

[2] Per H. Christensen. Point clouds and brick maps for movie production.
InMarkus Gross and Hanspeter Pfister, editors, Point-Based Graphics,
chapter 8.4. Morgan Kaufmann, 2006. (In press).

[3] Per H. Christensen, David M. Laur, Julian Fong, Wayne L. Wooten,
and Dana Batali. Ray differentials and multiresolution geometry
caching for distribution ray tracing in complex scenes. Computer
Graphics Forum (Proceedings of Eurographics 2003), 22(3):543–552,
2003.

[4] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes
image rendering architecture. Computer Graphics (Proceedings of
SIGGRAPH ’87), 21(4):95–102, 1987.

[5] Larry Gritz and James K. Hahn. BMRT: A global illumination im-
plementation of the RenderMan standard. Journal of Graphics Tools,
1(3):29–47, 1996.

[6] Homan Igehy. Tracing ray differentials. Computer Graphics (Pro-
ceedings of SIGGRAPH ’99), pages 179–186, 1999.

[7] Toshiaki Kato. The Kilauea massively parallel ray tracer. In Alan
Chalmers, Timothy Davis, and Erik Reinhard, editors, Practical Par-
allel Rendering, chapter 8. A K Peters, 2002.

[8] Timothy L. Kay and James Kajiya. Ray tracing complex scenes.
Computer Graphics (Proceedings of SIGGRAPH ’86), 20(4):269–
278, 1986.

[9] Hayden Landis. Production-ready global illumination. In SIGGRAPH
2002 course note #16, pages 87–102, 2002.

[10] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Ren-
dering complex scenes with memory-coherent ray tracing. Computer
Graphics (Proceedings of SIGGRAPH ’97), pages 101–108, 1997.

[11] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering
antialiased shadows with depth maps. Computer Graphics (Proceed-
ings of SIGGRAPH ’87), 21(4):283–291, 1987.

[12] Brian Smits, Peter Shirley, and Michael M. Stark. Direct ray tracing of
displacement mapped triangles. In Rendering Techniques 2000 (Pro-
ceedings of the 11th Eurographics Workshop on Rendering), pages
307–318, 2000.

[13] Gordon Stoll, William R. Mark, Peter Djeu, Rui Wang, and Ikrima El-
hassan. Razor: an architecture for dynamic multiresolution ray trac-
ing. Technical Report TR-06-21, University of Texas at Austin, 2006.

[14] Frank Suykens and Yves D. Willems. Path differentials and applica-
tions. In Rendering Techniques 2001 (Proceedings of the 12th Euro-
graphics Workshop on Rendering), pages 257–268, 2001.

[15] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An interactive
out-of-core rendering framework for visualizing massively complex
models. In Rendering Techniques 2004 (Proceedings of the Euro-
graphics Symposium on Rendering 2004), pages 81–92, 2004.

[16] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Michael Wagner.
Interactive rendering with coherent raytracing. Computer Graphics
Forum (Proceedings of Eurographics 2001), 20(3):153–164, 2001.

[17] Lance Williams. Pyramidal parametrics. Computer Graphics (Pro-
ceedings of SIGGRAPH ’83), 17(3):1–11, 1983.

[18] Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. R-
LODs: Fast LOD-based ray tracing of massive models. In Proceed-
ings of Pacific Graphics ’06, 2006.

[19] Sergei Zhukov, Andrei Iones, and Gregorij Kronin. An ambient light
illumination model. In Rendering Techniques ’98 (Proceedings of the
9th Eurographics Workshop on Rendering), pages 45–55, 1998.


