
Lecture 27. Rayleigh Quotient, Inverse 
Iteration 

In this lecture we present some classical eigenvalue algorithms. Individually, 
these tools are useful in eertain eircllIIlstances-espeeially inverse iteration, 
which is the standard method for determining an eigenvector when the cor-
responding eigenvalue is kIlCHVIl. Combined, they are the ingredients of the 
celebrated QR algorithm, described in the next two lectures. 

Restriction to Real Symmetric Matrices 
Throughout nUillerical linear algebra, most algorithlnic idea.., are applicable 
either to general matrices Of, ,vith certain simplifications, to hermitian matri-
ces. For the topics discussed in this and the next three lectures, this continues 
to be at least partly true, but some of the differences between the general and 
the hermitian cases arc rather sizable. Therefore, in these four lectures, 'vc 
simplify matters by considering only matrices that arc real and symmetric. 
We also assume throughout that II . II = II . 112. 

Thus. for these four lectures: A = AT E ffi.mxm. X E lR.m. x· = xT • 

Ilxll = J:rTx. In particular, this Illeans that A. has and 
complete set of orthogonal eigenvectors. We use the following notation: 

real eigenvalues: Al, ... , Aml 
orthononnal eigenvectors: Ql, 000, q,rll.O 
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The eigenvector" arc pre"umed normalized by Ilqjll = 1, and the ordering of 
the eigenvalue" will be "pecified nece""ary. 

Most of the ideas t.o be described in t.he next. few lectures pert.ain t.o Phase 2 
of the two described in Lecture 25. Thi" mean" that by the time we 
tome to applying these idea'), A ,vill be not just real and syrIlrnetrie, but 
tridiagonal. This tridiagonal structure is ocea....,ionally of mathematical impor-
tanee, for example in ehoosing shifts for the QR algorithrIll and it is ahvays of 
algorit.hmic importance, reducing many steps from O(m') to O(m) flops, as 
discussed at. the end of the lecture. 

Rayleigh Quotient 
The Rayleigh quotient of a vector .T E JR m is t.he scalar 

x"Ax r(x) = -T-' 
x' x (27.1 ) 

Notice that if :r: is an eigenveetor, then T (:1:) = .\ is the corresponding eigen-
value. One way to rIlotivate this forrnula is to ask: given X, what scalar a 
"acts most like an eigenvalue" for x in the sense of minimizing IIAx - ax112? 
This i" an 'In x 1 least. "quare" problem of t.he form .Ta '" A.T (.T is the matrix, 
a i" the unknown vector, Ax is t.he right-hand "ide). By writ.ing the normal 
equations (11.9) for t.his syst.em, we obt.ain the answer: (Y = r(:r;). Thus 'r(;!:) 
is a natural eigenvalue estimate to consider if ;1: is dose to, but not necessarily 
equal to, an eigenvector. 

To rnake these ideas quantitative, it is fruitful to view x E IRm as a variable, 
so that r is a function ffi.m --+ JR. \Ve are interested in the local behavior of 
r(x) when x is near an eigenvector. One way to approach this question is to 
calculate the partial derivatives of r(x) with respect to the coordinates Xj: 

('['1'4'[') JL ('['TT) ., ., 8Xj ., • , 

(xT:r)2 
(x"Ax)2xj 

(xT:r)2 
2 

--y- (Ax - r(x)x)j' x :r 

If we collect these partial derivatives into an rn-vector, we find we have calcu-
lated the gradient of r (x), denoted by V'r (x). We have shown: 

2 
V'r(x) = -r(Ax - r(x):r). 

x x 
(27.2) 

From this formula we see that at an eigenvector x of A, the gradient of r(x) is 
the ",ero vector. Conversely, if \71'(.1') = 0 ,vith x =j:. 0, then x is an eigenvector 
and r(x) is the corresponding eigenvalue. 

Geometrically speaking, the eigenvectors of A are t.he stationary points of 
t.he function r(x), and the eigenvalues of A are the values of r(:r) at these 
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Figure 27.1. The Rayleigh quotient ,.(x) is a continuous Junction on the unit 
8phere 11:1:11 = 1 in lR1n

, and the 8taiiorwTY ]Joint;; of r(:c) aTe the nOTrrwlized 
eigenvectors oj A. In this example with Tn = 3, there are three orthogonal 
8iaiionary poini8 (a8 well as their antipodes). 

stationary points. Actually. since r(x) is independent of the scale of x, these 
stationary points lie along lines through the origin in lRm. If we normalize by 
restricting attention to the unit sphere II:TII = 1, they becOIne isolated points 
(a..')sllrning that the eigenvalues of A are sirnple), as suggested in Figure 27.1. 

Let qJ be one of the eigenvectors of A. From the fact that V'r( qJ) = 0, 
together with the srIloothn€ss of the fUIlction r(x) (every,vhere except at the 
origin x' = 0), "\ve derive an important consequence: 

(27.3) 

Thus the Rayleigh quotient is a quadratically accurate estimate of an eigen-
value. Herein lies its pmver. 

A Illore explicit way to derive (27.3) is to expand :r as a linear emnbi-
nation of the eigenveetors (11, ... , fJm of A. If:r: = (1j(}';' then r(;r:) = 

ap'j/ 2.:;,,=, aJ. Thus r(x) is a weighted mean of the eigenvalues of A, 
'\vith the v,reights equal to the squares of the coordinates of x in the eigenvec-
tor basis. Because of this squaring of the coordinates, it is not hard to sec 
that if laj/o.]1 s ,for all j # J, then r(;1:) - r(q.]) = 0(,2). 

Power Iteration 

Now we switch tacks. Suppose v(O) is a vector with Ilv(D) II = 1. The follow-
ing process, po weT iteration, was cited as a not especially good idea at the 
beginning of Lecture 25. It may be expected to produce a sequence veil that 
converges to an eigenvector corresponding to the largest eigenvalue of A. 
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Algorithm 27.1. Power Iteration 

v(O) = some vector with Ilv(O) II = 1 
fork=1,2, ... 

w = AV(k- l ) 

V(k) = w/llwll 
A(k) = (V(k))TAv(k) 

apply A 
normalize 
Rayleigh quotient 
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In this and the algorithrIls to follrHv, "\ve give no attention to terrninatioll 
eonditions, describing the loop only by the suggestive expression "for k = 
1,2, .... ll Of course, in practice, termination conditions arc very important, 
and this is one of the points where top-quality software such as can be found 
in LAPACK or MATLAI3 is likely to be superior to a program an individual 
might write. 

We can analyze power iteration easily. \Vrite v(O) as a linear combination 
of the orthonorrnal eigenvectors fJj,: 

Since V(k) is a multiple of Akv(O), we have for some constants Ck 

V(k) CkAhV(O) 

+ + ... + 
(a,q, + a,(A2/A,)kq2 + ... + am (Xm/A,)kqm ) . (27.4) 

From here vlre obtain the following conclusion. 

Theorem 27.1. Suppose IAII > IA,I 2: ... 2: IAml 2: 0 and qiv(O) cJ O. Then 
the iterates of AlgoTithrn 27.1 satisfy 

Ilu(k) - (±q,) II = 0 (I D ' (27.5) 

fL8 k --+ ex). The ± sign means that at each step k, one OT the other choice of 
sign is to be taken, and then the indicated bound holds. 

P1'OOj. The first equation follows from (27.4), since (11 = q{v(O) cJ 0 by as-
sumption. The second follows from this and (27.3). If A1 > 0, then the ± 
signs are all + or all -, whereas if A1 < 0, they alternate. D 

The ± signs in (27.5) and in similar equations below are not very appealing. 
There is an elegant way to avoid these complications, which is to speak of 
convergence of subpaces, not vectors-to say that (V(k)) converges to for 
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example. However, we shall not do this, in order to avoid getting into the 
details of how convergence of su bspaces can be made precise. 

On its mVIl, pmver iteration is of lirnited use, for several reasons. First, it 
can find only the eigenvector corresponding to the largest eigenvalue. Second, 
the convergence is linear, redueing the error only by a constant fador 1-'2/)'11 
at each iteration. Finally, the quality of this factor depends on having a 
largest eigenvalue that is significantly larger than the others. If the largest 
two eigenvalues are close in magnitude, the convergence will be very 81mv. 

Fortunately, there is a way to amplify the differences between eigenvalues. 

Inverse Iteration 

For any It E III that is not an eigenvalue of A, the eigenvectors of (A - ItI)-l 
arc the same as the eigenvectors of A, and the corresponding eigenvalues arc 
{(Aj - fl)-1}, where {Aj} arc the eigenvalues of A This suggests an idea. 
Suppose fl is close to an eigenvalue AJ of A Then (AJ - fl)-1 may be much 
larger than (Aj - fl)-1 for all j cJ J. Thus, if we apply power iteration to 
(A - flI)- I , the process will converge rapidly to qJ. This idea is called inverse 
iteration. 

Algorithm 27.2. Inverse Iteration 

'1)(0) = some vector with 1110(0) II = 1 
fork=1,2, ... 

Solve (A - fl1)10 = C(k-1) for 10 
V(k) = 10/111011 
A(k) = (V(k))TAv(k) 

apply (A - 111)-1 
nonnali:t€ 
Rayleigh quotient 

What if 1', is an eigenvalue of A, so that A - 1'1 is singular? What if it 
is nearly an eigenvalue, so that A - /11 is so ill-conditioned that an accurate 
solution of (A - 1'1)w = v(k- l ) cannot be expected? These apparent pitfalls 
of inverse iteration cause no trouble at all: see Exercise 27.5. 

Like pmvcr iteration, invert3e iteration exhibitt3 only linear convergence. 
Unlike power iteration, however, we can choose the eigenvector that will be 
found by supplying an estimate fl of the corresponding eigenvalue. Further-
rnore, the rate of linear convergence can be controlled, for it depends on the 
quality of fl. If fl is much closer to one eigenvalue of A than to the others, then 
the largest eigenvalue of (A - II1)-1 will be much larger than the rest. Csing 
the sarne reasoning as "\vith power iteration, we obtain the follmving theorern. 

Theorem 27.2. Suppose AJ is the close"t eigenvalue to 1', and AK is the sec-
ond closest, that is, II'-AJI < II'-AKI <::: Ifl-Ajl for eachj cJ J. Furthermore, 



LECTURE 27. RAYLEIGH QUOTIENT, INVERSE ITERATION 207 

"'U,p]!08e '1]'.,,(0) # O. Then the itemtes oj Algo"ithm 27.2 8IJ.tisjy 

Ilv(k) - (±q,)11 = 0 

U8 k -+ oc, where the ± sign hU8 the same meaning 08 in Theorem 27.1 . 

Inverse iteration is one of the most valuable tools of numerical linear al-
gebra, for it is the standard rnethod of ealculating one or IIlOr€ eigenvectors 
of a mat.rix if t.he eigenvalues arc already known. In t.his case Algorit.hm 27.2 
is applied as written, exeept. t.hat t.he ealeulation of t.he Rayleigh quot.ient is 
dispensed with. 

Rayleigh Quotient Iteration 
So far in this lecture, we have presented one method for obtaining an eigenvalue 
estimate from an eigenvector estimate (the Rayleigh quotient), and another 
rnethod for obtaining an eigenvector estirnate £rOlll an eigenvalue estinlate 
(inverse iteration). The possibility of combining these ideas is irresistible: 

onc t3tcp of inverse iteration 

Rayleigh quot.ient 

(The figure is oV€l'Sinlplifie<:i; to get from an approximate >".1 to an approximate 
qJ by a step of inverse iteration, one also needs a preliminary approximation to 
qJ.) The idea is to use continually improving eigenvalue estinmLes Lo increa..,€ 
the rate of convergence of inverse iteration at every step. This algorithm is 
called Rayleigh quotient iteration. 

Algorithm 27.3. Rayleigh Quotient Iteration 

v(O) = some vector with 11,,(0) II = 1 
).(0) = (,,(0) f A,,(O) = corresponding Rayleigh quotient 
for k = 1. 2, ... 

Solve (A - ).(k-l)1)"" = .,,(k-l) for"l1! 
V(k) = w/llwll 
).(k) = 

apply (A - ).(k-l) 1)-1 
nonnali:t€ 
Rayleigh quotient. 
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The convergence of this algorithm is spectacular: each iteration triples the 
numher of digits of accuracy. 

Theorem 27.3. Rayleigh quotient itemtion converges to an eigenvalue/eigen-
vector pair for all except a set of measure zero of starting vector8 u(O). When 
it converyes, the converyence is ultimately cubic in the sense that if AJ is an 
eigenvalue of A and u(O) is sufficiently close to the eigenvector qJ, then 

II ,PH) - (±llJ) II = O(II.,,(k) - (±llJ) 11 3 ) (27.6) 

and 
(27.7) 

as k --+ 00. The ± signs are not necessarily the same on the two sides of 
(27.6). 

Proof. \Ve shall not prove the assertion about convergence for almost all 
starting vectors. Here, hovvcvcr, is a proof that if convergence occurs, it is 
ultimately cubic. For simplicity, we assume that the eigenvalue AJ is simple. 
By (27.3), if Ilu(k) - qJ11 :c; ,for sufficiently small " then the Rayleigh quotient 
yields an eigenvalue estimate A(k) with IA(k) - AJI = 0(,2). By the argument 
used to prove Theorem 27.2, if we now take one step of inverse iteration to 
obtain a new,P+l) from v(k) and A (k), then 

).iloreover, the eOIlstants irnplicit in the 0 syrnbols are uniform throughout 
sufficiently small neighborhoods of AJ and qJ. Thus we have convergence in 
the following pattern: 

Ilv(h) - (± q/) II IA(k) - A/I , --+ 0(,2) 

+ .( 
0(,3) --+ 0(,6) 

+ .( 
0(,9) --+ 0(,18) 

The estimates (27.6)-(27.7) follow from the uniformity just mentioned. D 

Example 27.1. Cubic convergence is so fast that we must give a numerical 
example. Consider the symmetric matrix 
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and let v(O) = (1, 1, l)T / V3 be the initial eigenvector estimate. When Rayleigh 
quotient iteration is applied to A, the following values A(k) arc computed by 
t.he first three it.erations: 

A(1) = 5.2131 ... , A(2) = 5.214319743184 .... 

The actual value of the eigenvalue corresponding to the eigenvector closest 
to v(O) is A = 5.214319743377. After only three iterations, Rayleigh quotient 
iteration ha.'3 produced a result accurate to ten digits. Three lllOre iterations 
,vQuld increase this figure to about 270 digits, if our machine precision "vere 
high enough. D 

Operation Counts 
Vve close this lecture with a note on the amount of work required to execute 
each step of the three iterations we have described. 

First, suppose A E ffi.mxm is a full matrix. Then each step of power 
iteration involves a matrix-vector multiplication, requiring O( rn') flops. Each 
step of inverse iteration involves the solution of a linear system, "\vhieh might 
seem to require O(rn:l) flops, but this figure reduces to O(rn2 ) if the matrix is 
processed in advance by LV or QR factorization or another method. In the 
case of Rayleigh quotient iteration, the matrix to be inverted changes at each 
step, and beating O(rn3 ) flops per step is not so straightforward. 

These figures improve greatly if A is tridiagonal. Now, all three iterations 
require just O(rn) flops per step. For the analogous iterations involving non-
S)'mnletric matrices, incidentally, "\ve mllst deal with Hessenbel'g instead of 
tridiagonal structure, and this figure increases to O(rn2 ). 

Exercises 
27.1. Let A. E (JJmxm be given, not necessarily hermitian. Shmv that a Humber 
z E e is a Rayleigh quotient of A if and only if it is a diagonal entry of Q' AQ 
for some unitary matrix Q. Thus quotients are just diagonal entries 
of matrices, once you transform orthogonally to the right coordinate system. 

27.2. Again let A E emxm be arbitrary. The set of all Rayleigh quotients of 
A, corresponding to all nonzero vectors x E em, is known as the field oj values 
or rJill.me'riml mnge of A, a subset. of the c0111plex plane denot.ed by 
(a) Show that W(A) contains the convex hull of the eigenvalues of A. 
(b) Show that if A is normal, then W(A) is equal to the convex hull of the 
eigenvalues of .4. 

27.3. Show that for a nonhermitian matrix A E emxm
, the Rayleigh quo-

tient r(x) gives an eigenvalue estimate ,,,hose is generally linear, 



210 PART V. EIGENVALUES 

not quadratic. Explain what convergence rate this suggests for the Rayleigh 
quotient iteration applied to nonhermitian matrices. 

27.4. Every real sYIIllnetric square rnatrix ean be orthogonally diagonalized, 
and the developments of this lecture are invariant under orthogonal changes 
of coordinates. Thus it would have been sufficient to carry out each derivation 
of this lecture under the assumption that A is a diagonal matrix with entries 
ordered by decreasing absolute value. Making this assumption. describe the 
form taken by (27.4). (27.5). and Algorithm 27.3. 

27.5. As mentioned in the text, inverse iteration depends on the solution of 
a system of equations that may be exceedingly ill-conditioned. with condition 
Humber on the order of 'Ve know that it is impossible in general 
to solve ill-conditioned systems accurately. Is this not a fatal flaw in the 
algorithm? 

Show as follows that the answer is no that ill-conditioning is not a problem 
in inverse iteratioIl. Suppose A is a real syrIlrnetrie rnatrix v,rith one eigenvalue 
rnuch smaller than the others in absolute value (v,rithout loss of generality, we 
arc taking fl = 0). Suppose v is a vector with components in the directions of 
all the eigenvectors Q1, ... ,qm of A, and suppose Ali! = v is solved backvmrd 
stably. yielding a computed vector w. :Vlaking usc of the calculation on p. 95. 
show that although iiJ may be far from "". 'lil/ll'lvll will not be far from w/lll"". 
27.6. What happens to Figure 27.1 if two of the eigenvalues of A are equal? 


