
Spectral Graph Theory Lecture 7

Fiedler’s Theorems on Nodal Domains

Daniel A. Spielman September 19, 2012

7.1 About these notes

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. The notes written after class way what I wish I
said.

I think that these notes are mostly correct.

7.2 Overview

Nodal domains are the connected parts of a graph on which an eigenvector is negative or positive.
In this lecture, we will cover some of the fundamental theorems of Fiedler on nodal domains of
the Laplacian. The first theorem that I will present says that the kth eigenvector of a weighted
path graph changes sign k � 1 times. So, the alternation that we observed when we derived the
eigenvectors of the path holds even if the path is weighted. In fact, the theorem is stronger. A
similar fact holds for trees. Next lecture, I hope to use this theorem to show how eigenvectors can
be used to reconstruct tree metrics.

The second theorem in this lecture will be one of our best extensions of this fact to general graphs.

7.3 Sylverter’s Law of Interia

When I introduced the normalized Laplacian last lecture, I assumed but did not prove that it is
positive semidefinite. Since no one complained, I assumed that it was obvious. But, just to be safe
I will tell you why.

Claim 7.3.1. If A is positive semidefinite, then so is B

T
AB for any matrix B.

Proof. For any x,
x

T
B

T
ABx = (Bx)TA(Bx) � 0,

since A is positive semidefinite.

In this lecture, we will make use of Sylvester’s law of intertia, which is a powerful generalization of
this fact. I will state and prove it now.
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Theorem 7.3.2 (Sylvester’s Law of Intertia). Let A be any symmetric matrix and let B be any

non-singular matrix. Then, the matrix BAB

T
has the same number of positive, negative and zero

eigenvalues as A.

Proof. It is clear that A and BAB

T have the same rank, and thus the same number of zero
eigenvalues.

We will prove that A has at least as many positive eigenvalues as BAB

T . One can similarly prove
that that A has at least as many negative eigenvalues, which proves the theorem.

Let �1, . . . , �k be the positive eigenvalues of BAB

T and let Yk be the span of the corresponding
eigenvectors. Now, let Sk be the span of the vectors B

T
y , for y 2 Yk. As B is non-singluar, Sk

has dimension k. By the Courant-Fischer Theorem, we have

↵k = max
S✓IRn

dim(S)=k

min
x2S

x

T
Ax

x

T
x

� min
x2Sk

x

T
Ax

x

T
x

= min
y2Yk

y

T
BAB

T
y

y

T
BB

T
y

> 0.

So, A has at least k positive eigenvalues (The point here is that the denominators are always
positive, so we only need to think about the numerators.)

7.4 Weighted Trees

We will now prove a theorem of Fiedler [Fie75].

Theorem 7.4.1. Let T be a weighted tree graph on n vertices, let LT have eigenvalues 0 = �1 <

�2 · · ·  �n, and let  k be an eigenvector of �k. If there is no vertex u for which  k(u) = 0, then
there are exactly k � 1 edges for which  k(u) k(v) < 0.

In the case of a path graph, this means that the eigenvector changes sign k � 1 times along the
path. We will consider eigenvectors with zero entries in the next problem set.

Our analysis will rest on an understanding of Laplacians of trees that are allowed to have negative
edges weights.

Lemma 7.4.2. Let T = (V,E) be a tree, and let

M =
X

(u,v)2E

wu,vLu,v,

where the weights wu,v are non-zero and we recall that Lu,v is the Laplacian of the edge (u, v). The

number of negative eigenvalues of M equals the number of negative edge weights.

Proof. Note that

x

T
Mx =

X

(u,v)2E

wu,v(x (u)� x (v))2.
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We now perform a change of variables that will diagonalize the matrix M . Begin by re-numbering
the vertices so that for every vertex v there is a path from vertex 1 to vertex v in which the numbers
of vertices encountered are increasing. Under such and ordering, for every vertex v there will be
exactly one edge (u, v) with u < v. Let �(1) = x (1), and for every node v let �(v) = x (v) � x (u)
where (u, v) is the edge with u < v.

Every variable x (1), . . . ,x (n) can be expressed as a linear combination of the variables �(1), . . . , �(n).
To see this, let v be any vertex and let 1, u1, . . . , uk, v be the vertices on the path from 1 to v, in
order. Then,

x (v) = �(1) + �(u1) + · · ·+ �(uk) + �(v).

So, there is a square matrix L of full rank such that

x = L�.

By Sylvester’s law of intertia, we know that

L

T
ML

has the same number of positive, negative, and zero eigenvalues as M . On the other hand,

�TLT
ML� =

X

(u,v)2E,u<v

wu,v(�(v))
2
.

So, this matrix clearly has one zero eigenvalue, and as many negative eigenvalues as there are
negative wu,v.

Proof of Theorem 7.4.1. Let  k denote the diagonal matrix with  k on the diagonal, and let �k

be the corresponding eigenvalue. Consider the matrix

M =  k(LP � �kI ) k.

The matrix LP � �kI has one zero eigenvalue and k� 1 negative eigenvalues. As we have assumed
that  k has no zero entries,  k is non-singular, and so we may apply Sylvester’s Law of Intertia
to show that the same is true of M .

I claim that
M =

X

(u,v)2E

wu,v k(u) k(v)Lu,v.

To see this, first check that this agrees with the previous definition on the o↵-diagonal entries. To
verify that these expression agree on the diagonal entries, we will show that the sum of the entries
in each row of both expressions agree. As we know that all the o↵-diagonal entries agree, this
implies that the diagonal entries agree. We compute

 k(LP � �kI ) k1 =  k(LP � �kI ) k =  k(�k k � �k k) = 0.

As Lu,v1 = 0, the row sums agree. Lemma 7.4.2 now tells us that the matrix M has as many
negative eigenvalues as there are edges (u, v) for which  k(u) k(v) < 0.
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7.5 More linear algebra

There are a few more facts from linear algebra that we will need for the rest of this lecture. We
stop to prove them now.

7.5.1 The Perron-Frobenius Theorem for Laplacians

In Lecture 3, we proved the Perron-Frobenius Theorem for non-negative matrices. I wish to quickly
observe that this theory may also be applied to Laplacian matrices, to principal sub-matrices of
Laplacian matrices, and to any matrix with non-positive o↵-diagonal entries. The di↵erence is that
it then involves the eigenvector of the smallest eigenvalue, rather than the largest eigenvalue.

Corollary 7.5.1. Let M be a matrix with non-positive o↵-diagonal entries, such that the graph

of the non-zero o↵-diagonally entries is connected. Let �1 be the smallest eigenvalue of M and

let v1 be the corresponding eigenvector. Then v1 may be taken to be strictly positive, and �1 has

multiplicity 1.

Proof. Consider the matrix A = �I � M , for some large �. For � su�ciently large, this matrix
will be non-negative, and the graph of its non-zero entries is connected. So, we may apply the
Perron-Frobenius theory to A to conclude that its largest eigenvalue ↵1 has multiplicity 1, and the
corresponding eigenvector v1 may be assumed to be strictly positive. We then have �1 = � � ↵1,
and v1 is an eigenvector of �1.

7.5.2 Eigenvalue Interlacing

We will often use the following elementary consequence of the Courant-Fischer Theorem. I recom-
mend deriving it for yourself.

Theorem 7.5.2 (Eigenvalue Interlacing). Let A be an n-by-n symmetric matrix and let B be a

principal submatrix of A of dimension n � 1 (that is, B is obtained by deleting the same row and

column from A). Then,

↵1 � �1 � ↵2 � �2 � · · · � ↵n�1 � �n�1 � ↵n,

where ↵1 � ↵2 � · · · � ↵n and �1 � �2 � · · · � �n�1 are the eigenvalues of A and B, respectively.

7.6 Fiedler’s Nodal Domain Theorem

Given a graph G = (V,E) and a subset of vertices, W ✓ V , recall that the graph induced by G on

W is the graph with vertex set W and edge set

{(i, j) 2 E, i 2 W and j 2 W} .

This graph is sometimes denoted G(W ).
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Theorem 7.6.1 ([Fie75]). Let G = (V,E,w) be a weighted connected graph, and let LG be its

Laplacian matrix. Let 0 = �1 < �2  · · ·  �n be the eigenvalues of LG and let v1, . . . , vn be the

corresponding eigenvectors. For any k � 2, let

Wk = {i 2 V : vk(i) � 0} .

Then, the graph induced by G on Wk has at most k � 1 connected components.

Proof. To see that Wk is non-empty, recall that v1 = 1 and that vk is orthogonal v1. So, vk must
have both positive and negative entries.

Assume that G(Wk) has t connected components. After re-ordering the vertices so that the vertices
in one connected component of G(Wk) appear first, and so on, we may assume that LG and vk

have the forms

LG =

2

666664

B1 0 0 · · · C1

0 B2 0 · · · C2
...

...
. . .

...
...

0 0 · · · Bt Ct

C

T
1 C

T
2 · · · C

T
t D

3

777775
vk =

0

BBBBB@

x 1

x 2
...
x t

y

1

CCCCCA
,

and 2

666664

B1 0 0 · · · C1

0 B2 0 · · · C2
...

...
. . .

...
...

0 0 · · · Bt Ct

C

T
1 C

T
2 · · · C

T
t D

3

777775

0

BBBBB@

x 1

x 2
...
x t

y

1

CCCCCA
= �k

0

BBBBB@

x 1

x 2
...
x t

y

1

CCCCCA
.

The first t sets of rows and columns correspond to the t connected components. So, x i � 0 for
1  i  t and y < 0 (when I write this for a vector, I mean it holds for each entry). We also know
that the graph of non-zero entries in each Bi is connected, and that each Ci is non-positive, and
has at least one non-zero entry (otherwise the graph G would be disconnected).

We will now prove that the smallest eigenvalue of Bi is smaller than �k. We know that

Bix i + Ciy = �kx i.

As each entry in Ci is non-positive and y is strictly negative, each entry of Ciy is non-negative and
some entry of Ciy is positive. Thus, x i cannot be all zeros,

Bix i = �kx i � Ciy  �kx i

and
x

T
i Bix i  �kx

T
i x i.

If x i has any zero entries, then the Perron-Frobenius theorem tells us that x i cannot be an eigen-
vector of smallest eigenvalue, and so the smallest eigenvalue of Bi is less than �k. On the other
hand, if x i is strictly positive, then x

T
i Ciy > 0, and

x

T
i Bix i = �kx

T
i x i � x

T
i Ciy < �kx

T
i x i.
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Thus, the matrix 2

6664

B1 0 · · · 0

0 B2 · · · 0

...
...

. . .
...

0 0 · · · Bt

3

7775

has at least t eigenvalues less than �k. By the eigenvalue interlacing theorem, this implies that
LG has at least t eigenvalues less than �k. We may conclude that t, the number of connected
components of G(Wk), is at most k � 1.

We remark that Fiedler actually proved a somewhat stronger theorem. He showed that the same
holds for

W = {i : vk(i) � t} ,

for every t  0.

This theorem breaks down if we instead consider the set

W = {i : vk(i) > 0} .

The star graphs provide counter-examples.

0 −3

1

1

1

Figure 7.1: The star graph on 5 vertices, with an eigenvector of �2 = 1.
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