Lecture 38. Conjugate Gradients

The conjugate gradient iteration is the “original” Krylov subspace iteration,
the most famous of these methods and one of the mainstays of scientific com-
puting. Discovered by Hestenes and Stiefel in 1952, it solves symmetric posi-
tive definite systems of equations amazingly quickly if the eigenvalues are well
distributed.

Minimizing the 2-Norm of the Residual

As in the last two lectures, let A € IR™*™ be real and symmetrie, and suppose
we wish to solve a nonsingular system of equations Az = b, with exact solution
z, = A7*h. Let K, denote the nth Krylov subspace (33.5) gencrated by b,

K, = (b Ab,..., A" 'p). (38.1)

One approach based on this Krylov subspace would be to solve the system
by GMRES. As described in Lecture 33, this would mean that at step n, x, is
approximated by the vector z,, € K, that minimizes ||7,||,, where r,, = b—Az,,.
Actually, the nsual GMRES algorithm does more work than is necessary for
minimizing ||r,,||,. Since A is symmetric, faster algorithms are available based
on three-term instead of (n+ 1)-term recurrences at step n. One of these goes
by the names of conjugate residuals or MINRES (“minimal residuals”).

These methods, at least when constructed to apply to both definite and
indefinite matrices, involve certain complications. Rather than describe them,
we turn directly to the simpler and more important positive definite case.
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Minimizing the A-Norm of the Error

Agsumec that A is not only rcal and symmetric but also positive definite. As
discussed in Lecture 23, this means that the cigenvalues of A are all posi-
tive, or cquivalently, that z7Az > 0 for every nonzero x € IR™. Under this
assumption, the function || - ||, defined by

lz]| 4 = VaTAz (38.2)

is a norm on R™, as can be verified from the definition (3.1). It is called the
A-norm. (This is the same as the norm ||z||,, of (3.3), it W is a Cholesky
factor of A or any other matrix satisfying WTW = A.)

The vector whose A-norm will concern us is e, = z, — z,,, the crror at
step n. The conjugate gradient iteration can be described as follows. It is o
system of recurrence formulas that generates the unique sequence of iterates
{z,, € K,} with the property that at step n, |le,||4 is minimized.

We shall present the formulas for the CG iteration, without motivation at
first, and derive some orthogonality properties (Theorem 38.1). From these,
the claim about minimality of ||e,|| 4 follows as a corollary (Theorem 38.2),
and the motivation appears belatedly as we interpret CG as a nonlinear opti-
mization algorithm.

The Conjugate Gradient Iteration

Here is the iteration that Hestenes and Stiefel made famous.

Algorithm 38.1. Conjugate Gradient (CG) Iteration

Ty =0, ro=">0, py=ryp

forn=1,2,3,...
aip = T AP D o) step length
T, =Ty DL approximate solution
T, =Tp 1 — QAp, | residual
B = (rIrn)/(rI_ir,_ 1) improvement this step
Pp = Tp + BaPu_1 scarch dircction

Before analyzing the mathematical properties of these formulas, let us ex-
amine them operationally. First we note that the CG iteration is extraordinar-
ily simple—programmable in a few lines of MATLAB. Since it deals only with
m-vectors, not with individual entries of vectors or matrices, it is simpler, for
example, than Gaussian elimination with pivoting. The only complication—
which we shall not address—is the choice of a convergence criterion.
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At cach step, the CG iteration involves several vector manipulations and
one matrix-veetor product, the computation of Ap,_, (which appcars twice in
the listing but need be computed only once). If A is dense and unstructured,
this matrix-vector product dominates the operation count, which becomes
~ 2m? flops for each step. If A is sparse or has other exploitable structure,
Ap,_, may be computable in as few as O(m) operations, in which case the
operation count may be as low as O(m) flops per step.

From the five lines that define the algorithm, the following properties can
be deduced. Like all the theorems in this book that do not explicitly mention
rounding errors, this one assumes that the computation is performed in exact
arithmetic. If there are rounding errors, these properties fail, and it becomes
a subtle matter to explain the still very impressive performance of CG.

Theorem 38.1. Let the CG iteration (Algorithm 38.1) be applied to o sym-
metric positive definite matriz problem Ax = b. As long as the iteration has
not yet converged (i.e., r,_, # 0), the algorithm proceeds without divisions by
zero, and we have the following identities of subspaces:
K, = (:c1,;r2,...,xn) = (p07p17"':pn—1)
= (P4 is-oe s Tui) = (b, Ab,..., A" ). (38.3)

Moreover, the residuals are orthogonal,

mr; =0 (j<mn), (38.4)
and the search directions are “A-congugate,”
pAp; =0 (j<n). (38.5)

Proof. The proof is by induction on n; we sketch it informally. From the initial
guess 2y = 0 and the formula z, = x, | +a,p,_,, it follows by induction that
x,, belongs to {py, p1,....P,_1). From p, =7, + B,p,_, it follows that this
is the same as (rg,r),...,7,_;). Fromr, =7, —a,Ap,_,, finally, it follows
that this is the same as (b, Ab, ..., A" 1h). This establishes (38.3).

To prove (38.4), we apply the formular, =7, —a,Ap,_ | and the identity
(Ap,_)" =pl_| A to compute

'r;frj = 7";1;'—17“3‘ — aenp’f;_lArj.

If j < n—1, both terms on the right are zero by induction. If j = n — 1, the
difference on the right is zero provided oy, = (rI_ 7, )/(p:_,Ar,_,). Now
this is the same as the line o, = (rI_,»r,_)/(pL_,Ap,_,) of Algorithm 38.1,
except that p._, Ap, , has been replaced by p!_  Ar,_,. Since p, , and r,_,
differ by #,_1p,,_., the effect of this replacement is to change the denominator
by B._1pX_,Ap, _,, which is zero by the induction hypothesis.
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To prove (38.5), we apply the formula p,, = 7, + 8,p,_; to compute
pgApj = -rqq;A-pj =+ { ,,,pZ_IApj.

If j < n—1, both terms on the right are again zero by induction (since (38.4)
has now been established for case n). If j = n—1, the sum on the right is zero
provided 3, = —(rLAp,_,)/(pL_,Ap,_,), which we can write equivalently in
the form 8, = (—anrlAp, 1)/ (vpl_1Ap, ;). This is the same as the line
Bu=0Ir,)/(rE v, ) of Algorithm 38.1, except that rIr, has been replaced
by ri(—a,Ap,_ 1) and 71,7, ; has been replaced by pl_;(a,Ap, ;). By the
induction hypothesis and lines 3 and 5 of Algorithm 38.1, these replacements
can again readily be shown to have zero effect. O

Optimality of CG

In deriving the orthogonality propertics (38.4) and (38.5), we have finished the
real work. It is now a straightforward matter to confirm that CG minimizes
llell 4 at cach step.

Theorem 38.2. Let the CG iteration be applied to a symmetric positive def-
inite matriz problem Az = b. If the iteration has not already converged (i.c.,
r._1 # 0), then z, is the unique point in K, that minimizes ||e,||4. The
convergence is monotonic,

llenlla < llen—allas (38.6)
and e,, = 0 is achieved for some n <m.

Proof. From Theorem 38.1 we know that x, belongs to K,. To show that
it is the unique point in K, that minimizes ||e| 4, consider an arbitrary point
x =, — Az € K, with error e = 2, — 2 = e, + Az. We calculate

% = (e, +Ar)TA(e, + Az)
= ende, + (A2)TA(A7) + 26T A(Ac).

€

The final term in this equation is 27"?7; (Az), an inner product of r,, with a
vector in K, and by Theorem 38.1, any such inner product is zero. This is
the crucial orthogonality property that makes the CG iteration so powerful.
It implies that we have

ey = elde, + (Aa)"A(Aq).

Only the second of these terms depends on Az, and since A is positive definite,
that term is >0, attaining the value 0 if and only if Az = 0, ie., z, = z.
Thus ||e||4 is minimal if and only if z, = x, as claimed.
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The remaining statements of the theorem now follow readily. The mono-
tonicity property (38.6) is a conscquence of the inclusion £, € K, |, and
since I, is a subset of R™ of dimension » as long as convergence has not yet
been achieved, convergence must be achieved in at most m steps. O

The guarantee that the CG iteration converges in at most m steps is void
in floating point, arithmetic. For arbitrary matrices A on a real computer, no
decisive reduction in ||e, || 4 will necessarily be observed at all when n = m.
In practice, however, CG is used not for arbitrary matrices but for matrices
whose spectra, perhaps thanks to preconditioning, arce well-cnough behaved
that convergence to a desired accuracy is achieved for n < m (Lecture 32).
The theoretical exact convergence at n = m has no relevance to this use of
the CG iteration in scientific computing.

CG as an Optimization Algorithm

We have just shown that the CG iteration has a certain optimality property:
it minimizes ||, || 4 at step n over all vectors z € K. In fact, as foreshadowed
already by the use of such terms as “step length” and “search direction,” this
iteration can be interpreted as an algorithm of a standard form for minimizing
a nonlincar function of z € ™. At the heart of the iteration is the formula

T, =Ty 1+ Cply_q-

This is a familiar cquation in optimization, in which a current approximation
#,_, is updated to a new approximation z, by moving a distance «, (the step
length) in the direction p,_, (the search direction). By a succession of such
steps, the CG iteration attempts to find a minimum of a nonlincar function.

Which function? According to Theorem 38.2, the answer would appear to
be |le|| 4, or equivalently, ||e||%. However, although ||e||% is indeed a function
of x, it is not one we can evaluate without knowing z,. It would not be very
“standard” to interpret CG as an optimization process applied to a function
that cannot be evaluated!

On the other hand, given A and b and z € IR™, the quantity

o(z) = ta"Az — 2"b (38.7)
can certainly be evalnated. A short computation now reveals

||6nl|i = nglen = (.’L‘* - ajn)TA(g"* - ‘Ln)
= 2TAx, — 22t Az, + 17 Az,

= gz, Az, — 22, b+1Lb = 2¢(z,) + constans.
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Thus @(z) is the same as ||e||% except for a factor of 2 and the (unknown)
constant z2b. Like |le||%, it must achicve its minimum (namely, —zb/2)
uniquely at © = x,.

The CG iteration can be interpreted as an iterative process for mini-
mizing the quadratic function ¢(z) of x € R™. At each step, an iterate
Ty = Tp_1 + Mpp,_q 1s computed that minimizes ¢() over all z in the one-
dimensional space z,_, + (p,_,). (It is readily confirmed that the formula
o = (17, 1)/ (pt_1Ap,_ ) ensures that o, is optimal in this sense among
all step lengths o.) What makes the CG iteration remarkable is the choice
of the search direction p,_;, which has the special property that minimizing
w(z) over z,_, + (p,_,) actually minimizes it over all of K,,.

There is a close analogy between the CG iteration for solving Ax = b
and the Lanczos iteration for finding eigenvalues. The eigenvalues of A, as
discussed in Lecture 27, are the stationary values for 2 € R™ of the Rayleigh
quotient, r(x) = (z7Az)/(x'x). As pointed out in Exercise 36.1, the eigenvalue
estimates (Ritz values) associated with step n of the Lanczos iteration are the
stationary values of the same function r(z) if z is restricted to the Krylov
subspace KC,,. This is a perfect parallel of what we have shown in the last
two pages, that the solution x, of Az = b is the minimal point in IR™ of the
scalar function ¢(x), and the CG iterate z,, is the minimal point of the same
function @(z) if x is restricted to K.

CG and Polynomial Approximation

A theme of the last four lectures has been the connection between Krylov
subspace iterations and polynomials of matrices. The Arnoldi and Lanczos
iterations solve the Arnoldi/Lanczos approximation problem (34.3), and the
GMRES itcration solves the GMRES approximation problem (35.10). For
CG, the appropriate approximation problem involves the A-norm of the error.

CG Approximation Problem. Find p, € P, such that

lpn(A)ey|l 4 = minimum. (38.8)

Here ¢, denotes the initial error, ¢y = =, — x5 = z,, and P, is again defined
as in (35.7), the set of polynomials p of degree < n with p(0) = 1. From
Theorem 38.2 we may derive the following convergence theorem.

Theorem 38.3. If the CG iteration has not already converged before step n
(i.e., r,_ #0), then (38.8) has a unique solution p, € P, and the iterate x,,

n—1
has error e,, = p,(A)ey for this same polynomial p,. Consequently we have
, ; p(A -
lew/la = inf lip(A)eolla < inf max |p(A)], (38.9)
“e[]”A PEF;, ||530||A PEL, AEA(A)

where A(A) denotes the spectrum of A.
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Proof. From Theorem 38.1 it follows that e, = p(A)e, for some p € P,.
The equality in (38.9) is a conscquence of this and Theorem 38.2. As for the
inequality in (38.9), if e, = X7, a;v; is an expansion of e; in orthonormal
cigenvectors of A, then we have p(A)e; = YT, a;p(A;)v; and thus

leolls = Doar;,  [lp(A)eglld = D aix; (X))
=1 =1

These identities imply [|p(A)eg||5/ el < maxyeacay [p(A)]?, which implies
the inequality in question. O

Rate of Convergence

Theorem 38.3 establishes that the rate of convergence of the CG iteration
is determined by the location of the spectrum of A. A good spectrum is
one on which polynomials p, € I, can be very small, with size decreasing
rapidly with n. Roughly speaking, this may happen for either or both of two
reasons: the eigenvalues may be grouped in small clusters, or they may lie well
separated in a relative sense from the origin. The two best-known corollaries
of Theorem 38.3 address these two ideas in their extreme forms.

First, we suppose that the eigenvalues are perfectly clustered but assume
nothing about the locations of these clusters.

Theorem 38.4. If A has only n distinct eigenvalues, then the CG iteration
converges in at most n steps.

Proof. This is a corollary of (38.9), since a polynomial p(z) = [T}_,(1-x/};) €
P, exists that is zero at any specified set of n points {A,}.

At the other extreme, suppose we know nothing about any clustering of
the eigenvalues but only that their distances from the origin vary by at most
a factor k > 1. In other words, suppose we know only the 2-norm condition
number & = Apax/ Aminy Where Ayax and Ay, are the extreme cigenvalues of A.

Theorem 38.5. Let the CG iteration be applied to a symmelric positive def-
intte matriz problem Az = b, where A has 2-norm condition number k. Then
the A-norms of the errors satisfy

b <3 /|(F5) +(F5) ] <2 (%5)" oo
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Proof. By Theorem 38.3, it is cnough to find a polynomial p € P, whose
maximum value for A € [Ayin, Amax] 15 the middle expression of (38.10). The
polynomial we choose is the scaled and shifted Chebyshev polynomial p(z) =
T (v — 22/ (Amax — Amin)) /T (¥), where T, is the usual Chebyshev polynomial
of degree n and v takes the special value v = (Anax + Amin)/ (Amax — Amin) =
(k+1)/(k —1). For & € [Amin, Amax], the argument of T,, in the numerator
of p(x) lies in [—1,1], which means the magnitude of that numerator is < 1.
Therefore, to prove the theorem, it will suffice to show

no = n(E5) = 5| (E5) < (%) ] e

We can do this by making the change of variables ¢ = §(z + z7%), Tp(z) =
(2" +27"), standard in the study of Chebyshev polynomials. If (k+1)/(k —
1) = 4(z+27"), that is, 12> — (k +1)/(s — 1)z + § = 0, then we have a
quadratic equation with solution

£—1 K—1 k—1

& = (K+1>+ (}{+1>2_1 _ f€+1+\/(f€+1)2—(n—1)2

_ k14 Vias (v +1)° _ Vet

£—1 WVE+D)WE=-1) — Ve-1

Thus Ty, () = (2" + 2~™) for this value of z, which is (38.11), as claimed. O

Theorem 38.5 is the most famous result about convergence of the CG
iteration. Since
VE =1 2

~ ]
VeE+1 VE
as Kk — oo, it implics that if & is large but not too large, convergence to a
specified tolerance can be expected in O(y/k) iterations. One must remember
that this is only an upper bound. Convergence may be faster for special right-
hand sides (not so common) or if the spectrum is clustered (more common).

Example

For an example of the convergence of CG, consider a 500 x 500 sparse matrix A
constructed as follows. First we put 1 at each diagonal position and a random
number from the uniform distribution on [—1, 1] at each off-diagonal position
(maintaining the symmetry A = AT). Then we replace each off-diagonal entry
with |a;;| > 7 by zero, where 7 is a parameter. For 7 close to zero, the result is
a well-conditioned positive definite matrix whose density of nonzero entries is
approximately 7. As 7 increases, both the condition number and the sparsity
deteriorate.
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Figure 38.1. CG convergence curves for the 500 x 500 sparse matrices A
described in the text. For 7 = 0.01, the system is solved about 700 times faster
by CG than by Cholesky factorization. For 7 = 0.2, the matriz is not positive
definite and there is no convergence.

Figure 38.1 shows convergence curves corresponding to 20 steps of the CG
iteration for matrices of this kind with 7 = 0.01,0.05,0.1,0.2. (The right-hand
side b was taken to be a random vector.) For 7 = 0.01, A has 3092 nonzero
entries and condition number xk &~ 1.06. Convergence to machine precision
takes place in 9 steps, about 6 x 10* flops. For 7 = 0.05, there are 13,062
nonzeros with x ~ 1.83, and convergence takes 19 steps, about 5 x 10° flops.
For 7 = 0.1 we have 25,526 nonzeros and x ~ 10.3, with only 5 digits of
convergence after 20 steps and 10® flops. For 7 = 0.2, with 50,834 nonzeros,
there is no convergence at all. The lowest eigenvalue is now negative, so A is
no longer positive definite and the use of the CG iteration is inappropriate.
(In fact, the CG iteration often succeeds with indefinite matrices, but in this
case the matrix is not only indefinite but ill-conditioned.)

Note how closely the 7 = 0.01 curve of Figure 38.1 matches the schematic
ideal depicted in Figure 32.1! For this example, the operation count of 6 x 10*
flops beats Cholesky factorization (23.4) by a factor of about 700. Unfortu-
nately, not every matrix arising in practice has such a well-behaved spectrum,
even after the best efforts to find a good preconditioner.
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Exercises

38.1. DBased on the condition numbers & reported in the text, determine
the rate of convergence predicted by Theorem 38.5 for the matrices A of
Figure 38.1 with 7 = 0.01,0.05,0.1. Draw lines on a copy of Figure 38.1
indicating how closely these predictions match the actual convergence rates.

38.2. Suppose A is a real symmetric 805 x 805 matrix with eigenvalues
1.00,1.01,1.02, ...,8.98,8.99,9.00 and also 10,12,16,24. How many steps
of the conjugate gradient iteration must you take to be surc of reducing the
initial error ||eg| 4 by a factor of 1057

38.3. The conjugate gradient is applied to a symmetric positive definite
matrix A with the result ||eg||, = 1, [|eio]| s = 2 x 271%. Based solely on this
data,

(a) What bound can you give on x(4)?
(b) What bound can you give on ||egl| 47

38.4. Suppose 4 is a dense symmetric positive definite 1000 x 1000 matrix
with x(A4) = 100. Estimate roughly how many flops are required to solve
Ax = b to ten-digit accuracy by (a) Cholesky factorization, (b) Richardson
iteration with the optimal parameter « (Exercise 35.3), and (c¢) CG.

38.5. We have described CG as an iterative minimization of the function
w(x) of (38.7). Another way to minimize the same function—far slower, in
general  is by the method of steepest descent.

(a) Derive the formula Vip(z) = —r for the gradient of (). Thus the steepest
descent iteration corresponds to the choice p, = r,, instead of p,, = r,+5,p,_;
in Algorithm 38.1.

{(b) Determine the formula for the optimal step length o, of the steepest
descent iteration.

(c) Write down the full steepest descent iteration. There are three operations
inside the main loop.

38.6. Let A be the 100 x 100 tridiagonal symmetric matrix with 1,2,...,100
on the diagonal and 1 on the sub- and superdiagonals, and set b = (1,1,...,1)%.
Write a program that takes 100 steps of the CG and also the steepest descent
iteration to approximately solve Az = b. Produce a plot with four curves
on it: the computed residual norms ||r, ||, for CG, the actual residual norms
lb — Az, ||, for CG, the residual norms ||r,||, for steepest descent, and the

estimate 2(y/k — 1)*/(y/x +1)" of Theorem 38.5. Comment on your results.



