
Lecture 38. Conjugate Gradients 

The eonjugate gradient iteration is the "original" Krylov subspace iteration, 
the most famous of these methods and one of the mainstays of scientific com-
puting. Discovered by Hestenes and Stiefel in 1952, it solves symmetric posi-
tive definite systems of equations amazingly quickly if the eigenvalues are well 
distributed. 

Minimizing the 2-Norm of the Residual 
As in the last two lectures, let A E IRmxm be real and symmetric, and suppose 
,vc wish to solve a nonsingular system of equations Ax = b, '\vith exact solution 
x , = A - lb. Let ICn denote the nth Krylov subspace (33.5) generated by b, 

ICn = (b, Ab, ... , An- l b). (38.1 ) 

One approach based on this Krylov subspace would be to solve the system 
by GMRES. As described in Lecture 35, this would mean that at step n, x, is 
approximated by the vector xn E Kn that lllinirnizes II1'n112l where 1'n = b-Axw 
Actually, the usual GMRES algorithm does more work than is necessary for 
lnillimizing 1I1''{I112. Since A is synllnetric, faster algorithms are available based 
on three-term instead of (n + 1 )-term recurrences at step n. One of these goes 
by the HaIneS of conjugate residuals or IvlINRES ("lnininlal residuals"). 

These methods, at least when constructed to apply to both definite and 
indefinite matrices, involve certain complications. Rather than describe theIn, 
,ve turn directly to the simpler and more important positive definite ca.se. 
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Minimizing the A-Norm of the Error 
Assume that A is not only real and symmetric hut also positive definite. As 
discussed in Lecture 23, this means that the eigenvalues of A arc all posi-
tive, or equivalently, that xT Ax > 0 for every nonzero x E JRm

. Under this 
assumption, the function II . 11.1 defined by 

Ilxll.4 = VxTAx (38.2) 

is a norm on !R.m , as can be verified from the definition (3.1). It is called the 
A-norm. (This is the same as the norm Ilxll w of (3.3), if TV is a Cholesky 
factor of A or any other lnatrix satisfying lVTHl = A.) 

The vector ,vhosc A-norm "vill concern us is cn = x '" - x n1 the error at 
step n. The conjugate gradient iteration can be described as follows. It is a 
system of recurrence formulas that generates the unique sequence of iterates 
{xn E Kn} with the property that at step n, IlcnllA is minimized. 

We shall present the formulas for the CG iteration, without motivation at 
and derive smne orthogonality properties (Theorelll 38.1). FrOlll these, 

the claim about minimality of IlenllA follows as a corollary (Theorem 38.2), 
and the motivation appears belatedly as we interpret CG as a nonlinear opti-
lnization algorithm. 

The Conjugate Gradient Iteration 
Here is the iteration that Hestenes and Stiefel made famous. 

Algorithm 38.1. Conjugate Gradient (CG) Iteration 

:£0 = 0, TO = b, Po = TO 

for n = 1,2,3, ... 

<Xn = (r;_ lrn_1)/(P';_ lApn_l) 
Xn = Xn-l + O:nPn-l 

r n = r 71-1 - O:nAPn_l 

,317, = 

Pn = Tn + ,BnPn-l 

step length 
approximate solution 
residual 
imprOV€lnent this step 
search direction 

Before analyzing the mathematical properties of these formulas, let us ex-
amine them operationally. First we note that the CG iteration is extraordinar-
ily sinlple-programnwble in a few lines of MATLAB. Since it deals only with 
'In-vectors, not with individual entries of vectors or matrices, it is simpler, for 
eXaInple, than Gaus.sian elilnination ·with pivoting. The conlplication-
,vhich we shall not address-is the choice of a convergence criterion. 
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At each step, the CG iteration involves several vector manipulations and 
onc matrix-vector product, the computation of Apn_l (,vhich appcart3 tvvicc in 
t.he listing but. need be comput.ed only once). If A is dense and unst.ruct.ured, 
this matrix-vector product dominates the operation count, which becomes 

2'(",' flops for each step. If A is sparse or has other exploit.able st.ruct.ure, 
APn_l may be comput.able in as few as O(m) operations, in which case t.he 
operation count rnay be as lenv as O(Tn) flops per step. 

From t.he five lines that define t.he algorithm, t.he following propert.ies can 
be deduced. Like all t.he t.heorems in this book that do not explicitly mention 
rounding errors, this one assumes that the computation is performed in exact 
arithmetic. If there are rounding errors, these properties fail, and it becomes 
a subtle matter to explain the still very impressive performance of CG. 

Theorem 38.1. Let the CG iteration (Algorithm 38.1) be applied to a sym-
metric positive definite matrix problem Ax = b. As long as the iteration has 
not yet converged (i.e., r,,_1 cf 0), the algorithm proceeds without divisions by 
zero, and we have the following identities of subspaces: 

Moreover, the Tesiduals are orthogonal, 

rTr· = 0 
" J 

(j < n), 

and the .'waTch direction;; are "A-conjugate))) 

(j < n). 

(38.3) 

(38.4) 

(38.5) 

Proof. The proof is by induction on n; we sketch it informally. From the initial 
guess Xo = 0 and the formula xn = x n- 1 +a.nPn-ll it follows by induction that 
xn belongs to \Po, Pu'" Pn- l )' FrOln Pn = Tn + ,BnPn-l it follmvs that this 
is the same as (TO' TIl···' Tn-I)' From Tn = r n- 1 - G'nAPn_l' finally, it follmvs 
that this is the same as (b, Ab, ... , A,,-lb). This establishes (38.3). 

To prove (38.4), we apply the formula Tn = Tn- 1 -a"APn_l and the identity 
(APn_t)T = P:_tA to compute 

If j < n - 1, both terms on the right are zero by induction. If j = n - 1, the 
difference on the right is l':ero provided O:n = Now 
this is the same as the line = of Algorit.lull 38.1, 
except that has been replaced by Since Pn-1 and rn- 1 
differ by fJn-1P,,_2' the effect of this replacement is to change the denominator 
by .4Pn_2' which is zero the induction hypothesis. 
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To prove (38.5), we apply the formula p" = Tn + f3"Pn-l to compute 

If j < n - 1, both terms on the right are again by induction (since (38.4) 
has now been established for case n). If j = n - 1, the sum on the right is 
provided /3n = whieh "\ve ean v,rrite equivalently in 
the fornl ,tin = This is the saIne 3...'l the line 
.8n = (r;'Tn)/(r;'_I'"n_l) of Algorithm 38.1, except that r.;''"n has been replaced 
by T;:· (-anAPn_l) and T;:"-, Tn_I has been replaced by P';·-1 ("nAPn_l). By the 
induction hypothesis and lines 3 and 5 of Algorithm 38.1, these replacements 
can again readily be shown to have effect. D 

Optimality of CG 
In deriving the orthogonality properties (38.4) and (38.5), we have finished the 
real vvork. It is now a straightforward lllatter to confirm that CG lninimizes 
Ilell.4 at each step. 

Theorem 38.2. Let the CG iteration be applied to a symmetric positive def-
inite matrix problem Ax = b. If the iteration has not already converged (i. e., 
Tn _ 1 cf 0), then Xn is the unique point in iCn that minimizes Ilenllk The 
convergence is monotonic, 

(38.6) 

and en = 0 is achieved JOT smne n :::; TIL 

Pmuj. From Theorem 38.1 we know that Xn belongs to iC.". To show that 
it is the unique point in iCn that minimizes IlelIA' consider an arbitrary point 
x = In - .6.x E Knl with error e = x* - x = en + 6.x. \iVe calculate 

(en + + 
e;,Aen + + 

The final terrn in this equation is 2r;(..6.x), an inner product of Tn with a. 
vector in iCn , and by Theorem 38.1, any such inner product is This is 
the crucial orthogonality property that makes the CG iteration so powerful. 
It implies that we have 

Only the second ofthese terms depends on and since A is positive definite, 
that term is ';> 0, attaining the value ° if and only if = 0, i.e., xn = x. 
Thus IIeIL,1 is minimal if and only if xn = :r, as clailned. 
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The remaining statements of the theorem now follow readily. The mono-
tonicity property (38.6) is a consequence of the inclusion Kn C;; Kn+l' and 
sinee Kn is a subset of lRrn of dimension n a') long as eOllvergence h&') not yet 
heen achieved, convergence must be achieved in at most m steps. D 

The guarantee that the CG iteration converges in at most m steps is void 
in floating point arithmetic. For arbitrary matrices A on a real computer, no 
decisive reduction in IlcnllA will necessarily be observed at all when n = m. 
In practice, however, CG is used not for arbitrary matrices but for lllatrices 
whose spectra, perhaps thanks to preconditioning, arc well-enough behaved 
that convergence t.o a desired accuracy is achieved for n «m (Lect.ure 32). 
The theoretieal exaet cOllvergenee at n = Tn has no relevanee to this use of 
the CG iteration in seientific cornputing. 

CG as an Optimization Algorithm 

Vve have .iust shown that the CG iteration has a certain optimality property: 
it lninimizes IlenlL!l at step n over all vectors x E Kno In fact, as foreshadowed 
already b:y the use of sueh terms as "step length" and "search direction," this 
iteration can be interpreted a.'3 an algorithm of a standard forn1 for minilnizing 
a nonlinear function of x E lllm. At the heart of the iteration is the formula 

This is a familiar equation in optimization, in which a current approximation 
xn _ 1 is updated to a ne,,,, approxiInation .Tn by moving a distance (}:n (the step 
length) in the direction Pn-l (the search direction). a succession of such 
steps, the CG iteration attempts to find a minimum of a nonlinear function. 

Which funct.ion? According t.o Theorem 38.2, the answer would appear t.o 
be Ilell.4 , or equivalently, However, although is indeed a function 
of :[;, it is not one ,ve can evaluate without knmving ;[;*. It would not be very 
"standard" to interpret CG as an process applied to a function 
that cannot be evaluated! 

On the other hand, given A and b and x E lll"', the quantity 

(38.7) 

can certainly be evaluated. A short cOlnputation nO'w reveals 

T ,. T () xn AXn - 2xn b + x* b = 2cp :rn + constant. 
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Thus 'P(x) is the same as except for a factor of 2 and the (unknown) 
constant x;'b. Like it must achieve its minimum (namely, -x;'b/2) 
uniquely at :1: = :£ .. " 

The CG iteration can he interpreted as an iterative process for mini-
rnizing the quadratic fUIletion ip(;r:) of :1: E IR1n. At each step, an iterate 
xn = ;L'n_l + CYnPn_l is computed that minimizes y(x) over all x in the one-
dimensional space :£n-l + \Pn-l)' (It is readily eonfirrned that the formula 
an = ensures that an is optimal in this sense among 
all step lengths n.) ,Vhat makes the CG iteration remarkable is the choice 
of the search direction Pn-I, which has the special property that minimizing 
'P(x) over x n - I + lPn-I) actually minimizes it over all of Kn' 

There is a close analogy between the CG iteration for solving Ax = b 
and the Lanczos iteration for finding eigenvalues. The eigenvalues of as 
discussed in Lecture 27, are the stationary values for :r E lRm of the Rayleigh 
quotient, r(x) = (xT Ax)/(xTx). As pointed out in Exercise 36.1, the eigenvalue 
estimates (Rih values) associated with step n of the Lanczos iteration are the 
stationary values of the same function r(x) if x is restricted to the Krylov 
subspace Kn' This is a perfect parallel of what we have shown in the last 
two pages, that the solution x. of Ax = b is the minimal point in !R,m of the 
scalar function cp(.11 and the CG iterate xn is the ITlinimal point of the SaIIle 
function 'P (x) if x is restricted to Kn' 

CG and Polynomial Approximation 
A theme of the last four lectures has been the connection between Krylov 
subspace iterations and polynomials of matrices. The Arnoldi and Lanczos 
iterations solve the Arnoldi/Lanczos approximation problem (34.3), and the 
G:vnlES iteration solves the G:vmES approximation problem (35.10). For 
CG, the appropriate approximation problem involves the A-norm of the error. 

CG Approximation Problem. Find Pn E Pn such that 

II Pn(A)co 114 = minimum. (38.8) 

Here Co denotes the initial error, Co = x ,. - Xo = X* , and Pn is again defined 
as in (35.7), the set of polynomials P of degree::; n with prO) = l. From 
Theorem 38.2 we may derive the following convergence theorem. 

Theorem 38.3. If the CG itemtion has not already corweryed bejo're step n 
(i.e.; Tn_1 #- 0); then (38.8) has a unique solution Pn E Pn; and the iterate xn 
has error en = p,,(A)eo for this same polynomial Pn' Consequently we have 

IlenliA = inf IIp(A)eoIIA 
lIeollA pEP" lIeol14 ::; inf max Ip(.\) I, 

pEP,. AEj\'(A) 
(38.9) 

where A(A) denotes the spectrum of A.. 
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Proof. From Theorem 38.1 it follows that en = p(A)co for some pEP", 
The equality in (38.9) is a consequence of this and Theorem 38.2. As for the 
inequality in (38.9), if eo = (J,{/)j is an expansion of eo in orthonormal 
eig'cnvectors of A then we have p(A)e = pm a 'p(.\)v and thus , 0 L....J=l J J J 

m m 

= L a;\, = L o;\(p(\W 
j=l j=l 

These identities imply <:: max.\EA(A) Ip(.\JI2. which implies 
the inequality in question. 0 

Rate of Convergence 
Theorem 38.3 establishes that t.he rate of convergence of t.he CG it.erat.ion 
is determined by the location of the spectrum of A. A good spectrum is 
one on which polynornials Pn E Pn can be very sInaIl, v,rith size decreasing 
rapidly with n. Roughly speaking, this may happen for either or both of two 
rea..<;ons: the eigenvalues may be grouped in small dusters, or they may lie well 
separated in a relative sense from the origin. The tv,TO best-known eorollaries 
of Theorem 38.3 address these two ideas in their extreme forms. 

First, we suppose that the eigenvalues are perfectly clustered but assume 
nothing about the locations of these clusters. 

Theorem 38.4. If A has only n distinct eigenvalues, then the CG itemtion 
converyes in at most n steps. 

Proof. This is a corollary of (38.9), since a polynomial p(x) = (l-x/ \) E 
Pn exists that is zero at an:y specified set of n points {Aj}. D 

At the other extreme. suppose we know nothing about any clustering of 
the eigenvalues but only that their distances from the origin vary by at most 
a factor K. l. In other vvords, suppose we knmv only the 2-nornl condition 
number K. = Amax/ Amilu ,vhere Arnax and Arnin are the extreme eigenvalues of A. 

Theorem 38.5. Let the CG iteration be applied to a symmetric positive def-
inite matrix problem Ax = b. where A has 2-norm condition number K.. Then 
the A -norms of the erTOTS satisfy 

(38.10) 
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Proof. By Theorem 38.3, it is enough to find a polynomial p E PH whose 
maximum value for A E [Amin, Amax] is the middle expression of (38.10). The 
polynomial we choose is the scaled and shifted Chebyshev polynomial p(;r) = 
THb - 2X/(Amax - AmiH))/Tub), where TH is the usual Chebyshev polynomial 
of degree nand ')' takes the speeial value ";i = (.\rnax + Amin)/(.Arnax - Arnin) = 
(I\; + 1)/(1\; - 1). For x E [Am;", Am,,]' the argument of TH in the numerator 
of p(;r:) lies in [-1,11, v.rhich means the rnagnitude of that Ilumerator is 1. 
Therefore, to prove the theorem, it will suffice to show 

Tnb) = Tn (1\;+1) = [(ft+ 1)H + (ft+ 1)-U]. 
1(-1 2 ft-1 ft-1 (38.11) 

\Ve can do this by lilaking the change of variables x = (z + Z- l ), Tn (:r) = 
Hz" + [H), standard in the study of Chebyshev polynomials. If (I( + 1)/(1(-
1) = Hz + z-'), that is, - (I( + 1)/(1\; - l)z + = 0, then we have a 
quadratic equation with solution 

z ("22) + J ("22) 2 - 1 1\;-1 1\;-1 
1\;+ 1+ )(1\;+1)2 - (1\;-1)2 

1\;-1 

(ft+I)(ft-1) 
ft+1 
ft-I 

Thus Tub) = Hzn + z-n) for this value of z, which is (38.11), as daimed. D 

Theorem 38.5 is the most fanlous result about convergence of the CG 
iteration. Since 

ft -1 2 1--
ft+1 ft 

as I\; -+ co, it implies that if I( is large but not too large, convergence to a 
specified tolerance can be expected in O( y'K:) iterations. One lllust remember 
that this is only an upper bound. Convergence may be faster for special right-
hand sides (not so common) or if the spectrum is clustered (more common). 

Example 
For an example of the convergence of CG, consider a 500 x 500 sparse matrix A 
constructed a.'3 follows. First we put 1 at each diagonal position and a random 
number from the uniform distribution on [-1,1] at each off-diagonal position 
(maintaining the symmetry A = AT). Then we replace each entry 
,vith IUij I > T by zero, \vhere T is a parameter. For T close to zero, the result is 
a well-conditioned positive definite matrix whose density of nonzero entries is 
approximately T. As T increa..,es, both the condition number and the sparsity 
deteriorate. 
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Exercises 

38.1. I3ased on the condition numbers K reported in the text, determine 
the rate of convergence predicted by Theorem 38.5 for the matrices A of 
Figure 38.1 with T = 0.01,0.05,0.1. Draw lines on a copy of Figure 38.1 
indicating how closely these predictions match the actual convergence rates. 

38.2. Suppose A is a real symmetric 805 x S05 matrix with eigenvalues 
1.00,1.01,1.02, ... , 8.9S, S.99, 9.00 and also 10,12,16,24. How many steps 
of the conjugate gradient iteration must you take to be sure of reducing the 
initial error IlcollA by a factor of 106 ? 

38.3. The conjugate gradient is applied to a symmetric positive definite 
matrix A with the result lI"ollA = 1, Iholl, = 2 x 2-10. Based solely on this 
data, 
(a) What bound can you give on K(A)" 
(b) What bound can you give on Ilc,ollA? 
38.4. Suppose A is a dense symmetric positive definite 1000 x 1000 matrix 
with K(A) = 100. Estimate roughly how many flops are required to solve 
Ax = b to ten-digit accuracy by (a) Cholesky factorization, (b) Richardson 
iteration with the optimal parameter Q (Exercise 35.3), and (c) CG. 

38.5. We have described CG as an iterative minimization of the function 
'1'(:£) of (38.7). Another way to minimize the same function-far slower, in 
general is by the method of steepest descent. 
(a) Derive the formula \7cp(x) = -1' for the gradient ofcp(x). Thus the steepest 
descent iteration corresponds to the choice ])n = r n instead of Pn = r n + fJnPn-l 
in Algorithm 38.1. 
(b) Determine the formula for the optimal step length Un of the steepest 
descent iteratioIl. 
(c) Write down the full steepest descent iteration. There are three operations 
inside the main loop. 

38.6. Let A be the 100 x 100 tridiagonal symmetric matrix with 1,2, ... , 100 
on the diagonal and 1 on the sub- and superdiagonals, and set Ii = (1,1, ... ,1)""-
,Vrite a program that takes 100 steps of the CG and also the steepest descent 
iteration to approximately solve Ax = b. Produce a plot with four curves 
OIl it: the computed residual norIIlS IITnl12 for CG, the aetnal residual Horrns 
lib - AXnll, for CG, the residual norms Il1'nll, for steepest descent, and the 
estimate 2( Vii - l)n/( Vii + 1)" of Theorem 38.5. Comment on your results. 


