Lecture 27. Rayleigh Quotient, Inverse
Iteration

In this lecture we present some classical eigenvalue algorithms. Individually,
these tools are useful in certain circumstances—especially inverse iteration,
which is the standard method for determining an eigenvector when the cor-
responding eigenvalue is known. Combined, they are the ingredients of the
celebrated QR algorithm, described in the next two lectures.

Restriction to Real Symmetric Matrices

Throughout numerical linear algebra, most algorithmic ideas are applicable
cither to general matrices or, with certain simplifications, to hermitian matri-
ces. For the topics discussed in this and the next three lectures, this continues
to be at least partly true, but some of the differences between the general and
the hermitian cases are rather sizable. Therefore, in these four lectures, we
simplify matters by considering only matrices that are rcal and symmetric.

We also assume throughout that || - || = || - ||o.
Thus, for these four lectures: A = AT € R™™ z € R™, z* = 27T,
|z]| = v2Tz. In particular, this means that A has real eigenvalues and a

complete set of orthogonal eigenvectors. We use the following notation:

real eigenvalues: Ay, ..., Ay,

orthonormal eigenvectors: qi, ..., ¢n.
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The cigenvectors are presumed normalized by [|g;|| = 1, and the ordering of
the cigenvalues will be specified as necessary.

Most of the ideas to be described in the next few lectures pertain to Phase 2
of the two phases described in Lecture 25. This means that by the time we
come to applving these ideas, A will be not just real and symmetric, but
tridiagonal. This tridiagonal structure is occasionally of mathematical impor-
tance, for example in choosing shifts for the QR algorithm, and it is always of
algorithmic importance, reducing many steps from Q(m®) to O(m) flops, as
discussed at the end of the lecture.

Rayleigh Quotient

The Rayleigh quotient of a vector & € IR™ is the scalar
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Notice that if = is an eigenvector, then r(z) = X is the corresponding eigen-
value. One way to motivate this formula is to ask: given x, what scalar «
“acts most like an cigenvalue” for z in the sense of minimizing ||Az — ax»?
This is an m x 1 least squares problem of the form za &~ Az (z is the matrix,
@ is the unknown vector, Az is the right-hand side). By writing the normal
equations (11.9) for this system, we obtain the answer: o = r(x). Thus r(2)
is a natural eigenvalue estimate to consider if z is close to, but not necessarily
equal to, an eigenvector.

To make these ideas quantitative, it is fruitful to view z € IR™ as a variable,
so that 7 is a function R™ — R. We are interested in the local behavior of
r{z) when z is near an eigenvector. One way to approach this question is to
calculate the partial derivatives of r(z) with respect to the coordinates z;:
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If we collect these partial derivatives into an m-vector, we find we have calcu-
lated the gradient of r(z), denoted by Vr(z). We have shown:

2

Vr(z) = E(&T —r(z)z). (27.2)

From this formula we see that at an eigenvector z of A, the gradient of »(z) is
the zero vector. Conversely, if Vr(z) = 0 with z # 0, then x is an eigenvector
and r(x) is the corresponding eigenvalue.

Geometrically speaking, the eigenvectors of A are the stationary points of
the function r(z), and the eigenvalues of 4 are the values of r(z) at these
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Figure 27.1. The Rayleigh quotient v(z) is a continuous function on the unit
sphere ||z]] = 1 in R™, and the stationary points of r(x) are the normalized
eigenvectors of A. In this example with m = 3, there are three orthogonal
stationary points {(as well as their antipodes).

stationary points. Actually, since 7(z) is independent of the scale of z, these
stationary points lie along lines through the origin in R™. If we normalize by
restricting attention to the unit sphere ||z|| = 1, they become isolated points
{(assuming that the eigenvalues of A are simple), as suggested in Figure 27.1.

Let g, be one of the eigenvectors of A. From the fact that Vr{g,) = 0,
together with the smoothness of the function r(z) (everywhere except at the
origin z = (), we derive an important consequence:

r(z) —r{gs) = O(||x — qs||*) asz — qs. (27.3)

Thus the Rayleigh quotient is a quadratically accurate estimate of an eigen-
value. Herein lies its power.
A more explicit way to derive (27.3) is to expand 2 as a linear combi-
nation of the eigenvectors gi,...,gm of A. If & = 370, a;q;, then r(z) =
i) a_?/\]- DY/ a.?-. Thus r(z) is a weighted mean of the cigenvalues of A,
with the weights cqual to the squarces of the coordinates of  in the cigenvee-
tor basis. Because of this squaring of the coordinates, it is not hard to sce
that if |a;/a;| < € for all § # J, then r(z) — r{g;) = O(e?).

Power Iteration

Now we switch tacks. Suppose v is a vector with |[v(?|| = 1. The follow-
ing process, power iteration, was cited as a not especially good idea at the
beginning of Lecture 25. It may be expected to produce a sequence v that
converges to an eigenvector corresponding to the largest eigenvalue of A.
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Algorithm 27.1. Power Iteration

»(® = some vector with v =1

fork=1,2,...
w= Av®-D apply A
v® = /|jw| normalize
AE) = (DT Apl®) Rayleigh quotient

In this and the algorithms to follow, we give no attention to termination
conditions, describing the loop only by the suggestive expression “for &k =
1,2,....7 Of course, in practice, termination conditions arc very important,
and this is one of the points where top-quality software such as can be found
in LAPACK or MATLAB is likely to be superior to a program an individual
might write.

We can analyze power iteration casily. Write (9 as a lincar combination
of the orthonormal eigenvectors ¢;:

v = a1qn + Qg 4 -0 A Gy
Since v*) is a multiple of A*v(®, we have for some constants ¢
v® = g AR ©®
k k k
Ck(al/\1 q1 -+ 02)\2(12 4w s am)\QO)
= Ck/\ic (alql + Qg ()\Z/Al)k(h + e+ am()\m//\l)kQ'm) & (274)

I

From here we obtain the following conclusion.

Theorem 27.1. Suppose [A1| > |Ag] = -+ > [An] 2 0 and ¢7v© # 0. Then
the iterates of Algorithm 27.1 satisfy
2%
) (27.5)

k
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as k — 0o. The £ sign means that at each step k, one or the other choice of
stgn is to be taken, and then the indicated bound holds.

Az
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Proof. The first equation follows from (27.4), since a; = ¢l v'® # 0 by as-

sumption. The second follows from this and (27.3). If A; > 0, then the +
signs are all 4+ or all —, whereas if Ay < 0, they alternate. O

The =+ signs in (27.5) and in similar equations below are not very appealing.
There is an elegant way to avoid these complications, which is to speak of
convergence of subpaces, not vectors—to say that (v¥)) converges to {(g;), for
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cxample. Howcever, we shall not do this, in order to avoid getting into the
details of how convergence of subspaces can be made precise.

On its own, power iteration is of limited use, for several reasons. First, it
can find only the cigenvector corresponding to the largest cigenvalue. Second,
the convergence is linear, reducing the error only by a constant factor & |Aa/ A |
at each iteration. Finally, the guality of this factor depends on having a
largest eigenvalue that is significantly larger than the others. If the largest
two eigenvalues are close in magnitude, the convergence will be very slow.

Fortunately, there is a way to amplify the differences between eigenvalues.

Inverse Iteration

For any ;¢ € R that is not an eigenvalue of A, the eigenvectors of (4 — pl)~*
arc the same as the cigenvectors of A, and the corresponding cigenvalucs arc
{{A; — )"}, where {);} arc the cigenvalues of A. This suggests an idea.
Suppose p is close to an cigenvalue Ay of A. Then (A; — ¢)~' may be much
larger than (A; — )" for all j # J. Thus, if we apply power iteration to
(A— uI)™*, the process will converge rapidly to g;. This idea is called inverse
steration.

Algorithm 27.2. Inverse Iteration

v = some vector with ||v@| =1

for k=1,2,...
Solve (4 — p)w = v*=Y for w apply (A — pI)™!
v = w /||| normalize
AE) = (k)T 4y(k) Rayleigh quotient

What if u is an eigenvalue of A, so that A — uf is singular? What if it
is nearly an eigenvalne, so that A — pf is so ill-conditioned that an accurate
solution of (A4 — pul)w = v*~Y cannot be expected? These apparent pitfalls
of inverse iteration cause no trouble at all; see Exercise 27.5.

Like power itcration, inverse itcration cxhibits only lincar convergence.
Unlike power iteration, however, we can choose the cigenvector that will be
found by supplying an cstimate u of the corresponding cigenvalue. Further-
more, the rate of linear convergence can be controlled, for it depends on the
quality of p. If g is much closer to onc cigenvalue of A than to the others, then
the largest eigenvalue of (A — puJ)~! will be much larger than the rest. Using
the same reasoning as with power iteration, we obtain the following theorem.

Theorem 27.2. Suppose A; is the closest eigenvalue to p and A is the sec-
ond closest, that is, [j—Aj| < |p—Ag| < |u—Aj| for each j # J. Furthermore,
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suppose gL £ 0. Then the iterates of Algorithm 27.2 satisfy
Pr qy g Y

k 2k
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as k — oo, where the + sign has the same meaning as in Theorem 27.1.
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Inverse itcration is once of the most valuable tools of numerical lincar al-
gebra, for it is the standard method of calculating one or more eigenvectors
of a matrix if the cigenvalues arc already known. In this case Algorithm 27.2
is applied as written, except that the calculation of the Rayleigh quotient is
dispensed with.

Rayleigh Quotient Iteration

So far in this lecture, we have presented one method for obtaining an eigenvalue
estimate from an eigenvector estimate (the Rayleigh quotient), and another
method for obtaining an eigenvector estimate from an eigenvalue estimate
(inverse iteration). The possibility of combining these ideas is irresistible:

onc step of inverse iteration

approximate A approximate ¢

Rayleigh quotient

(The figure is oversimplified; to get from an approximate A, to an approximate
g, by a step of inverse iteration, one also needs a preliminary approximation to
g7.) The idea is to use continually improving eigenvalue estimates to increase
the rate of convergence of inverse iteration at every step. This algorithm is
called Rayleigh quotient iteration.

Algorithm 27.3. Rayleigh Quotient Iteration

v(® = some vector with [[v0| =1
A0 = (vONTAp®) = corresponding Rayleigh quotient

for k=1,2,...
Solve (A — AR = v®*= for w  apply (4 — AXED )1
o) = q0/||w| normalize

AR = (BN T4 Rayleigh quotient
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The convergence of this algorithm is spectacular: cach itcration triples the
number of digits of accuracy.

Theorem 27.3. Rayleigh quotient iteration converges to an eigenvalue/eigen-
vector pair for all except o set of measure zero of starting vectors v, When
it converges, the convergence is ultimately cubic in the sense that if A, is an
eigenvalue of A and v(9 is sufficiently close to the eigenvector q;, then

[v®+ — (£l = O™ — (£a0)I°) (27.6)

and
AED 3 = 0(1A® -, P) (27.7)

as k — o0. The £ signs are not necessarily the same on the two sides of
(27.6).

Proof. We shall not prove the assertion about convergence for almost all
starting vectors. Here, however, is a proof that if convergence oceurs, it is
ultimately cubic. For simplicity, we assume that the cigenvalue Ay is simple.
By (27.3), if ||[v®) — g4 < € for sufficiently small ¢, then the Rayleigh quotient
yields an eigenvalue estimate A®) with |A%) — X;| = O(¢?). By the argument
used to prove Theorem 27.2, if we now take one step of inverse iteration to
obtain a new v*+1 from »®*) and A\*), then

oY — grll = O(A® = A [o® = g,])) = O().

Moreover, the constants implicit in the O symbols are uniform throughout
sufficiently small ncighborhoods of A; and ¢;. Thus we have convergence in
the following pattern:

[[v® — (£q5) IA® — A
e = 0O
1 v
O(®) — 0O()
1 v
O(e®) — O(e?)

The estimates (27.6)—(27.7) follow from the uniformity just mentioned. O

Example 27.1. Cubic convergence is so fast that we must give a numerical
example. Consider the symmetric matrix

211
A=|13 1],
11 4
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and let v = (1,1,1)7/4/3 be the initial cigenvector estimate. When Rayleigh
quotient iteration is applied to A, the following values A*) are computed by
the first three iterations:

MO =5 AW =352131..., X? =5214319743184. ...

The actual value of the eigenvalue corresponding to the eigenvector closest
to (0 is A = 5.214319743377. After only three iterations, Rayleigh quotient
iteration has produced a result accurate to ten digits. Three more iterations
would increase this figure to about 270 digits, if our machine precision were
high cnough. O

Operation Counts

We close this lecture with a note on the amount of work required to execute
each step of the three iterations we have described.

First, suppose A € IR™™ is a full matrix. Then each step of power
iteration involves a matrix-vector multiplication, requiring O(m?) flops. Each
step of inverse iteration involves the solution of a linear system, which might
seem to require O(m?) flops, but this figure reduces to O(m?) if the matrix is
processed in advance by LU or QR factorization or another method. In the
case of Rayleigh quotient iteration, the matrix to be inverted changes at each
step, and beating O(m?®) flops per step is not so straightforward.

These figures improve greatly if A is tridiagonal. Now, all three iterations
require just O(m) flops per step. For the analogons iterations involving non-
symmetric matrices, incidentally, we must deal with Hessenberg instead of
tridiagonal structure, and this figure increases to O(m?).

Exercises

27.1. Let A € C™ ™ be given, not necessarily hermitian. Show that a nnmber
z € C is a Rayleigh quoticnt of A if and only if it is a diagonal cntry of Q*AQ
for some unitary matrix @. Thus Rayleigh quotients are just diagonal entries
of matrices, once you transform orthogonally to the right coordinate system.

27.2. Again let A € €™ be arbitrary. The sct of all Rayleigh quotients of
A, corresponding to all nonzero vectors z € €™, is known as the field of values
or numerical range of A, a subset of the complex plane denoted by W(A).
(a) Show that W (A) contains the convex hull of the eigenvalues of A.

(b) Show that if A is normal, then W (A) is equal to the convex hull of the
eigenvalues of A.

27.3. Show that for a nonhermitian matrix A € C™*™, the Rayleigh quo-
tient r(x) gives an eigenvalue estimate whose accuracy is generally linear,



210 PART V. EIGENVALUES

not quadratic. Explain what convergence rate this suggests for the Rayleigh
quoticnt iteration applied to nonhermitian matrices.

27.4. Every real symmetric square matrix can be orthogonally diagonalized,
and the developments of this lecture are invariant under orthogonal changes
of coordinates. Thus it would have been sufficient to carry out each derivation
of this lecture under the assumption that A is a diagonal matrix with entries
ordered by decreasing absolute value. Making this assumption, describe the
form taken by (27.4), (27.5), and Algorithm 27.3.

27.5. As mentioned in the text, inverse iteration depends on the solution of
a system of equations that may be exceedingly ill-conditioned, with condition
number on the order of e ,. . We know that it is impossible in general
to solve ill-conditioned systems accurately. Is this not a fatal flaw in the
algorithm?

Show as follows that the answer is no  that ill-conditioning is not a problem
in inverse iteration. Suppose A is a real symmetric matrix with one eigenvalue
much smaller than the others in absolute value (without loss of generality, we
arc taking g = 0). Supposc v is a vector with components in the directions of
all the eigenvectors ¢i,..., g, of A, and suppose Aw = v is solved backward
stably, yiclding a computed vector w. Making use of the caleulation on p. 95,
show that although @ may be far from w, @/||@|| will not be far from w/||w]|.

27.6. What happens to Figure 27.1 if two of the eigenvalues of A are equal?



