Resistive Model of a Graph and Random Walks
15-859N - Spectral Graph Theory Fall 2018
Scribe: Tanvi (tbajpai)

0 Motivation

Consider a recommendation system that recommends viewers to movie titles. We can represent
this system as a bipartite graph G = (L, R, E') with a ranking function r where L is the set of
viewers, R is the set of movies, E is the set of edges, and r : E — N gives for (v,m) € E viewer v’s

ranking of movie m.

Viewers movies

m
v — \"m\“wﬁ

Using this model, we want to answer the following question: Should we recommend movie m to
viewer v? In other words, how can we assign some sort of score score(v, m) to a recommendation
of m to v. (Note: (v, m) need not be an edge in G - we want to be able to generate these recom-
mendation scores regardless of whether a v has a ranking for m). Let’s explore a couple of ideas.

1
SCOl‘e(’U,m) = m

where we define distg (v, m) as follows: Assign a weight to each edge (i, j) in the graph given
by

and the weight of a path P is given by

w(P) = Z We

eeP

Now, let
distg (v, m) = min W(P)

vPm
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score(v, m) = max w(P)
vPm

where we define

w(P) = reréi]rjl r(e)

However, these two ideas don’t help us since we never take into account multiple paths between
v and m to add to the score. Intuitively, the more paths there are between a viewer and a
movie, the higher the score(v, m) should be. We can amend this by considering the following idea:

score(v,m) = max flow from v to m

This is still not good enough, since max flow won’t reward shorter paths between viewers and
movies. This motivates two other ideas:

View the edges as conductors, and let
score(v, m) = hit(v, m) + hit(m,v)

where hit(v,m) denotes the expected length of a random walk from v to m

Consider a random walk from v to m

score(v,m) = “the effective conductance” between v and m

We will show that Ideas 4 and 5 are equal up to scaling. We will also explore whether effective
conductance and “commute time” provide a better scoring system.

The rest of the lecture will proceed as follows:

e Provide formal definitions
e Develop a Basic Theory
e Give efficient algorithms

e Find applications
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1 Resistance Theory

1.1 Some preliminaries

We'll first use some basic laws of physics adn shit

Ohm’s Law

Let C' = conductance, R = resistance, V = voltage, and ¢ = current, then

C:

;—@
V= ¢

Series of resistors will act like a single resistor

y
i~V =~
! R

==

Resistors in Series

V, R| v, Rz .'.RM VM

l

R=Ri+..+R,
1

C= e /G 1 1/C)

1= —

R
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Conductors in Parallel

Conductors in parallel will act like a single conductor

,f

C=Ci+..+Cp,

1.2 Effective Resistance
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Definition 1. Let G be a network of resistors, where the conductance on each individual edge is
given by the edge weight. The Effective Resistance (Conductance) between two vertices a and
b of in G is the amount of electrical resistance (conductance) between them:

Vb 1
’ Lab ’ Rab

Now, to compute the effective resistance from a to b, we will make use of Kirchoff’s Law

Kirchoff’s (1st) Law

The current flowing into a node must be equal to the current flowing out of it.

(This will be the case for all nodes other than a and b)

Now, consider the following example (the left is the weighted graph, while the right represents the
voltage and current flow)

¥
Ch

Using Ohm’s Law, we have that

11 = Cl(V — Vl)
ip = Co(V = V3)
iz = C3(V — V3)

The residual current is given by i1 + io + 73. Kirchoff’s Law tells us that this quantity must equal
0, hence

Ci(V-WV)+Co(V-=-Vo)+C3(V—=V3) =0 = (C1 +Cy+ C3)V =C1V1 + CoVa + C3V3

Setting C' = C1 + Cy + C5 gives us

CV = C\Vi + Vo + CsVs —> vz%vl+%v2+%v3
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Observe that we’'ve written V' as a convex combination of V7, Vo, V3. The residual current is equal
to CV — 01V1 — CQVQ — Cng

Now, we’ll consider the general case for some arbitrary network G, where G = (V, E,C) where
C:E—Rtand V ={1,...,n}. Also, define

da)= Y C(a,b)

(a,b)EE

Define a corresponding adjacency matrix A whose entries are given by

Aw:{amm (a,b) € E

o.w.

The Laplacian matrix of G' (denoted by L(G) or simply L) is given by

d(a) a=1b
Loy =4 —Cup (a,b) € E
0 0.W.
Notice that
d(1) 0
L=D-A where D = .
0 d(n)

Let v be a vector representing the voltage setting of each node; This would mean that (Lv);
calculates the residual current at node i. Now, suppose we are interested in the inverse, i.e. we
inject current into each node and observe the voltage. The net current injected should be zero (in
order to abide by Kirchoff’s law). All we’d need to do is solve for Lv = i (where i represents the
vector of currents)

Now, let us try computing the value of the effective resistance between nodes 1 and n (i.e. Rij,.
We can approach this computation in two different ways

Method 1: Solve

0 ?
Vo 0
(x) L| : | = z:%, V=1, R:%
V-1 0
L 1 . __Z-

and return %

(*) This is called a boundary valued problem. In our case, V; and V;, are the boundary; (V1, ..., V;,) is
called harmonic, since all of the interior V, can be written as a convex combination of its neighbors.

Maximum Principle: If f is harmonic, then its min and max are on the boundary.

Proof. If V is interior, then there must exists neighbors V, and V4 such that V, <V < V,. O
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Uniqueness Principle: If f and g are harmonic with the same boundary values, then f =g
Proof. f — g is harmonic, with zero’s at both boundaries, hence f — g = 0, therefore f = g. O

Method 2: Solve

-1

and return Ry, = V1 —V,, (How do we know that an assignment of v exists?)

BTLXm

Another way to view the Laplacian: Boundary Operator (vertex-edge matrix): and

pick a direction to orient each edge. Consider the following example

A\ N“\ el 63 Q«._l
e . Vilt]o o !
¢ Bvla 1 [A

[ e}

Na J 9

Let C14, ..., C}, denote the conductances of eq, ..., e,

Cy 0
C =
0 Cm
Observe that
e BTv = voltage drop across each edge
e CBTv = current flow across each edge
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e BCBTv = residual current at each vertex
This gives us that L = BCBT
If G is a connected graph, we're interested in answering the following questions:

e What is rank(L)?

e What is ker(L)?
Consider

'Lz = 2" BCBTz = (BT2)TCBTz = Z Cop(za — x)°
(a,b)eEFE
thus
tTL=0 < Y(a,b) € E (xq—x)2 =0 = (24 — 1)
Therefore if G is connected = Va,b z; = x;
1
Hence, the kernel of L is (| : |) while the rank is n — 1
1
Claim 1. Lz =0 iff 2T Lz =0
Proof. The forward direction is clear, the backwards direction is
2T Le = 2" BOB"z = (CV2BT2)T(CV?BTz) = 0

which means that C*/2BT 2z = 0 which means that BC'/2CY2BTy = 0, hence Lx =0 O

1.3 Current and Energy/Power Dissipation

¢/ R
—WW—

L-\lnk—‘
\')
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Newton said that

Energy = Force - Speed
= Volt - Current
=Vi
=CV?=i’R

In our network, this means that Energy = 2>~ y liayl - Ve — vy

v Lv = vTBCBTv = (BTv)TC(BTv) = > C.y(Ve — V,)? = Energy

oriented(z,y)€E

1.4 Flows

We define two types of flows in our network:

Definition 2. A flow is a function f: E — R that orients edges
Definition 3. potential flow = {CBTv | v€ R"} = Pg
Definition 4. circulation flows = {f e R" | Bf =0} = Cq
Assume G is connected and we are given its spanning tree 7.

Claim 2. Cg is a subspace, and the dim(Cg) =m —n+1
Note that:

e Proving that this is a subspace is easy.

e E\ T denotes the non-tree edges of G, hence |[E\T|=m —n+1

e Any flow on E \ T can be extended to Cg on G (to be shown in homework)
e f,lgeCgand f\T =g\ T then f=g

Claim 3. (Pg) =n—1

Claim 4. fo € Cg and gp € Pg then nggp =0 where R =

Proof. Jv such that gp = CBTv. Now we have
f&Rgp = fERCBYv = fLBTv = (Bfc)'v=0Tv=0
(observe that we use the fact that RC = I) O

Therefore, Cg; Pg spans R™ (all flows) i.e. Vf € R™, 3l fo, fp such that f = fo + fp

Definition 5. f, = Za#b fap where a,b eV



Resistive Models Scribe:
Random Walks 15-859N thajpai

Definition 6. f is a unit flow from a to b if:
o fisa flow
o fu=fo=1
o fo.=0 forxz#a,b
Thomson’s Principle: If the following two conditions hold, then fTRf < gTg

e f is unit potential flow from a to b

e g is any flow from a to b

Proof. We know that g = f + f. where fo = circulation
9"Rg = (f + fo) ' R(f + Fc) = f'Rf + 2fcRf + fERfc = fTRf + f&Rfc > fTRf

O

Definition 7. The effective resistance from a to b (ERg,) can be defined as f};pr, where f,
denotes the unit potential flow from a to b.

Rayleigh’s Monotonicity Law: If R > R then ER,, > ERy

Proof. Let f be the unit potential flow in Gg, and g be the unit potential flow in G5

ER.,b=¢"Rg = Z 9°R.
ecG

> ZggRe

eeG

> Z 2R, (by Thomson)
ecG

= f¢ Rfe = ERq

HW: Show that R,b is a metric space, i.e.,
e Ry >0
e Rypy=0iffa=5b
o Ry = Ryq

o Rye < Ryp + Ripe

10
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2 Random Walks

Let G = (V, E,w) be a (possibly directed) graph where

a
Definition 8. Random walk on G: Suppose at a given time we are at a € V', we move to b with
probability Py,

Ex. Let V be all orderings of a deck of 52 cards. P, will be the probability of going from some
order @ to an order b in one shuffle.

Fun question: Why do professionals play after 5 shuffles?

We can consider two views of a random walk:
e Particle view (the definition above)
e Wave view: there’s a large number of simultaneous independent walkers
2 = distance at time i
2D — Ap—1,0)
Definition 9. Access Time, or Hitting Time H,, is the expected time to visit b starting at a.

Definition 10. Commute Time: K, = Hy, + Hy,

Definition 11. Cover Time is the expected time to wvisit all nodes (we take the maz over all
starting nodes)

Definition 12. Mizing Rate: TODO in a future lecture

2.1 Random Walks on Symmetric Graphs

Idea: View a random walk as a walk on a network of conductors.
Input: G = (V, E,C) where C(a,b) = C(b,a)

Consider a random walk starting at  and ending at b. Let h, be the probability we visit a before
b when starting at x, where a # b. Consider the following example:

11
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We know that h, = 1 and hy = 0. What if we want to compute ho? We know that this quantity
must be greater than 0.5. After some calculations, we can observe that h, = 0.75.

Example 2:

Claim 5. h, = Zy Pryhy

We know that P, > 0 and that Ey P,, = 1. This means that h, is a convex combination of its
neighbors.(Also, h is harmonic with boundary a, b!).

Now, lets construct an identical electrical problem. Consider V, = 1 and V, = 0. V& # a,b,

V. = Zy %sz Vy. Observe that %:’ = Py, which means h and V' equal.

Theorem 1. Set V, =1 and V, = 0; Let x # a,b “float” and then let V,, be the probability that we

visited a before v. The residual current at x will be 0.

I R C T - SV Y R
—_——— .
a & b

12
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In the above example, h. equals 0.75, and a = vy while b = v,,. Algebraically we get

1 *
* 0
Ll =|:
* 0

In general, we can have multiple sinks and goals:

We can compute this with one Laplacian solve.

2.2 Interpretation of Current as Random Walk

Consider one unit of potential current flow from a to b, say . What does i, correspond to in a
random walk from a to b7

Theorem 2. i,, will be the expected net number of traversals of edge (x,y) in a random walk from
a tob.

Proof. Let U, be the expected number of visits to x before reaching b starting at a. For HW, show
that > UyPye (Note: } , Py, # 1). Now, recall that C; = >, Cyy, and note that

Cye
Cy

@ﬁw:a4%?):qw:qm:q(

T

) = CyPu

Thus,

Us = Z Uy Cy B Z Uy Cy
Y )

Therefore, g—i =2y Puy <g—";)

13
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Here, the voltage V, = g—z, and its recurrence is V, = Zy P,y V, (and the residual current at x is 0).
This means that V, is harmonic with boundary conditions: V, = 0 and V, = g—z for the “correct”
Ua

Define j;, as the current on edge (x,y), and observe that

Joy = (Va — Vy)C:vy = (gz - %)Cwy = Uw(

Cay

: ) = UsPay — UyPya

Here, U, P,y is the expected number of traversals from x to y (similarly, U,P,, is the expected
number of traversals from y to x). This means that j,, is the expected net number of traversals
from z to y.

Now, we wish to show that the net current flow is 1, i.e. Zy Jay = 1. This value must be 1, since
we must have had to leave a once, for good, to get to b (which means we never traveled that edge
back).

O]

Now, we are interested in computing U,. Consider a as the first vertex, while b is the nth vertex.

Solve
1
0
Lv=|
-1
Set
1
0
vV=v-V,|.
1

i.e. set V,, = 0. Hence V] = % — U; = V41Cq, which means we have found U,! Also, V = ERy,
and U, = C, - ERy

2.3 How to compute hitting time

Recall that H,, denotes the expected time to reach b from x. Let H, = H,, for some fixed b.
Consider the following recurrence:

Hy,=0
Hy =1+ HyPyy (z #b)
Y
We can think of H; as a voltage V,:
Vy=0
=13 ()
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CoVe =Cot Y _ CaV,
Y

CoVi — Y CoyVy =Ch
Yy

Observe that the LHS is the graph Laplacian, while the RHS is the residual current. There are
n — 1 constraints, and by adding constraint for v, = b

Cy
Lv— = :
Cnfl
)
V, =0 C = ZCZ’

where 6 = C,, — C
Now, if we wish to compute the hitting time from a v, to v,, solve the above equation for V.

To solve for the commute time between a (v1) and b (v, ), we have two methods:

1. Solve the following two
Ch C,-C
Lvl = : Lv® = :
Cn—C Cp
Hy, =VP —VPand H,y = V2 — VP Set v =vb—v? (and so V; = V’ — V%), and return
Kiyy=Hyp+Hypy=V1 -V,
2. Solve the following
L(v’ —v%) = Lv® — Lv®
This is equal to

Cy Cc,-C C 1
— — =C
c,—-C Chy —C -1
Then, solve for
1
Lv=|":
—1]

And return C(V,, — V1) where (V;, — V1) = ERy,,

Method 2 motivates the following theorem:
Theorem 3. K., =C - ERy =2m - ERy

For trees, this means that the commute time between two vertices is 2(n — 1) - ERgy

15



